- Tutorial
- Exercícios
- Apostila

2. Funções Matemáticas e Estatísticas

O R como uma Calculadora Fora do Comum

Operações Aritméticas Básicas

A linha de comando do R funciona como uma calculadora. Todas operações aritméticas e funções matemáticas principais estão disponíveis. Exemplo:

```
> 4 + 9
[1] 13
> 4 - 5
[1] -1
> 4 * 5
[1] 20
> 4 / 5
[1] 0.8
> 4^5
[1] 1024
>
```

A notação básica de operações algébricas, como a aplicação hierárquica de parênteses, também pode ser utilizada:

```
> (4 + 5 ) * 7 - (36/18)^3
[1] 55
> (2 * ( 2 * ( 2 * (3-4))))
[1] -8
>
```

Note que somente os parênteses podem ser utilizados nas expressões matemáticas. As chaves ("{}") e os colchetes ("[]") têm outras funções no R:

```
> (2 * { 2 * [ 2 * (3-4)]})
Error: syntax error in "(2 * { 2 * ["
>
```

Por que o R é uma calculadora **fora do comum** ? Experimente fazer a seguinte operação matemática na sua calculadora:

```
> 1 - (1 + 10^(-15))
```

Funções Matemáticas Comuns

As funções matemáticas comuns também estão disponíveis e podem ser aplicadas diretamente na linha de comando:

```
> sqrt(9) # Raiz Quadrada
[1] 3
> abs( - 1 ) # Módulo ou valor absoluto
[1] 1
> abs( 1 )
[1] 1
> log( 10 ) # Logaritmo natural ou neperiano
[1] 2.302585
> log( 10, base = 10) # Logaritmo base 10
[1] 1
> log10(10) # Também logaritmo de base 10
[1] 1
> log( 10, base = 3.4076) # Logaritmo base 3.4076
[1] 1.878116
> exp( 1 )
                # Exponencial
[1] 2.718282
```

As funções trigonométricas:

```
> sin(0.5*pi)
                # Seno
[1] 1
> cos(2*pi) # Coseno
[1] 1
> tan(pi)
                # Tangente
[1] -1.224647e-16
>
> asin(1)
           # Arco seno (em radianos)
[1] 1.570796
> asin(1) / pi * 180
[1] 90
>
              # Arco coseno (em radianos)
> acos(0)
[1] 1.570796
> acos(0) / pi * 180
[1] 90
           # Arco tangente (em radianos)
> atan(0)
[1] 0
> atan(0) / pi * 180
[1] 0
>
```

Funções para arredondamento:

```
> ceiling( 4.3478 )
```

```
[1] 5
> floor( 4.3478 )
[1] 4
> round( 4.3478 )
[1] 4
> round( 4.3478 , digits=3)
[1] 4.348
> round( 4.3478 , digits=2)
[1] 4.35
>
```

Funções matemáticas de especial interesse estatístico:

```
> factorial( 4 )  # Fatorial de 4
[1] 24
> choose(10, 3)  # Coeficientes binomiais: combinação de 10 3-a-3
[1] 120
>
```

Criando Variáveis com Atribuição

Mais do que simples operações aritméticas, o R permite que executemos operações **algébricas** operando sobre variáveis pré-definidas.

Para definir uma variável, basta escolher um nome (*lembre-se das regras de nomes no R*) e atribuir a ela um valor:

```
> a = 3.6
> b = sqrt(35)
> c = -2.1
> a
[1] 3.6
> b
[1] 5.91608
> C
[1] -2.1
> a * b / c
[1] -10.14185
> b^c
[1] 0.02391820
> a + exp(c) - log(b)
[1] 1.944782
> a - b * c / d
Error: object "d" not found
>
```

Não esqueça de definir as variáveis previamente!!

Exercícios

Exercício 2.1. Estimador de Pollard

Pollard (1971) propôs o seguinte estimador para estimar a densidade no método de quadrantes:

 $\pi_{N} = \frac{4(4n-1)}{\pi_{i=1}^n \sum_{j=1}^4 r_{ij}^2}$

onde, \$r_{ij}\$ é a distância de árvore do quadrante \$j\$ no ponto \$i\$ ao centro do ponto quadrante e \$n\$ é o número de pontos quadrantes.

A variância desse estimador é:

 $\$Var(\hat{N_p}) = \frac{N_p}{4n-2}$

Imagine que foram amostrados 30 quadrantes, e que o valor da soma do quadrado das distâncias de cada árvore ao centro de seu quadrante foi de:

 $\sum_{i=1}^{30} \sum_{j=1}^4 r_{ij}^2 = 2531,794$

- 1. Qual a densidade estimada?
- 2. Qual a variância?

Exercício 2.2. Área transversal de uma Árvore

A área transversal de uma árvore é calculada assumindo que a secção transversal do tronco à altura do peito (1,3m) é perfeitamente circular. Se o diâmetro à altura do peito (DAP) de uma árvore for 13.5cm, qual a área transversal?

Se uma árvore possui três fustes com DAPs de: 7cm, 9cm e 12cm, qual a sua área transversal?

Exercício 2.3. Área transversal de uma Árvore (Revisitado)

Se uma árvore possui três fustes com DAPs de: 7cm, 9cm e 12cm, qual o diâmetro (único) que é equivalente à sua área transversal?

Exercício 2.4. Cálculo da Biomassa de Árvores do Cerrado

O modelo alométrico de biomassa ajustado para árvores do Cerradão estabele que a biomassa é dada pela expressão:

 $$$\hat{b} = e^{-1,7953} d^{2.2974}$$

onde b é a biomassa em kg e d é o DAP em cm.

l Já um outro modelo para biomassa das árvores na mesma situação tem a l forma:

```
| $$\hat{\ln(b)} = -2.6464 + 1,996\ln(d) + 0,7558\ln(h)$$
| onde h é a altura das árvores em m.
| Para uma árvore com DAP de 15cm e altura de 12m, os modelos resultarão em estimativas muito distintas?
```

Mantendo a Coerência Lógica-Matemática

O R também lida com operações matemáticas que envolvem **elementos infinitos** e **elementos indeterminados**:

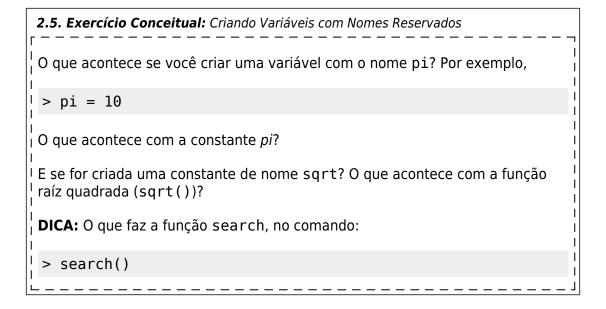
```
> 1/0
[1] Inf
> -5/0
[1] -Inf
> 5000000000000000000/Inf
[1] 0
> 0/0
[1] NaN
> Inf/Inf
[1] NaN
> log(0)
[1] -Inf
> exp(-Inf)
[1] 0
> sqrt(Inf)
[1] Inf
> sqrt( - 1 )
[1] NaN
Warning message:
NaNs produced in: sqrt(-1)
> 2 * NA
[1] NA
> 2 * NaN
[1] NaN
> NA / 10
[1] NA
> NaN / -1
[1] NaN
```

Note que determinadas **palavras** (além do nome das funções) estão reservadas no R, pois são utilizadas com significado especial:

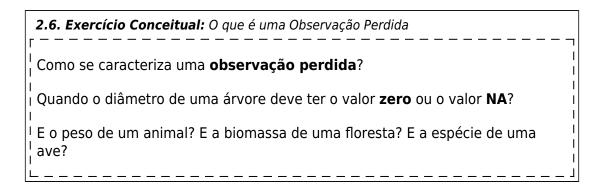
- pi constante < pi = 3.141593;
- Inf infinito;
- NaN indeterminado (Not a Number), normalmente resultado de uma operação matemática indeterminada;

• NA - indeterminado (Not Available), normalmente caracterizando uma observação perdida (missing value).

Na operações matemáticas, NaN e NA atuam sempre como indeterminado.



Exercícios



O R como uma Calculadora Vetorial

Criação de Vetores

O R, e a linguagem S, foram criados para operar não apenas *número-a-número* como uma calculadora convencional.

O R é um ambiente **vetorial**, isto é, quase todas suas operações atuam sobre um *conjunto de valores*, que genericamente chamaremos de vetores¹⁾.

Uma definição mais detalhada dos vetores está na seção sobre manipulação de dados. Aqui fornecemos apenas algumas definições e funções importantes para compreender as operações numéricas com vetores.

Concatenação de Elementos em um Vetor: a Função "c"

Para criar um vetor, podemos usar a função c (c = colar, concatenar). Essa função simplesmente junta todos os argumentos dados a ela, formando um vetor:

```
> a = c(1, 10, 3.4, pi, pi/4, exp(-1), log( 2.23 ), sin(pi/7) )
> a
[1] 1.0000000 10.0000000 3.4000000 3.1415927 0.7853982 0.3678794
0.8020016 0.4338837
>
```

Criação de Sequências: Operador ":" e Função "seq"

Para criar vetores de números com intervalo fixo unitário (intervalo de 1) se utiliza o *operador* següencial (:):

```
> b = 1:8
> b
[1] 1 2 3 4 5 6 7 8
> c = 20:32
> c
[1] 20 21 22 23 24 25 26 27 28 29 30 31 32
> d = 2.5:10
> d
[1] 2.5 3.5 4.5 5.5 6.5 7.5 8.5 9.5
```

Uma forma mais flexível de criar següências de números (inteiros ou reais) é usando a função 'seg':

```
> seq(10, 30)
[1] 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
> seq(10, 30, by=2)
[1] 10 12 14 16 18 20 22 24 26 28 30
> seq(1.5, 7.9, length=20)
[1] 1.500000 1.836842 2.173684 2.510526 2.847368 3.184211 3.521053 3.857895
[9] 4.194737 4.531579 4.868421 5.205263 5.542105 5.878947 6.215789 6.552632
[17] 6.889474 7.226316 7.563158 7.900000
```

Vetores de Valores Repetidos: Função "rep"

Também é fácil criar uma sequência de números repetidos utilizando a função 'rep':

```
> rep(5, 3)
[1] 5 5 5
> rep(1:5, 3)
[1] 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5
> rep(1:5, each=3)
[1] 1 1 1 2 2 2 3 3 3 4 4 4 5 5 5
```

>

Exercícios

Vetores: Operações Matemáticas

Todas operações matemáticas aplicadas sobre um vetor, serão aplicadas sobre cada elemento desse vetor:

Se as variáveis que trabalhamos são vetores, operações matemáticas entre variáveis serão realizadas pareando os elementos dos vetores:

```
[1] 1.0000000 3.1622777 1.8439089 1.7724539 0.8862269 0.6065307 0.8955454 [8] 0.6586985 > log( b ) [1] 0.0000000 0.6931472 1.0986123 1.3862944 1.6094379 1.7917595 1.9459101 [8] 2.0794415 >
```

Comprimento de Vetores e a Função "length"

A função length retorna o número de elementos de um objeto:

```
> a <- seq(from=0, to=10, by=2)
> a
[1] 0 2 4 6 8 10
> length(a)
[1] 6
> length(1:20)
[1] 20
> length(rep(1:10,each=10))
[1] 100
>
```

A Regra da Ciclagem

O comprimento é muito importante para as operações vetoriais, pois o R permite operações entre dois vetores de comprimentos diferentes, com a seguinte regra:

```
Ciclagem de Valores

Operações entre vetores de comprimentos
diferentes são realizadas pareando-se seus
elementos. Os elementos do vetor mais curto
são repetidos sequencialmente até que a
operação seja aplicada a todos os elementos do
vetor mais longo
```

Quando o comprimento do vetor maior não é múltiplo do comprimento do maior, o R retorna o resultado e um aviso:

```
> b
  [1] 0 0 0 0 0 1 1 1 1 1 1
> c
[1] 1 2 3
> c*b
  [1] 0 0 0 0 0 3 1 2 3 1
Warning message:
In c * b : longer object length is not a multiple of shorter object length
> length(b)
[1] 10
```

```
> length(c)
[1] 3
>
```

Mas se o comprimento do vetor maior é um múltiplo do maior, o R retorna apenas o resultado, sem nenhum alerta:

```
> a
[1] 1 2
> b
  [1] 0 0 0 0 0 1 1 1 1 1
> a*b
  [1] 0 0 0 0 0 2 1 2 1 2
> length(b)/length(a)
[1] 5
>
```

Portanto **muito cuidado com as operações entre vetores de diferentes comprimentos**. A regra da ciclagem é um recurso poderoso da linguagem R ²⁾, mas se você não tiver clareza do que deseja fazer, pode obter resultados indesejados.

Exercícios

Exercício 2.8. Palmeira com Muitos Fustes II

Uma palmeira perfilhada possui 10 fustes com os seguintes diâmetros: 5, 6, 7, 5, 10, 11, 6, 8, 9 e 7.

- 1. Calcule a área transversal de cada fuste dessa palmeira. Guarde este resultado em novo objeto.
- 2. Calcule a média das áreas transversais, sem usar a função mean.
- 3. Calcule a variância das áreas transversais, sem usar a função var

Exercício 2.9. Bits e Bytes

Como construir uma seqüência que representa o aumento do número de bits por byte de computador, quando se dobra o tamanho dos bytes?

Essa seqüência numérica parte do 2 e dobra os valores a cada passo.

Vetores: Operações Estatísticas

As funções matemáticas sobre vetores operam *elemento-a-elemento*. Já as funções estatísticas operam no vetor **como um todo**:

```
> mean( a )
[1] 2.491344
> var( b )
[1] 6
> max( c )
[1] 32
> sd( a )
[1] 3.259248
> sum( c )
[1] 338
> min( b )
[1] 1
> range( c )
[1] 20 32
>
```

Algumas funções úteis que não são estatísticas, mas operam no vetor são:

```
> a
    1.0000000 10.0000000
                          3.4000000 3.1415927
                                               0.7853982
                                                          0.3678794
[1]
0.8020016
[8] 0.4338837
> sort(a)
[1] 0.3678794 0.4338837 0.7853982 0.8020016
                                              1.0000000
                                                          3.1415927
3.4000000
[8] 10.0000000
> rev(sort(a))
[1] 10.0000000 3.4000000 3.1415927 1.0000000
                                               0.8020016
                                                          0.7853982
0.4338837
[8] 0.3678794
> cumsum(sort(a))
[1] 0.3678794 0.8017632 1.5871613 2.3891629 3.3891629
                                                          6.5307556
9.9307556
[8] 19.9307556
> cumsum(a)
[1] 1.00000 11.00000 14.40000 17.54159 18.32699 18.69487 19.49687 19.93076
> diff(a)
[1]
    9.0000000 -6.6000000 -0.2584073 -2.3561945 -0.4175187
-0.3681178
> diff( seq(10, 34, length=15) )
 [1] 1.714286 1.714286 1.714286 1.714286 1.714286 1.714286 1.714286
 [9] 1.714286 1.714286 1.714286 1.714286 1.714286
```

Exercícios

Exercício 2.10. Conta de Luz

As leituras mensais do medidor de consumo de eletricidade de uma casa foram:

I	Jan	Fev	Mar	Abr	Mai	Jun	Jul	Ago	Set	Out	Nov	Dez
	9839	10149	10486	10746	11264	11684	12082	12599	13004	13350	13717	14052

- 1. Calcule o consumo de cada mês neste período.
- 2. Qual foi o máximo e mínimo de consumo mensal?
- 3. Qual a média, mediana e variância dos consumos mensais?

As Funções no R

Já foi visto que ao se digitar o nome de uma função na linha de comando, o R retorna o **código** da função. Veja a diferença de:

```
> ls()
```

para:

```
> ls
```

A maioria das funções precisa de certas **informações** para orientar o seu procedimento, tais informações são chamados de **argumentos**.

Os argumentos de qualquer função são detalhadamente explicados nas páginas de ajuda sobre a função. Mas para uma rápida consulta dos argumentos de uma função podemos usar a função 'args':

```
> args(ls)
function (name, pos = -1, envir = as.environment(pos), all.names = FALSE,
    pattern)
NULL
> args(q)
function (save = "default", status = 0, runLast = TRUE)
NULL
> args(save.image)
function (file = ".RData", version = NULL, ascii = FALSE, compress = !ascii,
    safe = TRUE)
NULL
>
```

Algumas funções, entretanto, são primitivas ou internas e seus argumentos não são apresentados. Geralmente, nesses casos os argumentos são bastante óbvios:

```
> args(sin)
```

```
NULL
> sin
.Primitive("sin")
>
```

Outras funções simplesmente não possuem argumentos:

```
> args(getwd)
function ()
NULL
> getwd
function ()
.Internal(getwd())
<environment: namespace:base>
>
```

Ao observar o resultado da função 'args', você notará que alguns argumentos são seguidos de uma expressão que se inicia com o sinal de igualdade ('='). A expressão após o sinal de igualdade é chamada de **valor default** do argumento. Se o usuário não informar o valor para um dado argumento, a função usa o valor default. Como exemplo veja a função 'save.image':

```
> args(save.image)
function (file = ".RData", version = NULL, ascii = FALSE, compress = !ascii,
    safe = TRUE)
NULL
>
```

Se o usuário simplesmente evocar a função 'save.image()', sem informar o nome do arquivo onde a área de trabalho deve ser gravada, o R gravará as informações num arquivo com nome '.RData'.

Exercícios

Exercício 2.11. Argumentos de Funções Estatísticas

| Quais são os argumentos (e seus valores default) das seguintes funções:
| • mean
| • sd
| • range
| • cumsum

Distribuições Estatísticas: Funções no R

Sendo um ambiente para análise de dados, o R dispõe de um grande conjunto de funções para trabalhar com *Distribuições Estatísticas*. Essas funções ajudam não só na análise de dados, como também permitem a *simulação* de dados.

Distribuição Normal

A distribuição Normal é a distribuição central da teoria estatística. Para gerar uma amostra de observações de uma distribuição normal utilizamos a função 'rnorm':

```
> args( rnorm )
function (n, mean = 0, sd = 1)
NULL
> vn1 = rnorm(1000, mean = 40, sd = 9)
> mean( vn1 )
[1] 39.47248
> sd( vn1 )
[1] 8.523735
> range( vn1 )
[1] 14.93126 62.11959
> vn2 = rnorm(100000, mean = 40, sd = 9)
> mean( vn2 )
[1] 40.02547
> sd(vn2)
[1] 9.025218
> range( vn2 )
[1] 3.40680 78.25496
```

Se quisermos saber a *probabilidade acumulada* até um certo valor de uma variável com distribuição normal utilizamos a função 'pnorm':

```
> args(pnorm )
function (q, mean = 0, sd = 1, lower.tail = TRUE, log.p = FALSE)
NULL
>
> pnorm( 1.96, mean = 0 , sd = 1 )
[1] 0.9750021
> pnorm( 1.96 )
[1] 0.9750021
>
> pnorm( 27, mean = 20, sd = 7 )
[1] 0.8413447
> pnorm( 13, mean = 20, sd = 7 )
[1] 0.1586553
>
```

Se quisermos obter o valor de um quantil da distribuição normal utilizamos a função 'qnorm':

```
> args( qnorm )
function (p, mean = 0, sd = 1, lower.tail = TRUE, log.p = FALSE)
NULL
> qnorm( 0.90 )
[1] 1.281552
> qnorm( 0.30 )
[1] -0.5244005
>
> qnorm( 0.90, 20, 7)
[1] 28.97086
> qnorm( 0.30, 20, 7)
[1] 16.32920
>
```

A função 'dnorm' fornece a densidade probabilística para cada valor de uma variável Normal:

```
> args( dnorm )
function (x, mean = 0, sd = 1, log = FALSE)
NULL
> x = seq(-4, 4, length=10000)  # Seqüência de -4 a 4 com 10.000
valores
> plot(x, dnorm(x))  # Curva da Dist. Normal com média 0 e desvio padrão 1
> points(x, dnorm(x, sd=2))  # Curva da Dist. Normal com média 0 e desvio padrão 2 (adicionada ao gráfico)
>
```

Exercícios

Exercício 2.13 Amplitude Normal | Tomando uma variável que segue a Distribuição Normal, o que acontence com a amplitude de variação dos dados à medida que o tamanho da amostra cresce (por exemplo n= 100, 1000, 10000)? | Dica: use as funções range e diff

```
Exercício 2.14. Intervalo Normal I
```

Qual o intervalo da Distribuição Normal Padronizada que têm a média no centro e contem 50% das observações?

```
Exercício 2.15. Intervalo Normal II
```

Qual a probabilidade de uma observação da variável Normal Padronizada estar no intervalo [-1.96 , 1.96]?

As Funções que Operam em Distribuições Estatísticas

O que foi apresentado para Distribuição Normal pode ser generalizado para todas as distribuições que o R trabalha.

Há quatro funções para se trabalhar com distribuições estatísticas:

- ddistrib retorna a densidade probabilística para um dado valor da variável;
- pdistrib retorna a probabilidade acumulada para um dado valor da variável;
- qdistrib retorna o quantil para um dado valor de probabilidade acumulada;
- rdistrib retorna valores (números aleatórios) gerados a partir da distribuição;

No caso da Distribuição Normal: *distrib* = norm. Para outras distribuições temos:

DISTRIBUIÇÕES ESTATÍSTICAS NO R						
Distribuição	Nome no R	Parâmetros ³⁾				
beta	beta	shape1, shape2, ncp				
binomial	binom	size, prob				
Cauchy	cauchy	location, scale				
qui-quadrado	chisq	df, ncp				
exponential	exp	rate				
F	f	df1, df2, ncp				
gamma	gamma	shape, scale				
geométrica	geom	prob				
hypergeométrica	hyper	m, n, k				
log-normal	Inorm	meanlog, sdlog				
logística	logis	location, scale				
binomial negativa	nbinom	size, prob				
normal	norm	mean, sd				
Poisson	pois	lambda				
t de Student	t	df, ncp				
uniforme	unif	min, max				
Weibull	weibull	shape, scale				
Wilcoxon	wilcox	m, n				

Exercícios

Exercício 2.16. Teste t

Você realizou um teste t de Student bilateral e obteve o valor t=2.2 com 19 graus de liberdade.

O teste é significativo ao nível de probabilidade de 5%? E se o valor observado fosse t = 1.9?

Exercício 2.17. Teste F

Você realizou um teste F e obteve o valor F = 2.2 com 19 graus de liberdade no numerador e 24 graus de liberdade no denominador.

O teste é significativo ao nível de probabilidade de 5%? E se o valor observado fosse F = 2.5?

Exercício 2.18. Padrão Espacial I

Gere duas amostras (p.ex.: x e y) de tamanho 1000 (n=1000) de números da distribuição Uniforme.

Faça um gráfico plotando uma amostra contra a outra (plot(x,y)). Qual o padrão espacial observado?

Você consegue explicá-lo?

Exercício 2.19. Padrão Espacial II

Gere duas amostras (p.ex.: xp e yp) de tamanho 10 (n=10) de números da distribuição Uniforme, com valor mínimo de zero e máximo de 100.

Gere duas amostras (p.ex.: xf e yf) de tamanho 1000 (n=1000) de números da distribuição Normal com média zero e desvio padrão 2)

Faça um gráfico plotando a soma das amostras X(xp+xf) contra a soma das amostras Y(yp+yf) (plot(xp+xf,yp+yf)).

Qual o padrão espacial observado? Você consegue explicá-lo?

Exercício 2.20. Gráfico Quantil-Quantil

Construa uma seqüência **ordenada** de 1000 números entre 0 e 1:

> p = seq(0, 1, length=1000)

O vetor 'p' representa um vetor de probabilidades acumuladas.

Gere 1000 números aleatórios da distribuição Normal com média e desvio-padrão 1 (um) e coloque os números em ordem:

> x = sort(rnorm(1000, mean=1))

Faça um gráfico dos quantis da distribuição Normal, tomando o vetor 'p' de probabilidades, contra os valores de 'x':

> plot(qnorm(p, mean=1), x)

Como é o gráfico resultante?

Repita o mesmo processo para a distribuição Exponencial ('rexp'), cujo valor *default* resulta em media = 1 . Como é o gráfico resultante? Por que?

Last update: 2020/08/16 12:51

Soluções dos Exercícios

1

No R, "vetores" são uma classe de objetos definida simplesmente como conjuntos de elementos de um mesmo tipo. Os vetores do R não correspondem a vetores de valores da álgebra matricial, para os quais há outra classe de objetos, que é "matrix"

A vantagem mais óbvia da regra da ciclagem é a possibilidade de multiplicação de um vetor por um valor único. Você compreende por que?

3)

os argumentos de cada função incluem estes parâmetros, entre outras coisas

From:

http://ecor.ib.usp.br/ - ecoR

Permanent link:

http://ecor.ib.usp.br/doku.php?id=03_apostila:03-funcoes&rev=1597593101

Last update: 2020/08/16 12:51

×