
2025/11/06 12:27 1/4 Debug()

ecoR - http://ecor.ib.usp.br/

Debug()

The function under test

For this explanation we will use the following simple function:

test = function(X)
{
 j = 0
 for (i in 1:X){
 j = j + i
 }
 j = j+1
 j
}

The function takes a single number as an argument and computes the sum of all numbers from 1 up
to,and including, the argument. At the end 1 is added before the result is returned.

As an example;

> test(3)
[1] 7

The result is 7 because the functions loops from 1 till 3 and then cumulates each number and adds 1 ,
so 1 + 2 + 3 = 6 + 1 = 7

Setting breaks

We could start the debugger with;

> debug(test)
> test(3)
debugging in: test(3)
debug at #2: {
 j = 0
 for (i in 1:X) {
 j = j + i
 }
 browser()
 j = j + 1
 j
}
Browse[2]>

...

Last
update:
2020/08/12
09:04

05_curso_antigo:alunos2012:alunos:trabalho_final:michel.bieleveld:debug http://ecor.ib.usp.br/doku.php?id=05_curso_antigo:alunos2012:alunos:trabalho_final:michel.bieleveld:debug

http://ecor.ib.usp.br/ Printed on 2025/11/06 12:27

> undebug(test)

By pressing <enter> we will execute each line until the function returns. Debugging line per line is
called single-stepping. The problem is what to do when have called the function for x=10000000 and
we are only interested in the line where j=j+1. We could single step for each line of the for loop for a
million times, or we could use the following two techniques.

Call ''browser()''

We can modify our function by adding a call to browser() like this;

test = function(X)
{
 j = 0
 for (i in 1:X){
 j = j + i
 }
 browser()
 j = j+1
 j
}

In this case we do not need to call debug(test) because the browser() function will call the
debugging environment for us. This way we can execute the function normally until the line with
browser() is encountered. Do not forget to rerun the function after changing it or else the
browser() command, and other added commands, will not get executed. For example;

> test = function(X)
+ {
+ j = 0
+ for (i in 1:X){
+ j = j + i
+ }
+ browser()
+ j = j+1
+ j
+ }
>
>
> test(1000000)
Called from: test(1e+06)
Browse[1]> j
[1] 500000500000
Browse[1]> i
[1] 1000000
Browse[1]> c
[1] 500000500001

2025/11/06 12:27 3/4 Debug()

ecoR - http://ecor.ib.usp.br/

Here we see that after running the function we automatically, without running debug(), get into
debugging mode. Furthermore, after requesting the variable i we see it has a value of 1000000 so we
have passed the for loop. If we would have another for loop we could just press c to continue until we
meet the next browser() call.

Setting breakpoints

You should be able to stop the program at a certain point without calling the browser() command.
Unfortunately I can't get it to work, maybe my version of R is different and it does work for you.

The breakpoints, places where the execution needs to stop, can be set by calling the
setBreakpoint() function. For it to work you need to specify the filename of the script that you are
trying to debug and the line number at which you would like to stop execution. Don't forget to save
your file before executing this command or you might stop at the wrong line. As an example, where
a.r is my file name;

> setBreakpoint("a.r#1")
No source refs found.

This should stop the execution when it reaches the specific line number, but I get the error No
source refs found.

Conditional breakpoints

Besides just calling browser() we can also call it conditionally. We could be interested for example
in the execution of just the 90000th iteration, or we could be interested in just that NA somewhere in
our data files. Whatever the reason we can stop the executing simply like we did earlier but now
combined with an if statement.

> test = function(X)
+ {
+ j = 0
+ for (i in 1:X){
+ if (i==90000) browser()
+ j = j + i
+ }
+ j = j+1
+ j
+ }
>
>
> test(1000000)
Called from: test(1e+06)
Browse[1]> i
[1] 90000
Browse[1]> c
[1] 500000500001
>

Last
update:
2020/08/12
09:04

05_curso_antigo:alunos2012:alunos:trabalho_final:michel.bieleveld:debug http://ecor.ib.usp.br/doku.php?id=05_curso_antigo:alunos2012:alunos:trabalho_final:michel.bieleveld:debug

http://ecor.ib.usp.br/ Printed on 2025/11/06 12:27

From:
http://ecor.ib.usp.br/ - ecoR

Permanent link:
http://ecor.ib.usp.br/doku.php?id=05_curso_antigo:alunos2012:alunos:trabalho_final:michel.bieleveld:debug

Last update: 2020/08/12 09:04

http://ecor.ib.usp.br/
http://ecor.ib.usp.br/doku.php?id=05_curso_antigo:alunos2012:alunos:trabalho_final:michel.bieleveld:debug

	Debug()
	The function under test
	Setting breaks
	Call ''browser()''
	Setting breakpoints
	Conditional breakpoints

