2025/11/25 02:36 1/7 Trabalho Final

Doutorando em Zoologia, Instituto de Biociências, USP

Laboratório de Anfíbios

Projeto: Evolution of larval characters in Dendrobatoidea Cope, 1865 (Amphibia; Anura;

Dendrobatidae & Aromobatidae)

Orientador: Dr. Taran Grant

exec

Trabalho Final

Proposta A

Distância entre árvores filoegenéticas

O objetivo geral da sistemática filogenética é explicar a diversidade da vida ao descobrir as relações evolutivas entre as espécies, onde as inferências de transformações evolutivas de um estado de caráter em outro fornecem o mecanismo de escolha entre as explicações competidoras (Kluge, 2007), mediante o número de eventos transformacionais requeridos (Farris, 1967, 1970). Dessa forma, diferentes conjuntos de caracteres podem ser evocados como evidência de ancestralidade em comum (Grank & Kluge, 2004).

Atualmente, diferentes critérios de otimalidade são empregados nas buscas por hipóteses de relacionamentos filogenéticos (Grant & Kluge, 2003). Apesar de a parcimônia representar um critério ótimo e justificável do ponto de vista teórico, filosófico, lógico e computacional (Grant, 2002; Goloboff, 2003; Kluge & Grant, 2006) vários autores adotam métodos probabilísticos (i.e. maximum lakelihood, inferência bayesiana). Dessa forma, uma função que consiga evidenciar as distâncias entre as diferentes topologias geradas por métodos distintos sem levar em consideração o comprimento de ramo (estima de forma distinta por cada método) é de grande valia na para estudos teóricos e empíricos que contribuam para a decisão mais coerente do ponto de vista das operações de descoberta (Grant, 2002).

Nessa função, a entrada é um arquivo .tre contendo uma ou mais topologias. Se o mesmo possuir apenas duas topologias, a função fornecerá um valor para a distância entre as topologias e plotorá um gráfico com ambas, realçando os clados idênticos em ambas as topologias. Caso o arquivo contenha múltiplas topologias, ela fornecerá as distâncias entre as topologias e plotorá tais valores em um gráfico.

Proposta B

Estudo sobre alometria e heterocronia no desenvolvimento das larvas de anuros

Heterocronia pode ser definida como mudanças nas taxas de crescimento relativo ou na ordem de surgimento e desenvolvimento de estruturas morfológicas ou no padrão de expressão gênica (Klingenberg, 1998; Smith, 2001; McNamara, 2012). Ou seja, eventos heterocrônicos criam uma ponte entre a ontogenia e a filogenia, pois as mudanças em características fenotípicas requerem mudanças nos processos ontogenéticos que produzam tal estrutura, cuja variação por sua vez,

fornece a matéria prima sobre a qual age a seleção natural (Klingenberg, 1998).

Anfíbios anuros representam excelentes organismos modelo para estudos relacionados a heterocronias em função do peculiar processo de metamorfose sofrido ao longo de sua ontogenia. Variações alométricas (i.e. diferentes taxas de crescimento para órgãos ou estruturas distintas) no desenvolvimento dos girinos podem contribuir diretamente para a diversidade fenotípica observadas entre os adultos (Gould, 1977).

Uma função que facilite a análise de variáveis biométricas ao longo do desenvolvimento dos anfíbios e diferentes estágios de desenvolvimento permitiria um acesso rápido a esse tipo de informação. Nessa função, o arquivo de dados seria uma tabela (.txt, .svs, etc) com informações acerca de medidas padronizadas e amplamente utilizadas por herpetólogos (ver Altig & McDiamird, 1999) para girinos em diferentes estágios de desenvolvimento (e.g. Gosner, 1960) e que retornaria não só estatísticas descritivas para cada estágio (média, desvio padrão, amplitude), como também se tais estágios de desenvolvimento podem ser de fato descriminados por variáveis biométricas. Além disso, a função criaria múltiplas regressões para todas as variáveis (e.g. distância comprimento do corpo, comprimento da cauda, distância entre o olho e narina, etc) contra o comprimento total do girino em dado momento de sua trajetória ontogenética, dessa forma, evidenciando quis estruturas possuem taxas de crescimento alométrico ou isométrico e se essas variações alométricas são estáveis ou se variam ao longo da ontogenia.

Referências

Altig, R. & McDiarmid, R.W. (1999) Body plan. Development and Morphology. Em McDiarmid, W.W. & Altig, R. Tadpoles, the biology of anuran larvae. The University of Chicago Press.

Farris, J.S. (1967) The meaning of relationship and taxonomic procedure. Systematic Zoology, 16, 44–51.

Farris, J.S. (1970) Methods for computing Wagner trees. Systematic Zoology, 19, 83-92.

Goloboff, P. (2003) Parsimony, likelihood, and simplicity. Cladistics, 19, 91–103.

Gould, S.J. (1977) Ontogeny and Phylogeny. Cambridge, Belknap Press of Harvard University Press.

Gosner, K.L. (1960) A simplified table for staging anurans embryos and larvae with notes on identifications. Herpetologica, 16, 183–190.

Grant, T. (2002) Testing methods: The evaluation of discovery operations in evolutionary biology. Cladistics, 18, 94–111.

Grant, T. & Kluge, A.G. (2003) Data exploration in phylogenetic inference: scientific, heuristic, or neither. Cladistics, 19, 379–418.

Grant, T. & Kluge, A.G. (2004) Transformation series as an ideographic character concept. Cladistics, 20, 23–31.

Klingenberg, C.P. (1998) Heterochrony and allometry: the analysis of evolutionary change in ontogeny. Biological Review, 73, 79–123.

Kluge, A.G. (2007) Completing the neo-Darwinian synthesis with an evident criterion.

http://ecor.ib.usp.br/ Printed on 2025/11/25 02:36

2025/11/25 02:36 3/7 Trabalho Final

McNamara, K.J. (2012) Heterochrony: the evolution of development. Evolution: Education and Outreach, 5, 203-218.

Smith, K.K. (2001) Heterochrony revisited: the evolution of developmental sequences. Biological Journal of the Linnean Society, 73, 169–186.

Pedro, sua proposta A é muito simples, você pode fazer a mesma ação com a função dist.top do pacote ape. Apesar de trazer desafios em termos de execução, ela não traria nenhuma inovação. Eu investirira na proposta B que é muito mais interessante e poderá ser mais rica em termos de argumentos utilizados. Além das regressões, a função poderia gerar gráficos descritivos e comparativos das variáveis morfométricas. Qualquer dúvida entre em contato.

--Glaucia Del-Rio

Função

```
##### Tadpole's ontogenetic growth######
ontogenetic.growth <- function (x)</pre>
    {
        #Primeiramente, a função lê a tabela de dados, podendo a mesma estar
em qualquer formato
        girinos <- read.table(x, header=T, as.is=T)</pre>
        #O segundo passo é transformar os estágios de desenvolvimento em um
objeto da classe fator, para que as variáveis biométricas possam ser
indexadas corretamente.
        Stage=factor(girinos$Stage, levels=c(25:46))
        #Regressões - utiliza-se um modelo linear generalizado para
estabelecer as relações entre as variáveis biométricas e o comprimento total
(uma estimatica do crescimento relativo do girino).
        bl.tl <- lm(girinos$BL~girinos$TL)</pre>
        tal.tl <- lm(girinos$TAL~girinos$TL)
        bw.tl <- lm(girinos$BW~girinos$TL)</pre>
        bh.tl <- lm(girinos$BH~girinos$TL)</pre>
        th.tl <- lm(girinos$TH~girinos$TL)
        nsd.tl <- lm(girinos$NSD~girinos$TL)</pre>
        esd.tl <- lm(girinos$ESD~girinos$TL)
        iod.tl <- lm(girinos$IOD~girinos$TL)</pre>
        end.tl <- lm(girinos$END~girinos$TL)</pre>
        ind.tl <- lm(girinos$IND~girinos$TL)</pre>
        odw.tl <- lm(girinos$ODW~girinos$TL)</pre>
        ed.tl <- lm(girinos$ED~girinos$TL)</pre>
        #Sumário das regressões - a função summary, resume as estátisticas
de interesse que resultam das análises lineares, como os valores de
```

```
significância (p) e o r2, por exemplo. Aqui ela é aplicada a cada par de
regressões.
        sum.bl.tl <- summary(bl.tl)</pre>
        sum.tal.tl <- summary(tal.tl)</pre>
        sum.bw.tl <- summary(bw.tl)</pre>
        sum.bh.tl <- summary(bh.tl)</pre>
        sum.th.tl <- summary(th.tl)</pre>
        sum.nsd.tl <- summary(nsd.tl)</pre>
        sum.esd.tl <- summary(esd.tl)</pre>
        sum.iod.tl <- summary(iod.tl)</pre>
        sum.end.tl <- summary(end.tl)</pre>
        sum.ind.tl <- summary(ind.tl)</pre>
        sum.odw.tl <- summary(odw.tl)</pre>
        sum.ed.tl <- summary(ed.tl)</pre>
        #Todos esses objetos foram armazenados em um lista.
        regressoes <- list(sum.bl.tl, sum.tal.tl,</pre>
sum.bw.tl,sum.bh.tl,sum.th.tl,sum.nsd.tl,sum.esd.tl,sum.iod.tl,sum.end.tl,su
m.ind.tl,sum.odw.tl,sum.ed.tl)
        #As próximas duas linhas estabelecem os parâmetros para um gráfico
exploratório que generaliza a ontegenia, tomando por base o comprimento
total (em função do estágio de desenvolvimento). Optou-se pelo boxplot pela
quantidade de informação que o mesmo apresenta.
        par(family="serif", cex.lab=1.5, tcl=0.3)
        boxplot(girinos$TL~girinos$Stage, data=girinos,xlab="Estágio de
desenvolvimento", ylab="Comprimento total (mm)")
        #As linhas que se seguem agora, estabelecem os parâmetros de
plotagem dos gráficos para as regressões par a par.
        #BL-TL
        par(pch=17, family="serif", cex.lab=1.5, tcl=0.3)
        grafico1 <- plot (girinos$BL~girinos$TL, col="black", xlab="Total")</pre>
length(mm)", ylab="Body length(mm)")
        abline(lm(girinos$BL~girinos$TL),col="firebrick3", lwd=4)
        #A função x11() é utilizada aqui para que cada gráfico seja gerado
em uma janela distinta. Isso facilita não somente a visualização, como
também a edição (caso necessário). Considerou-se o argumento mfrow, mas os
gráficos ficariam muito pequenos, e perderiam informação.
        x11()
        #TAL-TL
        par(pch=17, family="serif", cex.lab=1.5, tcl=0.3)
        grafico2 <-plot (girinos$TAL~girinos$TL, col="black", xlab="Total")</pre>
length(mm)", ylab="Tail height(mm)")
        abline(lm(girinos$TAL~girinos$TL),col="firebrick3", lwd=4)
        x11()
        #BW-TL
        par(pch=17, family="serif", cex.lab=1.5, tcl=0.3)
        grafico3 <-plot (girinos$BW~girinos$TL, col="black", xlab="Total</pre>
length(mm)", ylab="Body width(mm)")
        abline(lm(girinos$BW~girinos$TL),col="firebrick3", lwd=4)
        x11()
        #BH-TL
```

http://ecor.ib.usp.br/ Printed on 2025/11/25 02:36

```
par(pch=17, family="serif", cex.lab=1.5, tcl=0.3)
        grafico4 <-plot (girinos$BH~girinos$TL, col="black", xlab="Total")</pre>
length(mm)", ylab="Body height(mm)")
        abline(lm(girinos$BH~girinos$TL),col="firebrick3", lwd=4)
        x11()
        #TH-TL
        par(pch=17, family="serif", cex.lab=1.5, tcl=0.3)
        grafico5 <-plot (girinos$TH~girinos$TL, col="black", xlab="Total</pre>
length(mm)", ylab="Tail height(mm)")
        abline(lm(girinos$TH~girinos$TL),col="firebrick3", lwd=4)
        x11()
        #NSD-TL
        par(pch=17, family="serif", cex.lab=1.5, tcl=0.3)
        grafico6 <-plot (girinos$NSD~girinos$TL, col="black", xlab="Total</pre>
length(mm)", ylab="Nostril to snout distance(mm)")
        abline(lm(girinos$NSD~girinos$TL),col="firebrick3", lwd=4)
        x11()
        #ESD-TL
        par(pch=17, family="serif", cex.lab=1.5, tcl=0.3)
        grafico7 <-plot (girinos$ESD~girinos$TL, col="black", xlab="Total")</pre>
length(mm)", ylab="Eye to snout distance(mm)")
        abline(lm(girinos$ESD~girinos$TL),col="firebrick3", lwd=4)
        x11()
        #IOD-TL
        par(pch=17, family="serif", cex.lab=1.5, tcl=0.3)
        grafico8 <-plot (girinos$IOD~girinos$TL, col="black", xlab="Total")</pre>
length(mm)", ylab="Inter-orbital distance(mm)")
        abline(lm(girinos$IOD~girinos$TL),col="firebrick3", lwd=4)
        x11()
        #END-TL
        par(pch=17, family="serif", cex.lab=1.5, tcl=0.3)
        grafico9 <-plot (girinos$END~girinos$TL, col="black", xlab="Total")</pre>
length(mm)", ylab="Eye to nostril distance(mm)")
        abline(lm(girinos$END~girinos$TL),col="firebrick3", lwd=4)
        x11()
        #IND-TL
        par(pch=17, family="serif", cex.lab=1.5, tcl=0.3)
        grafico10 <-plot (girinos$IND~girinos$TL, col="black", xlab="Total</pre>
length(mm)", ylab="Inter-nostril distance(mm)")
        abline(lm(girinos$IND~girinos$TL),col="firebrick3", lwd=4)
        x11()
        #ODW-TL
        par(pch=17, family="serif", cex.lab=1.5, tcl=0.3)
        graficol1 <-plot (girinos$ODW~girinos$TL, col="black", xlab="Total</pre>
length(mm)", ylab="Oral disc width(mm)")
        abline(lm(girinos$ODW~girinos$TL),col="firebrick3", lwd=4)
        x11()
        #ED-TL
        par(pch=17, family="serif", cex.lab=1.5, tcl=0.3)
        grafico12 <-plot (girinos$ED~girinos$TL, col="black", xlab="Total")</pre>
length(mm)", ylab="Eye diameter(mm)")
```

```
abline(lm(girinos$ED~girinos$TL),col="firebrick3", lwd=4)
    #Por último, todos os gráficos seram gerados automaticamente e a
função retornará uma função com as estatísticas das regressões. Com ambos os
resultados é possível compreender a trajetória ontogenética da espécie em
questão.
    return(regressoes)
}
```

Help

```
###### Help Tadpole's Ontogenetic Growth #####
Ontogenetic.growth
                        package {unknown}
Description
Designed for the study of ontogenetic growth in anuran tadpoles. Calculates
the influence of the overall growth, measured as the tadpole's total length
along different developmental stages (Gosner, 1960) over several other
standardized measurements (see McDiamird & Altig, 1999, Dias et al., 2014;
also fig.1) by creating multiple regressions. It also provide graphical
results and statistical values for each regression.
Usage
Ontogenetic.growth()
Arguments
    An txt. file containing values for the values (in millimeters) for the
standardized measurements (see fig.1), as well as the Gosner's (1960)
developmental stage — a total of 25 stages.
Value
It returns graphical devices for each pair or regression, as well as the p
and r2 values. It also provides a general analytical graphics on the overall
growth rate.
Warning
All measurements abbreviations must be according to McDiamird & Altig (1999)
and in uppercase.
Author
    Dias, P.H.S.
References
Dias, P.H.S., Carvalho-e-Silva, A.M.P.T. and Carvalho-e-Silva, S.P. (2014)
The tadpole of P//roceratophrys izecksohni// (Amphibibia: Anura:
```

http://ecor.ib.usp.br/ Printed on 2025/11/25 02:36

Odontophrynidae). Zoologia, 31, 181-194.

Gosner, K.L. (1960) A simplified table for staging anurans embryos and larvae with notes on identifications. Herpetologica, 16, 183—190. McDiarmid, W.W. and Altig, R. (1991) Tadpoles, the biology of anuran larvae. The University of Chicago Press.

See also

Figure 1. Example of measurements according to McDiamird & Altig (1999). Total length (TL), body length (BL), tail length (TAL), body width (BW), body height (BH), tail height (TH), nostril to snout distance (NSD), eye to snout distance (ESD), interorbital distance (IOD), eye to nostril distance (END), internarial distance (IND), oral disc width (OWD), and eye diameter (ED).

Example

Execute the supplementary file girinos.txt, with random values for tadpoles of //Ameerega picta// (Bibron, 1838).

×

girinos.txt

From:

http://ecor.ib.usp.br/ - ecoR

Permanent link:

http://ecor.ib.usp.br/doku.php?id=05_curso_antigo:r2014:alunos:trabalho_final:pedrodiasherpeto:start

Last update: 2020/08/12 09:04

