Isometry test and size correction

isometry.test=function(response, reference, specimen.id, expected.slope, alpha=0.05)\{ \#1 Creates function "isometry.test", with arguments "response", "reference", "specimen.id", "expected.slope" and "alpha".

\#\# VERIFYING THE ARGUMENTS

if ((missing(response)) ||
(is.na(suppressWarnings(as.numeric((response)[[1]])))) ||
is.factor(data.frame(response)[[1]])) \#2 Verifies if "response" was inserted and if its coercible to numeric.
\{
stop("response should be specified as a numeric vector containing the response measurement(s) for isometry test") \#3 If not, interrupts the function and gives a message to the user.
\}
response=as.data.frame(response) \#4 Transforms "response" in a data frame, so its length can be read as number of variables.
if ((missing(reference)) || (length(reference) != max(c(length(response),length(as.data.frame(t(response))))) || (is.na(suppressWarnings(as.numeric(reference[[1]])))) || is.factor(data.frame(reference)[[1]])) \#5 Verifies if "reference" was inserted, if it has the same length as response, and is coercible to numeric.
\{
stop("reference should be specified as a numeric vector containing the reference measurements for isometry test.") \#6 If not, interrupts the function and gives a message to the user.
\}
if ((missing(specimen.id)) || (class(specimen.id) != "character") || (length(specimen.id) != length(reference))) \#7 Verifies if "specimen.id" was inserted, if it is a character and if it has the same length as "reference". \{
stop("specimen.id should be specified as a character vector containing the names of specimens in data table.") \#8 If not, interrupts the function and gives a message to the user.
\}
if ((missing(alpha)) || (class(alpha) != "numeric") || (alpha<=0) || (alpha>=1)) \#9 Verifies if "alpha" was inserted, if it is numeric and >0 and <1.
\{
message("\talpha should be numeric and >0 or <1; herein default set to $0.05 . \backslash n ")$ \#10 If not, gives a message to the user and uses the default value set above with the argument.
\}
if
((colnames(response)==as.character(rep(1:length(colnames(response)),1))) | (match(colnames(response), specimen.id, nomatch = 0) != rep(0,length(response)))) \#11 Verifies if the input data frame "response" has the specimens in rows.
response=as.data.frame(t(response)) \#12 If not, transposes so the specimens are in rows. Will have further implications in calculating number of response variables.
\}
if ((missing(expected.slope)) || (class(expected.slope) != "numeric") || (length(expected.slope) != length(colnames(response)))) \#13 Verifies if "expected.slope" was inserted, if it is numeric and has the same length as "response".
\{
message("\texpected.slope should be a concatenation of the ratios: power of response variable/power of the reference variable; herein default set to 1 for all.\n") \#14 \#10 If not, gives a message to the user.
expected.slope=rep(1,length(colnames(response))) \#15 Uses the default value (set here).
\}
\#\# FUNCTION FOR ISOMETRY TEST AND SIZE CORRECTION
\# Setting and configuring specific parameters ref.name=readline("\tPlease tell me the name of your reference variable:
") \#16 Asks for name of reference variable, that will be used in the output. result=matrix(data=NA, nrow=1, ncol=length(colnames(response))) \#17 Creates the empty "result" matrix, with 1 row and "response" columns. result=as.data.frame(result) \#18 Transforms "result" into a data frame, so it will later accept characters.
result2=matrix(data=NA, nrow=length(rownames(response)), ncol=length(colnames(response))+1) \#19 Creates the empty "result2" matrix with as muchs rows as specimens, and as much columns as reference+response variables.
reference=as.numeric(reference) \#20 Coerces "reference" to numeric, in case it was read before as characters.
result2[,1]=reference \#21 Sets reference variable to the first column of "result2".
if (length(response)==1) \#22 Verifies if there is only one response variable.
\{
res.name=readline("\tPlease tell me the name of your response variable: ") \#23 If yes, asks the user for the name of the response variable. colnames(response)=res.name \#24 Attributes the name of the response variable to its specific column, which will be used to construct the output matrices.
\}
response.all=as.matrix(response) \#25 Creates the matrix "response.all" with "response", as "response" will enter the for loop that follows.
\# Loop to compare each response variable to the reference variable, perform the isometry test and the specific size-correction.
for (k in 1:length(colnames(response))) \#26 Loop using counter k from 1 to the length of "response"
\{
response=response.all[,k] \#27 Creates object "response" with k column of "response.all"
response=as.numeric(response) \#28 Coerces "response" to numeric, in case it was read before as character.
response=log(response) \#29 Log transformation of response variable attributed to "response"
reference2=log(reference) \#30 Log transformation of reference variable attributed to "reference2", so that it overwrites "reference", similar to what was done with "response.all" and "response".
response.m=lm(response~reference2) \#31 Creates the object "response.m" with the linear model of "response" as a function of "reference2".
$\mathrm{f}=($ summary (response.m)) \$fstatistic \#32 Creates the object "f" with the F-statistic values of the linear model.
$p=p f(f[1], f[2], f[3]$, lower.tail=F) \#33 Creates the object "p" with the pvalue from the F-statistic values above.
if (p > alpha) \#34 Verifies if " p " is bigger than "alpha".
\{
result[k]="lm not significant" \#35 If yes, attribute "lm not significant" to element k in "result".
\}
else \#36 If not, linear model is significant, so proceeds with calculations.
\{
slope=(summary(response.m))\$coefficients[2] \#37 Creates the object "slope" and stores the slope coefficient from "response.m".
slope.se=(summary(response.m))\$coefficients[4] \#38 Creates the object "slope.se" and stores the slope's standard error coefficient from "response.m".
tvalue=abs((slope-expected.slope[k])/slope.se) \#39 Creates the object "tvalue", with the t test value from the comparison between slope and expected slope.
pvalue=(1-pt(tvalue,length(response)-2))*2 \#40 Creates the object "pvalue", with the p-value corresponding to the t test value above (degrees of freedom $=n-2$).
if (pvalue > alpha) \#41 Verifies if "pvalue" is bigger than "alpha". \{
result[k]="Isometry" \#42 If yes, the slope from response.m is not significantly different from the expected slope, so it attributes "Isometry" to element k in "result".
result2[,k+1]=as.numeric(response.all[,k])*((mean(result2[,1])/result2[,1])^ expected.slope[k]) \#43 Makes isometric transformation based on expected slope, following the formula in Lleonart et al. (2000).
\}
else \#44 Verifies if "pvalue" is not bigger than alpha.
\{
result[k]="Allometry" \#45 If it is not bigger, the slope from
response.m is significantly different from the expected.slope, so it attributes "Allometry" to element k in "result".
result2[,k+1]=as.numeric(response.all[,k])*((mean(result2[,1])/result2[,1])^ slope) \#46 Makes allometric transformation based on observed slope, following the formula in Lleonart et al. (2000).
\}
\}

```
        colnames(result)[k]=colnames(response.all)[k] #47 Establishes column
names of "result" as the column names in response.all.
    }
    ## SETTING AND RETURNING THE OUTPUT
    result2[,1]=mean(result2[,1]) #48 Makes the size correction of the
reference variable, by changing it in the first column of "result2" for its
mean.
    colnames(result2)=c(ref.name,colnames(response.all)) #49 Establishes the
column names of "result2" as the reference name given by the user, and the
column names of "response.all".
    rownames(result2)=specimen.id #50 Establishes the row names of "result2"
as the specimen names given by the user.
    all=array(list(result, result2)) #51 Creates the output object "all", as
array with a list that includes "result" and "result2".
    return(all) #52 Returns to the user the output array "all" with the
results of the isometry test and size correction.
}
```

```
From:
http://ecor.ib.usp.br/ - ecoR
```

```
Permanent link:
http://ecor.ib.usp.br/doku.php?id=05_curso_antigo:r2018:alunos:trabalho_final:jonathan.lawley:isometry
Last update: 2020/08/12 06:04
```

