
4 Exploration 

The first step in analysing data is a graphical data exploration asking the fol-
lowing questions: 

1. Where are the data centred? How are they spread? Are they symmetric, 
skewed, bimodal? 

2. Are there outliers?  
3. Are the variables normally distributed? 
4. Are there any relationships between the variables? Are relationships between 

the variables linear? Which follow-up analysis should be applied? 
5. Do we need a transformation? 
6. Was the sampling effort approximately the same for each observation or 

variable? 

We need to address all of these questions because the next step of the analysis 
needs the data to comply with several assumptions before any conclusions can be 
considered valid. For example, principal component analysis (PCA) depends on 
linear relationships between variables, and outlying values may cause non-
significant regression parameters and mislead the analysis. Another example is 
large overdispersion in generalised linear modelling, which can also result in non-
significant parameters. We therefore need a range of exploratory tools to address 
questions 1 to 6 with different tools aimed at answering different questions. For 
example, a scatterplot might suggest that a particular point is an outlier in the 
combined xy-space, but not identify it as an outlier within in the x-space or y-space 
if inspected in isolation. This chapter discusses a range of exploratory tools and 
suggests how they can be used to ensure the validity of any subsequent analysis. 
When looking at your data you should use all the techniques discussed and not 
rely on the results from a single technique to make decisions about outliers, nor-
mality or relationships.  

Many books have chapters on data exploration techniques, and good sources 
are Montgomery and Peck (1992), Crawley (2002), Fox (2002a) and Quinn and 
Keough (2002). We have only presented the methods we find the most useful. Ex-
pect to spend at least 20% of your research time exploring your data. This makes 
the follow-up analysis easier and more efficient. 
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4.1 The first steps 

Boxplots and conditional boxplots 

A boxplot, or a box-and-whiskers plot (Figure 4.1), visualises the mean and 
spread for a univariate variable. Normally, the midpoint of a boxplot is the me-
dian, but it can also be the mean. The 25% and 75% quartiles (Q25 and Q75) define 
the hinges (end of the boxes), and the difference between the hinges is called the 
spread. Lines (or whiskers) are drawn from each hinge to 1.5 times the spread or 
to the most extreme value of the spread, whichever is the smaller. Any points out-
side these values are normally identified as outliers. Some computer programmes 
draw the whiskers to the values covering most data points, such as 10% and 90% 
of the points, and show minimum and maximum values as separate points.  

Figure 4.1. Boxplots show the middle of the sampled values, variability, shape of 
the distribution, outliers and extreme values. 

The numbers below give the number of ragworms (Laeoneris acuta) recorded 
in an Argentinean salt marsh, and we use them to explain making a boxplot. The 
top row identifies the ranked sampling point, and the lower row gives the number 
of ragworm counted at that point. 

Q25 M Q75
1   2   3   4   5 6   7   8    9   10 11   12   13   14   15 16   17   18   19   20    21 
0   0   0   1   2 3   6   7    9   11 14   14   14   16   19 20   21   24   27   35   121

The median value (denoted by M) for L. acuta is at observation number 11 (14 
ragworms). The end points of the boxes in the boxplot are at Q25 and Q75. There-
fore, observation numbers 6 and 16 form the hinges. The spread for these data is 
20  3 = 17, and 1.5 times the spread is 25.5. Adding 25.5 to the upper hinge of 20 
(Q75) allows the right line (or whisker) to be drawn up to 45.5. Observation num-
ber 21 (121 ragworms) would normally be considered as an extreme value or out-
lier. The resulting boxplot is given in Figure 4.2. 
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Figure 4.2. Boxplot for the ragworms (L. acuta). The upper hinge is calculated as 
having a value of 45.5, but as the most extreme value within this range is only 35, 
it is drawn at this latter point.  

In Chapter 28, zoobenthic data from a salt marsh in Argentina are analysed. 
The data consist of measurements on four zoobenthic species in three transects. 
Each transect contained ten sites, and all sites were measured in Autumn and 
Spring, resulting in a 60-by-4 data matrix for the species data. Further details can 
be found in Chapter 28. Several boxplots for the species data are shown in Figure 
4.3. Panel A in Figure 4.3 is a boxplot for the four zoobenthic species of the Ar-
gentinean zoobenthic dataset introduced in Chapter 2. It shows that some species 
have potential outliers, which prompted an inspection of the original data to check 
for errors in data entry. After checking, it was concluded that there were no data 
errors. However, the presence of outliers (or large observations) is the first sign 
that you may need to transform the data to reduce or down-weight its influence on 
the analysis. We decided to apply a square root transformation, and boxplots of 
the transformed data are shown in Figure 4.3-B. The reasons for choosing a square 
root transformation is discussed later. Note that the boxplots for the transformed 
data show that this has removed the outliers. The large number of dots outside the 
interval defined by 1.5 times the range might indicate a large number of zero ob-
servations for Uca uruguayensis and Neanthes succinea. This is called the double-
zero problem, but how big a problem this is depends on the underlying ecological 
questions. If two variables have many data points with zero abundance, the corre-
lation coefficient will be relatively large as both variables are below average at the 
same sites. This means that these two variables are identified as similar, only be-
cause they are absent at the same sites. It is like saying that butterflies and ele-
phants are similar because they are both absent from the North Pole, the Antarctic 
and the moon. It sounds trivial, but the first few axes in a principal component 
analysis could be determined by such variables, and it is a common problem in 
ecological data of which we need to be aware. 
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Figure 4.3. Boxplots. A: boxplots of the abundance of four zoobenthic species (La 
= Laeonereis acuta, Hs = Heteromastus similis, Uu = Uca uruguayensis,
Ns=Neanthes succinea). B: boxplots of four square root transformed species. C: 
boxplot of square root transformed L. acuta conditional on the nominal variable 
transect with values a, b and c. D: Boxplot of square root transformed L. acuta
conditional on season (1 = Autumn, 2 = Spring) and transect.  

Boxplots are also useful to find relationships between variables. Panel C in 
Figure 4.3 shows the boxplot of square root transformed L. acuta abundance con-
ditional on the nominal variable transect (a, b and c). It is readily seen that abun-
dances are considerably lower in transect C. Panel D takes this one step further; 
the same species is now plotted conditional on season and transect. The first two 
boxplots from the left correspond to L. acuta from transect a in Autumn and 
Spring. Although this shows differences in abundances between the seasons, it 
also shows there appears to be no seasonal consistency between transects.  

Depending on software, boxplots can be modified in various ways. For exam-
ple, notches can be drawn at each side of the boxes. If the notches of two plots do 
not overlap, then the medians are significantly different at the 5% (Chambers et al. 
1983). It is also possible to have boxplots with widths proportional to the square 
roots of the number of observations in the groups. Sometimes, it can be useful to 
plot the boxplot vertically instead of horizontally, where this might better visualise 
the characteristics of the original data. 
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Cleveland dotplot 

Cleveland dotplots (Cleveland 1985) are useful to identify outliers and homo-
geneity. Homogeneity means that the variance in the data does not change along 
the gradients. Violation is called heterogeneity, and as we will see later, homoge-
neity is a crucial assumption for many statistical methods. Various software pro-
grammes use different terminology for dotplots. For example, with S-Plus and R, 
each observation is presented by a single dot. The value is presented along the 
horizontal axis, and the order of the dots (as arranged by the programme) is shown 
along the vertical axis. Cleveland dotplots for the abundance of four zoobenthic 
species of the Argentinean dataset are given in Figure 4.4. The 60 data points (30 
sites in Spring and 30 sites in Autumn) are plotted along the vertical axes and the 
horizontal axes show the values for each site. Any isolated points on the right- or 
left-hand side indicate outliers, but in this dataset, none of the points are consid-
ered outliers. However, the dotplots also indicate a large number of zero observa-
tions, which can be a problem with some of the methods discussed in later chap-
ters. Also note that the boxplots show that L. acuta and H. similis are considerably 
more abundant than the other two species. The dotplots were made using different 
symbols conditional on a nominal explanatory variable, which in this case is Tran-
sect. This means that data points from the same transect will have the same sym-
bols. Note that U. uruguayensis has zero abundance along transect a in the Au-
tumn (these are the bottom 10 data points along the y-axis); along transect c in the 
Autumn (these are the data points in the middle with a ‘+’); along transect a in the 
Spring (next 10 data points represented by ‘o’); and along transect c in Spring (the 
upper 10 data points represented by ‘+’). Although we have not done it here, it 
would also be useful to make Cleveland dotplots for explanatory variables and di-
versity indeces. 

You can also usefully compare boxplots with dotplots, as this can explain why 
the boxplot identified some points as ‘outliers’. The boxplots and dotplots for the 
Argentinean zoobenthic data tell us that we have many zero observations, two 
species have larger abundances than the other species, there are no ‘real’ outliers, 
and there are differences in species abundances between transects and seasons. 
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Figure 4.4. Dotplots for species of the Argentinean zoobenthic dataset. The hori-
zontal axes show the value at each data point. The vertical axes represent the iden-
tity of the data points. The values at the top of the vertical axes are the data points 
at the end of the spreadsheet. It is also possible to group data points based on a 
nominal variable. 

Histograms 

A histogram shows the centre and distribution of the data and gives an indica-
tion of normality. However, applying a data transformation to make the data fit a 
normal distribution requires care. Panel A in Figure 4.5 shows the histogram for a 
set of data on the Gonadosomatic index (GSI, i.e., the weight of the gonads rela-
tive to total body weight) of squid (Graham Pierce, University of Aberdeen, UK, 
unpublished data). Measurements were taken from squid caught at various loca-
tions, months, and years in Scottish waters. The shape of the histogram shows bi-
modality, and one might be tempted to apply a transformation. However, a condi-
tional histogram gives a rather different picture. In a conditional histogram the 
data are split up based on a nominal variable, and histograms of the subsets are 
plotted above each other. Panels B and C show the conditional histograms for the 
GSI index conditional on sex. Panel B shows the GSI index for female squid and 
Panel C for male squid. Notice that there is a clear difference in the shape and cen-
tre of the distribution. Hence, part of the first peak in panel A comprises mainly 
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the male squid. This suggests the need to include a sex effect and interactions 
rather than transform the full dataset. We also suggest making conditional histo-
grams on year, month and location for these data. 
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Figure 4.5. Histograms. A: histogram for GSI index of the squid data. B and C: 
conditional histograms for GSI index for the squid data. Panel B is for the female 
species and panel C for the male species. 

QQ-plots 

A Quantile-Quantile plot is a graphical tool used to determine whether the data 
follow a particular distribution. The QQ-plot for a normal distribution compares 
the distribution of a given variable to the Gaussian distribution. If the resulting 
points lie roughly on a straight line, then the distribution of the data is considered 
to be the same as a normally distributed variable. Let us discuss this in a bit more 
detail, as it can be quite confusing to understand what exactly it does. First, we 
need to revise some basic statistics. The pth quantile point q for a random variable 
y is given by F(q) = P(y q) = p. If we want to know which q value belongs to the 
p, we write q = F-1(p). Suppose we have five observations Yi with values 1, 2, 3, 4 
and 5. We have sorted the observations from the smallest to the highest. By defini-
tion the first number is the 0% percentile, the middle is the 50% percentile and 5 is 
the 100% percentile. The difference between a quantile and percentile point is 
only a factor 100. QQ-plots are either based on these percentiles, or more typically 
they use the sample quantile points (i  0.5)/n where i is from 1 to 5 and n = 5 for 
this example. The sample quantile points for these data are 0.1, 0.3, 0.5, 0.7 and 
0.9. These are the sample values for p. In the second step, we compare these sam-
ple quantile points with that of a normal distribution. This means that the density 
function used in P(y q) is now a normal density function and F() is the corre-
sponding normal cumulative distribution function. The QQ-plot is then a plot of 
the samples values Yi versus qi. Some software packages add a straight line to the 
plot, which is typically obtained by connecting the 25th and 75th quartile points.  
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It is useful to combine QQ-plots with a power transformation, which is given 
by 

p
Y p 1−   if p is not equal to 0       and      log(Y) if p is 0 (4.1)

Note that this p is not the p that we used for the quantiles. It is also useful to 
compare several QQ-plots for different values of p, and Figure 4.6 shows an ex-
ample for the Argentinean data. In this example the square root transformation 
seems to perform the best, but this could be open to debate. 
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 Figure 4.6. QQ-plots for the zoobenthic species L. acuta from the Argentinean 
zoobenthic dataset; for the untransformed data, square root transformed data, the 
cubic root transformed data, and log10 transformed data. In this example, the 
square root transformation seems to give the best results. 

Scatterplot 

So far, the main emphasis has been on detecting outliers, checking for normal-
ity, and exploring datasets associated with single nominal explanatory variables. 
The following techniques look at the relationships between variables. 

A scatterplot is a tool to find a relationship between two variables. It plots one 
variable along the horizontal axis and a second variable along the vertical axis. To 
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help visualise the relationship between the variables, a straight line or smoothing 
curve is often added to the plot. Figure 4.7 shows the pairplot for the variables 
biomass and length for the wedge clam Donax hanleyanus, measured on a beach 
in Buenos Aires province, Argentina (Ieno, unpublished data).  
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Figure 4.7. Scatterplot for biomass wedge clam dataset, using log transformed 
biomass, versus log transformed length.  

Pairplot 

If you have more than two variables, then a series of scatterplots can be pro-
duced: one for each pair of variables. However, the number of scatterplots re-
quired increases rapidly if you have more than three variables to explore. A better 
approach, for up to approximately 10 explanatory variables, is the pairplot, or  
scatterplot matrix (Figure 4.8). These show multiple pair-wise scatterplots in one 
graph and can be used to detect relationships between variables and to detect col-
linearity. The example in Figure 4.8 shows a pairplot for the response variable 
species richness and for four selected environmental variables. Species richness 
measures the different number of species per observation. The Decapoda zoo-
plankton data form the basis for the case study in Chapter 20. Each panel is a scat-
terplot between two variables, with the labels for the variables printed in the pan-
els running diagonally through the plot. A smoothing line has been added to help 
visualise the strength of the relationship. However, you can choose not to add a 
line, or you can add a regression line, whichever best suits the data. The pairplot in 
Figure 4.8 suggests a relationship between species richness (R) and temperature 
(T1m) and between species richness (R) and chlorophyll a (Ch). It also shows 
some collinearity between salinity at the surface (S1m) and at 35-45 meters 
(S45_35). Collinearity means that there is a high correlation between explanatory 
variables. 
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 Figure 4.9 shows another pairplot for the same dataset where all the available 
explanatory variables have been plotted. The differences between this graph and 
the previous pairplot is that correlation coefficients between the variables are 
printed in the lower part of the graph. Note that there is strong collinearity be-
tween some of the variables, for example temperature at 1 m and temperature at 
45 m. 

Pairplots should be made for every analysis. These should include (i) a pairplot 
of all response variables (assuming that more than one response variable is avail-
able); (ii) a pairplot of all explanatory variables; and (iii) a pairplot of all response 
and explanatory variables. The first plot (i) gives information that will help choose 
the most appropriate multivariate techniques. It is hoped that the response vari-
ables will show strong linear relationships (some techniques such as PCA depend 
on linear relationships). However, if plot (ii) shows a clear linear relationship be-
tween the explanatory variables, indicating collinearity, then we know we have a 
major problem to deal with before further analysis. With plot (iii) we are judging 
whether the relationships between the response variables and the explanatory vari-
ables are linear. If this is not the case, then several options are available. The easi-
est option is to apply a transformation on response and/or explanatory variables to 
linearise the relationships. Other options are discussed later in this chapter.  
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Figure 4.8. Pairplot for the response variable species richness and four selected 
environmental variables for the Decapoda zooplankton data. The pairplot indicates 
a linear relationship between richness and temperature. Each smoothing line is ob-
tained by using one variable as the response variable and the other as an explana-
tory variable in the smoothing procedure. The difference between the smoothing 
lines in two corresponding graphs above and below the diagonal is due to what is 
used as the response and explanatory variable in the smoothing method, and there-
fore, the shape of the two matching smoothers might be different.
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Figure 4.9. Pairplot for all environmental variables in the Decapoda zooplankton 
data. The lower diagonal part shows the (absolute) correlation coefficient and the 
upper diagonal part the scatterplots. The font size of the correlation is proportional 
to its size.  There is strong collinearity between some of the variables, e.g., tem-
perature at 1 m and temperature at 45 m. 

Coplot

A coplot is a conditional scatterplot showing the relationship between y and x, 
for different values of a third variable z, or even a fourth variable w. The condi-
tioning variables can be nominal or continuous. Figure 4.10 shows an example for 
the RIKZ data (Chapter 27). It is a coplot of the species richness versus NAP 
(which represents the average sea level height at each site), conditional on the 
nominal variable week. The panels are ordered from the lower left to the upper 
right. This order corresponds to increasing values of the conditioning explanatory 
variable. The lower left panel shows the relationship between NAP and the rich-
ness index for the samples measured in week 1, the lower right for the week 2 
samples, the upper left panel for the week 3 samples, and the upper right panel for 
the week 4 samples. We did not add a regression line because in the fourth week, 
only 5 samples were taken. The richness values in week 1 are larger than in weeks 
2 and 3, but the NAP range is smaller in week 1.  
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Figure 4.10. Coplot for the species richness index function of the RIKZ data ver-
sus NAP, conditional on week. The lower left panel corresponds to week 1, the 
lower right to week 2, the upper left to week 3, and the upper right for week 4. 
Note that the number of observations is different for each week.  

For nominal variables, as shown in Figure 4.10, there is no overlap in ranges of 
the conditional variable. For continuous conditioning variables, we can allow for 
some overlap in the ranges of the conditioning variables, and the number of 
graphs, as well as the amount of overlap can be modified. This is illustrated in 
Figure 4.11, which shows another coplot for the RIKZ data. Each panel shows the 
relationship between the species richness index function and the explanatory vari-
able NAP for a different temperature range. The lower left panel shows sites with 
temperatures between 15.5 and 17.5 degrees Celsius, and the upper right graph for 
temperature of 20 degrees and higher. The other panels show a range of different 
temperature bands between these two extremes. In this instance we have included 
smoothing curves (Chapter 7) and these highlight a negative relationship between 
species richness and NAP for all the measured temperature regimes. As this rela-
tionship between richness and NAP is common across all the temperature regimes, 
it suggests that it is not being influenced by temperature. Knowing that a specific 
variable is unrelated to the response variable is just as important as knowing that it 
is.
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Figure 4.11. Coplot for RIKZ data where NAP is plotted against species richness 
for different temperature regimes. 

Lattice graphs 

Another useful tool are lattice graphs (called Trellis graphs in S-Plus). Like 
coplots these graphs show relationships between two variables, conditional on 
nominal variables. Lattice graphs have the advantage over coplots because they 
can work with larger numbers of panels. However, the conditional factor must be 
nominal. In coplots the conditional factor can be nominal or continuous. We use 
lattice graphs for time series data exploration and, to a lesser extent, to investigate 
sampling effort. Unless there are good reasons for deciding otherwise, you should 
normally use the same sample size and sampling effort across all the explanatory 
variables. Figure 4.12 shows a lattice graph for the squid data. Each panel shows 
the relationship between the GSI index and month. The conditional variable is 
area, and the plots clearly show an unbalance in the sampling effort. In some areas 
sampling largely took place in one month. Obviously, care is needed if these data 
were to be analysed in a regression model containing the nominal variables month 
and area. 
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Figure 4.12. GSI index (vertical axis) versus month (horizontal axis) conditional 
on area (different panels) for the squid data. Note the unbalanced design of the 
data. 

Design and interaction plots 

Design and interaction plots are another valuable tool for exploring datasets 
with nominal variables and are particularly useful to use before applying regres-
sion, GLM, mixed modelling or ANOVA. They visualise (i) differences in mean 
values of the response variable for different levels of the nominal variables and (ii) 
interactions between explanatory variables. Figure 4.13 shows a design plot for 
the wedge clam data introduced earlier in this chapter. For these data there are 
three nominal variables: beach (3 beaches), intertidal or subtidal level on the 
beach (2 levels) and month (5 months). The design plot allows a direct comparison 
of the means (or medians) of all the nominal variables in a single graph. The 
graphs indicate that the mean value of the number of clams for beach 1 is around 
0.26, with the mean values at the other two beaches considerably lower. It can also 
be seen that months 2 and 5 have relatively high mean values. However, the de-
sign plot shows little about the interaction between explanatory variables, and for 
this, we use an interaction plot (Figure 4.14). Panel A shows the interaction be-
tween month and beach. Mean values at beach 1 are rather different compared 
with beaches 2 and 3. It also shows that the interaction between season (month) 
and the mean clam numbers is similar for beaches 1 and 2, but very different for 
beach 3. Panel B shows the interaction between month and level, with mean val-
ues at level 1 in month 5 considerably larger than in the other levels.  
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Figure 4.13. Design plot for the wedge clam data. The vertical axis shows the 
mean value per class for each nominal variable.  
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Figure 4.14. Design plot for the wedge clam data. The vertical axis shows the 
mean value and the horizontal axis the month. A: interaction between month and 
beach. B: interaction between month and level. 



38      4 Exploration 

4.2 Outliers, transformations and standardisations 

Outliers 

An outlier is a data point that, because of its extreme value compared to the rest 
of the dataset, might incorrectly influence an analysis. So the first question is: 
‘how can we identify an outlier?’ A simple approach might be to quantify every-
thing as an outlier that is beyond a certain distance from the centre of the data. For 
example, the points outside the hinges of a boxplot could be considered as out-
liers. However, the dotplots and boxplots for the Argentinean data (Section 4.1) 
show that this is not always a good decision. Two-dimensional scatterplots can 
also highlight observations that may be potential outliers. For example, Figure 
4.15 is a scatterplot for the variables NAP and species richness for the RIKZ data. 
These data are analysed in Chapter 27. The data consist of abundance of 75 zoo-
benthic species measured at 45 sites. NAP represents the height of a site compared 
with average sea level. The two observations with richness values larger than 19 
species are not obviously outliers in the NAP (x) space. Although these sites have 
large richness values, they are not different enough from the other data points, to 
consider them extreme or isolated observations. However, as we will see in Chap-
ter 5, these two observations cause serious problems in the linear regression for 
these data. So, although an observation is not considered an outlier in either the x-
space or the y-space, it can still be an outlier in the xy-space. The situation that an 
observation is an outlier in the x-space, and also in the y-space, but not in the xy-
space, is possible as well. A boxplot for the data presented in Figure 4.16 suggests 
that point A in the left panel would be an outlier in the y-space, but not in the x-
space. However, fitting a linear regression line clearly identifies it as a highly in-
fluential observation. So, it is also an outlier in the xy-space. Point B is an outlier 
in the x-space and in the y-space, but not in the xy-space as it would not cause any 
major problems for a linear regression model. Point C is an outlier in the xy-space 
as it would strongly influence a regression. The right panel in Figure 4.16 shows a 
more serious problem: including point A in a linear regression or when calculating 
a correlation coefficient will show a strong positive relationship, whereas leaving 
out point A will give a strong negative relationship.  
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Figure 4.15. Scatterplot of species richness versus NAP for the RIKZ data. The 
two sites with high species richness are extreme with respect to the overall NAP-
richness relationship. 

Figure 4.16. Left panel: scatterplot with two outliers. Right panel: scatterplot with 
1 outlier. 

Transformation  

There are many reasons for transforming data, but it is normally because you 
have data with extreme outliers and non-normal distributions. Data transformation 
(on the response variables) will also be required when you plan to use discrimi-
nant analysis and there is clear evidence (e.g., by using a Cleveland dotplot) of 
heterogeneity.  

Both the response variables and the explanatory variables can be transformed, 
and different types of transformations can be applied to different variables within 
the same dataset. Choosing the ‘correct’ transformation can be difficult and is 
usually, as least in part, based on experience. Additionally, the choice of transfor-
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mation is influenced by the choice of follow-up analysis. For some techniques, 
such as classification or regression trees, the transformation of the explanatory 
variables makes no difference to the results. However, most techniques may re-
quire some transformation of the raw data before analysis.  

The easiest problem to solve is where the extreme observations identified dur-
ing the data exploration stage turn out to be typing errors. However, we will as-
sume that this easy solution is not available and that we have a dataset with genu-
ine extreme observations. If these extreme observations are in the explanatory 
variables, then a transformation of the (continuous) explanatory variables is defi-
nitely required, especially if regression, analysis of covariance, GLM, GAM or 
multivariate techniques like redundancy analysis and canonical correspondence 
analysis are applied. When the extreme observations are in the response variable, 
there is more than one approach available. You can either transform the data or 
you can apply a technique that is slightly better in dealing with extreme values, 
such as a GLM or a GAM with a Poisson distribution. The latter only works if 
there is an increase in spread of the observed data for larger values. Alternatively, 
quasi-Poisson models can be used if the data are overdispersed. Note, you should 
not apply a square root or log transformation on the response variable, and then 
continue with a Poisson GLM model, as this applies a correction twice. Yet, an-
other option is to use dummy explanatory variables (Harvey 1989) to model the 
extreme observations. A more drastic solution for extreme observations is to sim-
ply omit them from the analysis. However, if you adopt this approach, you should 
always provide the results of the analysis with, and without, the extreme observa-
tions. If the large values are all from one area, or one month, or one sex, then it 
may be an option to use different variance components within the linear regression 
model, resulting in generalised least squares (GLS). 

As an example, we will assume the aim is to carry out a linear regression. The 
Cleveland dotplot or boxplot indicate that there are no outliers of any concern, but 
the scatterplot of a response and explanatory variable shows a clear non-linear re-
lationship. In this case, we should consider transforming one or both variables. 
But, which transformation should we use? The range of possible transformations 
for the response and explanatory variables can be selected from 

,...,,),log(,,,,..., 4322
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3
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yyyyyyyy

These transformations can be written in one formula, namely the Box–Cox 
power transformation; see also equation (4.1). It is basically a family of transfor-
mations and they can only be applied if the data are non-negative, but a constant 
can be applied to avoid this problem. Alternative transformations are ranking and 
converting everything to 0–1 data. For example, if the original data have the val-
ues 2, 7, 4, 9, 22, and 40, the rank transformed data will be 1, 3, 2, 4, 5, 6. If the 
original data are 0, 1, 3, 0, 4, 0, and 100, then converting everything to 0–1 data 
gives 0 1 1 0 1 0 1. Converting to 0–1 data seems like a last resort, particularly if 
considerable expense and time has been spent collecting more detailed data. How-
ever, our experience shows this is often the only realistic option with difficult eco-
logical datasets where the sample size or sampling quality is less than ideal. This 
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is a common problem with zoobenthic species community and fisheries data and 
an example is given in the Solea solea case study in Chapter 21.  

Several strategies are available for choosing the most appropriate transforma-
tion. The first approach is trial and error. Using the graphical data exploration 
techniques discussed earlier, especially the Cleveland dotplots, boxplots and pair-
plots, you can apply what appears to be the best transformation and see how well 
it corrects the identified issues. This is our preferred option, but it does require 
some existing expertise. It is also important that this trial-and-error approach is 
fully reported when presenting the results, including details of both the unsuccess-
ful as well as the successful transformation approaches.  

When the follow-up analysis is based on linear relationships, then a useful tool 
is the Mosteller and Tukey’s bulging rule (Mosteller and Tukey 1977, Fox 2002a), 
which is from the Box–Cox family of transformations. This approach relies on 
identifying non-linear patterns in your data by inspecting a scatterplot. The re-
quired transformations for linearising the relationships can be inferred from the 
bulging rule illustrated in Figure 4.17. For example, if the scatterplot shows a pat-
tern as in the upper right quadrant, then either the y’s or the x’s need to be in-
creased to transform the data to linear. 

Figure 4.17. Mosteller and Turkey’s bulging rule. When the arrow points down-
wards, y should be made smaller; if it points upwards, it should be increased. If 
the arrow points towards the left, x should be made larger, etc. See also Fox 
(2002a).

An example of the bulging rule is presented in Figure 4.18. Panel A shows a 
scatterplot of length versus biomass for the untransformed wedge clam data. This 
pattern matches with the lower right quadrant in Figure 4.17, and therefore the 
bulging rule suggests transforming either length to Length2 (or higher powers) or 
taking the log or square root of biomass (panel B and C). Panel D suggests that 
transforming both length and biomass is the best option.  

x2, x3

y2, y3

log(x), x0.5, x0..3

Log(y), y0.5, y0.3
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Figure 4.18. Scatterplot of (A) length versus biomass for the wedge clam data, (B) 
squared length versus biomass, (C) length versus log transformed biomass and (D) 
log length versus log biomass. The transformations shown in panels B and D fol-
low those suggested by Mosteller and Tukey’s bulging rule (Figure 4.17). Length-
weight relationships typically require log-log transformations. 

Automatic selection of transformations 

Automatic transformation selection techniques are described by Montgomery 
and Peck (1992) and Fox (2002a), among others. Montgomery and Peck apply a 
series of power transformations, and for each power transformation, they calculate 
the residual sum of squares. These sums of squares cannot be compared directly as 
reducing the size of the data with a square root transformation, in most cases, also 
makes the residuals, and therefore residual sum of squares, smaller. Therefore, this 
power transformation contains a correction factor using the geometric mean that 
makes the residual sum of squares directly comparable. So, the challenge is to find 
the optimal value of p, where p defines the transformation in equation (4.1). Using 
a grid (range of values), and then increasingly finer grids, if required, the optimal 
value for p can be found as the one that has the smallest residual sum of squares. It 
is also possible to calculate a confidence interval for the power transformation pa-
rameter p. If this interval contains 1, then no transformation is required. This 
modified power transformation is 
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The difference between this formula and equation (4.1) is the correction factor 
Y , also called the geometric mean. The confidence interval for p can be found by: 

2
/ 2,*   (1 )v

p

t
SS SS

v
α= +

(4.3)

where v is the residual degrees of freedom (Chapter 5) and SSp is the lowest resid-
ual sum of squares. The confidence interval for p can be visualised by making a 
plot of various p values against SSp, and using SS* to read off the confidence 
bands. An example of using the biomass and log transformed length variables 
from the wedge clam dataset is given below. The log transformation for length 
was used as it contains various observations with rather large values. We are try-
ing to find out which transformation for the biomass data is most optimal for fit-
ting a linear regression model. Initially, the values of p were chosen to be between 
–3 and 3 with steps of 0.01. However, this was unsatisfactory and a finer grid of p
was needed with values between –0.1 and 0.1. Figure 4.19 shows the sum of 
squares plotted against different values of p. The optimal value is p = 0.025 (low-
est point on the curve), and SS* is represented by the dotted line that allows us to 
read off the confidence intervals from where it intersects the curve. The 95% con-
fidence band for p is therefore approximately between 0.005 and 0.035. Although
0, which is the log transformation by definition, is just outside this interval, in this 
instance for ease of interpretation a log transformation would probably be the best 
option. 

Although we have only looked at transforming the response variable Mont-
gomery and Peck (1992) also give a procedure for automatic selection of the trans-
formation on the explanatory variable.   

In conclusion, the main reasons for a data transformation are (in order of im-
portance) as follows: 

1. Reduce the effect of outliers. 
2. Improve linearity between variables. 
3. Make the data and error structure closer to the normal distribution. 
4. Stabilise the relationship between the mean and the variance (this will be 

discussed further in Chapter 6). 
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Figure 4.19. Sum of squares for different power transformations. The vertical axis 
shows the sum of squares for different power transformations p. The dotted line 
represents the 95% confidence band. 

If the follow-up analysis is a generalised additive model with Poisson distribu-
tion, points 2 to 4 are irrelevant (Chapter 7). Although there are some rules of 
thumb for transformations, such as using a cubic or square root transformation for 
count data, and a log transformation where the relationships are multiplicative, it 
is still difficult to choose the best option. We suggest the following approach: 

• Apply all data exploration techniques on the original data.  
• If there are outliers in the explanatory variables, transform them. 
• Apply linear regression or related techniques (e.g., GLM, analysis of 

variance), and judge whether the residuals show any patterns. 
• If there is any residual information left, or if there are influential observa-

tions, then a data transformation might be an option. 
• Choose the best transformation using trial and error, or use an automatic 

selection routine. 

Unless replicates of the response variable are available, we believe it is unwise 
to apply a transformation purely on the argument that the ‘response variable must 
be normally distributed’. The normality assumption is for the data at each X value 
(this will be discussed further in Section 5.1)! For example, a transformation on 
the GSI index for the squid data might remove the differences between male and 
female species (Figure 4.5). And normality of the explanatory variables is not as-
sumed at all!  

Other points to consider are whether to use the same transformation for (i) all 
response variables, (ii) all explanatory variables, or (iii) all response variables and 
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all explanatory variables. In general, we recommend applying the same transfor-
mation to all response variables, and the same transformation to all explanatory 
variables. However, you can apply a different transformation to the response vari-
ables from the one applied to the explanatory variables. Sometimes, the explana-
tory variables represent different types of variables; e.g., if some are distance or 
size related, some are time related and some are nominal. In this case, there is 
nothing wrong in using a different transformation for each type of variable. Nomi-
nal explanatory variables should not be transformed, but distance and size-related 
variables tend to have a wider spread and might require a transformation. And the 
same approach should be adopted with response variables. For example, in an EU-
funded project (WESTHER) on herring, biological, morphometric, chemical, ge-
netic and parasite variables were measured, and were all considered as response 
variables. The parasite data were count data and required a square root transforma-
tion. The morphometric data were pre-filtered by length and did not require any 
further transformation, but the chemical data required a log transformation.  

A final word on transformation is to be aware that, sometimes, the aim of the 
analysis is to investigate the outliers, e.g., the relationship between high water lev-
els and the height of sea defences, or the analysis of scarce, and therefore only 
rarely recorded, species. In these cases, you cannot remove the extreme values, 
and the choice of analytical approach needs to take this into account. Useful 
sources on extreme values modelling are Coles (2004) and Thompson (2004), 
which both discuss sampling species that are rare and elusive. 

Standardisations 

If the variables being compared are from widely different scales, such as com-
paring the growth rates of small fish species against large fish species, then stan-
dardisation (converting all variables to the same scale) might be an option. How-
ever, this depends on which statistical technique is being used. For example, 
standardising the response variables would be sensible if you intend on using dy-
namic factor analysis (Chapter 17), but methods like canonical correspondence 
analysis and redundancy analysis (Chapters 12 and 13) apply their own standardi-
sation before running the analysis. To make it more confusing, applying multidi-
mensional scaling (Chapter 10) with the Euclidean distance function on standard-
ised data is acceptable, but the same standardised data will give a problem if the 
Bray–Curtis distance function is used. There are several methods for converting 
data to the same scale, and one option is to centre all variables around zero by 

Yi
new = Yi Y

where Y is the sample mean and Yi the value of the ith observation. However, the 
most common used standardisation is given by: 

Yi
new  = (Yi Y ) / sy
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where sy is the sample standard deviation. The transformed values Yi
new are now 

centred around zero, have a variance of one, and are unit-less. This transformation 
is also called normalisation. Other, less-used transformations are 

Yi
new = Yi / Ymax      and     Yi

new = (Yi Ymin) / (Ymax Ymin)

They rescale the data between zero and one. Centering or standardisation can 
be applied on response and/or explanatory variables. To illustrate the difference 
between no transformation, centring and normalisation, we use a North-American 
sea surface temperature (SST) time series. These data come from the COADS 
datasets (Slutz et al. 1985, Woodruff et al. 1987), and details on obtaining the 
mean monthly values used here can be found in Mendelssohn and Schwing 
(2002). The upper left panel in Figure 4.20 shows lattice graphs for four time se-
ries from this dataset. In the upper right panel, all series are centred around zero 
and are in their original units. This transformation takes away the differences in 
absolute value. However, there is still a difference in variation; the fluctuation in 
the upper left and lower right panels is considerably smaller. The standardisation 
(or: normalisation) removes these differences (lower left panel in Figure 4.20), 
and the amount of fluctuation becomes similar. This transformation is the most 
commonly used approach and rescales all time series around zero. The time series 
are now without units, and the normalisation makes all time series equally scaled, 
even if some time series had large fluctuations and others only small fluctuations. 
Centring only removes the differences in absolute values between series. 

As with other transformations the decision to standardise your data depends on 
the statistical technique you plan to use. For example, if you want to compare re-
gression parameters, you might consider it useful to standardise the explanatory 
variables before the analysis, especially if they are in different units or have dif-
ferent ranges. Some techniques such as principal component analysis automati-
cally normalise or centre the variables.  
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Figure 4.20. The upper left panel shows four time series from the North American 
SST dataset with no transformation applied. The upper right panel shows the same 
time series centred, and the lower left shows the same time series normalised. 

4.3 A final thought on data exploration  

Even if you don’t see it, it might still be there 

Even if the scatterplots suggest the absence of a relationship between Y and X, 
this does not necessarily mean one does not exist. A scatterplot only shows the re-
lationship between two variables, and including a third, fourth or even fifth vari-
able might force a different conclusion. To illustrate this, we have used the GSI 
index of the squid data again (Section 4.1). The left panel in Figure 4.21 shows the 
scatterplot of month against the GSI index. The most likely conclusion based on 
this graph is that that there is no strong seasonal effect in the GSI index. However, 
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using a four-dimensional scatterplot, or coplot (right panel in Figure 4.21), a 
strong seasonal pattern is apparent for female squid in areas 1 and 3, and a weak 
seasonal pattern for males in area 3.  

2 4 6 8 10 12

0
5

10
15

Month

G
SI

0
5

10
15

2 4 6 8 10 2 4 6 8 10

2 4 6 8 10 2 4 6 8 10

0
5

10
15

MONTH

G
SI

1

2

3

4

Location

1

2

Se
x

Figure 4.21. Left: scatterplot of GSI data. Right: coplot of GSI index for the squid 
data. The conditioning variables are Location (four areas) and Sex (1 is male, 2 is 
female). 

This final thought here is to re-enforce the argument that a thorough data explo-
ration stage is essential before moving on to the analysis stage of the data investi-
gation. 

What Next? 

After completing the data exploration, the next step is to verify and investigate 
the patterns and relationships this step identified. Assuming the scatterplot indi-
cates a linear relationship between the variables, then linear regression is the obvi-
ous next step. However, if the scatterplot suggests a clear non-linear pattern, then 
a different approach needs to be taken, which might include (i) using interactions 
and/or quadratic terms in the linear regression model, (ii) transforming the data, 
(iii) continuing with a non-linear regression model, (iii) using generalised linear 
modelling, (iv) applying generalised additive modelling techniques, or (v) apply-
ing (additive) mixed modelling techniques. All these approaches are investigated 
in later chapters. The first option means that you proceed with the linear regres-
sion model, but you need to ensure that all assumptions are met (e.g. no residual 
patterns). 

To choose which approach is the most appropriate requires knowledge of the 
assumptions of the selected methods, and tools to detect violations (using residu-
als). These are all discussed in later chapters, but basically it all comes down to 
something very basic: learn from your errors. 
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