
An Ecological Modeler’s Primer on JAGS1

N. Thompson Hobbs2

May 19, 20143

Natural Resource Ecology Laboratory, Department of Ecosystem Science and4

Sustainability, and Graduate Degree Program in Ecology, Colorado State University,5

Fort Collins CO, 805236

1

Contents7

1 Aim 48

2 Introducing MCMC Samplers 49

3 Introducing JAGS 510

4 Installing JAGS 811

4.1 Mac OS . 812

4.2 Windows . 813

4.3 LINUX . 814

5 Running JAGS 915

5.1 The JAGS model . 916

5.2 Technical notes . 1017

5.2.1 The model statement . 1018

5.2.2 for loops . 1119

5.2.3 Specifying priors . 1420

5.2.4 The <- operator . 1421

5.2.5 Vector operations . 1422

5.2.6 Keeping variables out of trouble. 1523

5.3 Running JAGS from R . 1524

6 Output from JAGS 2125

6.1 coda objects . 2126

6.1.1 Summarizing coda objects . 2127

6.1.2 The structure of coda objects (MCMC lists) 2228

6.1.3 Manipulating coda objects . 2429

6.2 JAGS objects . 2530

2

6.2.1 Why another object? . 2531

6.2.2 Summarizing the JAGS object . 2632

6.2.3 The structure of JAGS objects (MCMC arrays) 2733

6.2.4 Manipulating JAGS objects . 2834

6.2.5 Converting JAGS objects to coda objects 3035

7 Which object to use? 3036

8 Checking convergence using the coda package 3037

8.1 Trace and density plots . 3138

8.2 Gelman and Rubin diagnostics . 3139

8.3 Heidelberger and Welch diagnostics . 3240

8.4 Raftery diagnostic . 3241

9 Monitoring deviance and calculating DIC 3342

10 Differences between JAGS and WinBUGS / OpenBUGS 3443

11 Troubleshooting 3444

12 Answers to exercises 3645

Literature Cited 4046

3

1 Aim47

The purpose of this Primer is to teach the programming skills needed to estimate the marginal48

posterior distributions of parameters and derived quantities of interest in ecological models49

using software implementing Mote Carlo Markov chain methods. Along the way, I will50

reinforce some of the ideas and principals that we have learned in lecture. The Primer is51

organized primarily as a tutorial and contains only a modicum of reference material 1. There52

is an important supplement to this primer, excised from the JAGS users manual, that covers53

functions and distributions.54

2 Introducing MCMC Samplers55

WinBugs, OpenBUGS, and JAGS are three systems of software that implement Markov56

chain Monte Carlo sampling using the BUGS language. BUGS stands for Bayesian Analysis57

Using Gibbs Sampling, so you can get an idea what this language does from its name.58

Imagine that you took the MCMC code you wrote for a Gibbs sampler and tried to turn it59

into an R function for building chains of parameter estimates. Actually, you know enough60

now to construct a very general tool that would do this. However, you are probably delighted61

to know that accomplish the same thing with less time and effort using the BUGS language.62

The BUGS language is currently implemented in three flavors of software: OpenBUGS,63

WinBUGS, and JAGS. OpenBUGS andWinBUGS run onWindows operating systems, while64

JAGS was specifically constructed to run multiple platforms, including Mac OS and Unix.65

Although all three programs use essentially the same syntax, OpenBUGS and WinBUGS66

run in an elaborate graphical user interface, while JAGS only runs from the command line67

of a Unix shell or from R. However, all three can be easily called from R, and this is the68

approach I will teach. My experience is that that the GUI involves far to much tedious69

1Other good references on the BUGS language are the WinBUGS manual (http://www.mrc-
bsu.cam.ac.uk/bugs/winbugs/contents.shtml, look for the manual .pdf link) which has lots of detailed treat-
ment of functions and syntax as well asMcCarthy (2007). The JAGS manual can be a bit confusing because
it is written as if you were going to use the software stand alone, that is, from a UNIX command line.

4

pointing and clicking and doesn’t’ provide the flexibility that is needed for serious work.70

3 Introducing JAGS71

In this course we will use JAGS, which stands somewhat whimsically for “Just another Gibbs72

Sampler.” There are three reasons I have chosen JAGS as the language for this course. First73

and most important, is because my experience is that JAGS is far less fussy than WinBUGS74

(or OpenBUGS) which can be notoriously difficult to debug. Second is that JAGS runs75

on all platforms which makes collaboration easier. Finally, JAGS has some terrific features76

and functions that are absent from other implementations of the BUGS language. That77

said, if you learn JAGS you will have no problem interpreting code written for WinBugs78

or OpenBUGS (for example, the programs written in McCarthy 2007) . The languages are79

almost identical except that JAGS is better.280

This tutorial will use a simple example of regression as a starting point for teaching the81

BUGS language implemented in JAGS and associated R commands. Although the problem82

starts simply, it builds to include some fairly sophisticated analysis. The model that we will83

use is the a linear relationship between the per-capita rate of population growth and the the84

size a population, which, as you know, is the starting point for deriving the logistic equation.85

For the ecosystem scientists among you, this problem is easily recast as the mass specific rate86

of accumulation of nitrogen in the soil; see for example, Knops and Tilman (2000). Happily,87

both the population example and the ecosystem example can use the symbol N to represent88

the state variable of interest. Consider the model,89

1

N

dN

dt
= r − r

K
N, (1)

2There is also software called GeoBUGS that is specifically developed for spatial models, but I know
virtually nothing about it. However, if you are interested in landscape ecology otherwise have an interest
in spatial modeling, I urge you to look into it after completing this tutorial. The manual can be found at
http://www.mrc-bsu.cam.ac.uk/bugs/winbugs/contents.shtml

5

which, of course, is a linear model with intercept r and slope r
K
. Note that these quantities90

enjoy a sturdy biological interpretation; r is the intrinsic rate of increase, r
K

is the strength of91

the feedback from population size to population growth rate, and K is the carrying capacity,92

that is, the population size (o.k., o.k., the gm N per gm soil) at which dN
dt

= 0. Presume93

we have some data consisting of observations of per capita rate of growth of N paired with94

observations of N . The vector y contains values for the rate and the vector x contains aligned95

data on N , i.e., yi = 1
Ni

dNi

dt
, xi = Ni. To keep things simple, we start out by assuming that96

the xi are measured without error. A simple Bayesian model specifies the joint distribution97

of the parameters and data as98

µi = r − rxi
K

[r,K, τ | y] ∝
n∏
i=1

[yi | µi, τ] [r] [K] [τ]

[r,K, τ | y] ∝
n∏
i=1

normal (yi|µi, τ)× (2)

gamma (K | .001, .001) gamma (τ | .001, .001) gamma (r | .001, .001) ,

where the priors are uninformative. Note that I have used the precision (τ) as a argument99

to the normal distribution rather than the variance
(
τ = 1

σ2

)
to keep things consistent with100

the code below. Now, I have full, abiding confidence that with a couple of hours worth of101

work, perhaps less, you could knock out a Gibbs sampler to estimate r,K, and τ . However,102

I am all for doing things nimbly in 15 minutes that might otherwise take a sweaty hour of103

hard labor, so, consider the code in algorithm 1, below.104

This code illustrates the purpose of JAGS (and other BUGS software): to translate the105

numerator of Bayes theorem (a.k.a., the joint, e.g., equation 2) into a specification of an106

MCMC sampler. JAGS parses this code, sets up proposal distributions and steps in the107

Gibbs sampler and returns the MCMC chain for each parameter. These chains form the108

basis for estimating posterior distributions and associated statistics, i.e., means, medians,109

standard deviations, and quantiles. As we will soon learn, it easy to derive chains for other110

6

quantities of interest and their posterior distributions, for example, K/2 (What is K/2?),111

N as a function of time or dN/dt as a function of N . It is easy to construct comparisons112

between of the growth parameters of two populations or among ten of them. If this seems113

as if it might be useful to you, you should continue reading.114

Algorithm 1 Linear regression example
##Logistic example for Primer
model{
#priors
K~dgamma(.001,.001)
r~dgamma(.001,.001)
tau~ dgamma(.001,.001) #precision
sigma<-1/sqrt(tau) #calculate sd from precision
#likelihood
for(i in 1:n){

mu[i] <- r - r/K * x[i]
y[i] ~ dnorm(mu[i],tau)
}

} #end of model

JAGS is a compact language that includes a lean but useful set of scalar and vector functions115

for creating deterministic models as well as a full range of distributions for constructing the116

stochastic models. The syntax closely resembles R, but there are differences and of course,117

JAGS is far more limited. Detailed tables of functions and distributions can be found in118

the supplementary material, JAGS functions and distributions.pdf, taken from the JAGS119

manual (Plummer, 2011). Rather than focus on these details, this tutorial presents general120

introduction JAGS models, how to call them from R, how to summarize their output, and121

how to check convergence.122

7

4 Installing JAGS123

4.1 Mac OS124

Update your version of R to the most recent one. Go to the package installer under Packages125

and Data on the toolbar and check the box in the lower right corner for install dependencies.126

Install the rjags package from a CRAN mirror of your choice. Now go to http://www-ice.127

iarc.fr/~martyn/software/jags/ and look in the section under downloads. Click on the128

files page link and then click on Download JAGSdist-.dmg (4.7 MB) where ____is the129

number of the latest version to get the disk mounting image. Install as you would any other130

Mac software.131

4.2 Windows132

Update your version of R to the most recent one. Go to the package installer under Packages133

and Data on the toolbar and check the box in the lower right corner for install dependencies.134

Install the rjags package from a CRAN mirror of your choice. Check the version number135

of rjags. Go to http://sourceforge.net/projects/mcmc-jags/files/JAGS/. Click on136

3x then JAGS-3.3.0.exe.137

Occasionally, students using windows operating systems have problems loading rgags138

from R after everything has been installed properly. In all cases I have encountered, this139

problem occurs because they have more than one version of R resident on their computers140

(wisely, Mac OS will not allow that). So, if you can’t seem to get rjags to run after a proper141

install, then uninstall all versions of R, reinstall the latest version, install the latest version142

of rjags and the version of JAGS that matches it.143

4.3 LINUX144

There is a link to the path for binaries found at http://mcmc-jags.sourceforge.net/145

. If you want to compile from source code, there are detailed instructions at http://146

8

yusung.blogspot.com/2009/01/install-jags-and-rjags-in-fedora.htmlThere are tar147

files found at http://sourceforge.net/projects/mcmc-jags/files/JAGS/3.x/Source/.148

You want JAGS-3.0.0.tar.gz. My guess is that you will need to download the rjags149

package in R before installing JAGS.150

Here is a note on using the Ubuntu Software Center, compliments of Jean Fleming:151

“Elsie and I both use Ubuntu which is a specific linux distribution, it is one152

of the more commonly used distributions (it is user friendly!) so it is likely that153

many linux users in the future will be able to use this advice. If anyone does not154

have Ubuntu they may need to use the steps you described in the primer.155

I installed the rjags package following the directions in the primer. Ubuntu156

comes with a Software Center where you can search for and download most open157

source software, so to download and install JAGS I just opened up Software158

Center, searched for JAGS, and installed it.”159

5 Running JAGS160

5.1 The JAGS model161

Study the relationship between the numerator of Bayes theorem (equation 2) and the code162

(algorithm 1). Although this model is a simple one, it has the same general structure as all163

Bayesian models in JAGS:164

1. code for priors,165

2. code for the deterministic model,166

3. code for the likelihood(s).167

The similarity between the code and equation 2should be pretty obvious, but there are a few168

things to point out. Priors and likelihoods are specified using the ~ notation that we have169

9

seen in class. For example, remember that170

yi ∼ normal (µi, τ)

is the same as171

normal (yi | µi, τ) .

So, it is easy to see the correspondence between the mathematical formulation of the model172

(i.e., the numerator of Bayes theorem, equation 2) and the code. In this example, I chose173

uninformative gamma priors for r,K andτ because they must be positive. I chose a normal174

likelihood because the values of y and µ are continuous and can take on positive or negative175

values.176

Exercise: always plot your priors Plot priors for each parameter, scaling the x axis177

appropriately for each value–r should be about .2, K about 1200, and τ should be about178

2500. Discuss with you lab mates if gamma(θ|.001, .001) is vague for all parameters, i.e.,179

θ = r,K, τ . Be sure to include lots of x points in your plots to get a good interpolation, at180

least 1000.181

5.2 Technical notes182

5.2.1 The model statement183

Your entire model must be enclosed in184

model{185

.186

.187

.188

.189

} #end of model190

10

I am in the habit of putting a hard return (a blank line) after the } #end of model state-191

ment. If you fail to do so, you may get the message #syntax error, unexpected NAME,192

expecting $end. (This may have been fixed in the newer versions of JAGS, but just to193

be safe....)194

5.2.2 for loops195

Notice that the for loop replaces the
∏n
i=1in the likelihood. Recall that when we specify an196

individual likelihood, we ask, what is the probability (actually, probability density) that we197

would obtain this data point conditional on the value of the parameter(s) of interest? The198

total likelihood is the product of the individual likelihoods. Recall in the Excel example199

for the light limitation of trees that you had an entire column of likelihoods adjacent to a200

column of deterministic predictions of our model. If you were to duplicate these “columns”201

in JAGS you would write202

mu[1] <- r - r/K * x[1]203

y[1] ~ dnorm(mu[1],tau)204

mu[2] <- r - r/K * x[2]205

y[2] ~ dnorm(mu[3],tau)206

mu[3] <- r - r/K * x[3]207

y[3] ~ dnorm(mu[3],tau)208

.209

.210

.211

mu[n] <- r - r/K * x[n]212

y[n] ~ dnorm(mu[n],tau)213

Well, presuming that you have something better to do with your time that to write out214

statements like this for every observation in your data set, you may substitute215

11

for(i in 1:n){216

mu[i] <- r - r/K * x[i]217

y[i] ~ dnorm(mu[i],tau)218

}219

for the line by line specification of the likelihood. Thus, the for loop specifies the elements220

in the product of the likelihoods.221

Note however, that the for structure in the JAGS language is subtly different from what222

you have learned in R. For example the following would be legal in R but not in the BUGS223

language:224

#WRONG!!!225

for(i in 1:n){226

mu <- r - r/K * x[i]227

y[i] ~ dnorm(mu,tau)228

}229

If you write something like this in JAGS you will get a message that complains about multiple230

definitions of node mu. If you think about what the for loop is doing, you can see the reason231

for this complaint; the incorrect syntax translates to232

#Wrong233

mu <- r - r/K * x[1]234

y[1] ~ dnorm(mu,tau)235

mu <- r - r/K * x[2]236

y[2] ~ dnorm(mu,tau)237

mu <- r - r/K * x[3]238

y[3] ~ dnorm(mu,tau)239

.240

12

.241

.242

mu <- r - r/K * x[n]243

y[n] ~ dnorm(mu,tau),244

which is nonsense if you are specifying a likelihood because µ is used more than once in a245

likelihood for different values of y. This points out a fundamental difference between R and246

the JAGS language. In R, a for loop species how to repeat many operations in sequence. In247

JAGS a for construct is a way to specify a product likelihood or the distributions of priors248

for a vector. One more thing about the for construct. If you have two product symbols249

in the conditional distribution with different indices, that is
∏n
i=1

∏m
j=1......then this dual250

product is specified in JAGS using nested for loops, i.e.,251

for(i in 1:n){252

for(j in 1:m){253

expression[i,j]254

} #end of j loop255

} #end of i loop256

As an alternative to giving an explicit argument for the number of iterations (e.g., n and m257

above), you can use the length() function. For example we could use258

for(1 in 1:length(x[])){259

mu[i] <- r - r/K * x[i]260

y[i] ~ dnorm(mu[i],tau)261

}262

Exercise: using for loops Write a code fragment to set vague normal priors (dnorm(0,10e-6))263

for 5 regression coefficients stored in the vector B.264

13

5.2.3 Specifying priors265

We specify priors in JAGS as paramater ~ distribution(shape1, shape2). See the sup-266

plementary material for available distributions. Note that in the code (algorithm 1), the267

second argument to the normal density function is tau, which is the precision, defined as268

the reciprocal of the variance. This means that we must calculate sigma from tau if we269

want a posterior distribution on sigma. Be very careful about this–it is easy to forget that270

you must use the precision rather than the standard deviation as an argument to dnorm or271

dlnorm. Failing to do this is a source of immense suffering. (I know form experience.) For272

the lognormal, it is the precision on the log scale. If you would like, you can express priors273

on σ rather than τ using code like this:274

275

sigma~dunif(0,100) #presuming this more than brackets the posterior of sigma276

tau <- 1/sigma^2277

There are times when this seems to work better than the gamma prior for tau.278

5.2.4 The <- operator279

Note that, unlike R, you do not have the option in JAGS to use the = sign in an assignment280

statement. You must use <-.281

5.2.5 Vector operations282

I don’t use any vector operations in the example code, but JAGS supports a rich collection283

of operations on vectors. You have already seen the length()function–other examples in-284

clude means, variances, standard deviations, quantiles, etc. See the supplementary material.285

However, you cannot form vectors using syntax like c(). If you need a specific-valued vector286

in JAGS, read it in as data.287

14

5.2.6 Keeping variables out of trouble.288

Remember that all of the variables you are estimating will be sampled from a broad range of289

values, at least initially, and so it is often necessary to prevent them from taking on undefined290

values, for example logs of negatives, divide by 0, etc. You can usually use JAGS’ max()291

and min() functions to do this. For example, to prevent logs from going negative, I often292

use something like:293

mu[i]<- log(max(.0001,expression))294

Exercise: Coding the JAGS script Carefully write out all of the code in the Logistic295

example (algorithm 1) into a program window in R. You may save this code in any directory296

that you like and may name it anything you like. I use names like logistic exampleJAGS.R297

which lets me know that the file contains JAGS code. Using an R extension allows me to298

search these files easily with Spotlight.299

5.3 Running JAGS from R300

We implement our model using R (algorithm 2.) We will go through the R code step by301

step. We start by bringing the growth rate data into R as a data frame. Next, we specify302

the initial conditions for the MCMC chain in the statement inits =.... This is exactly the303

same thing as you did when you wrote you MCMC code and assigned a guess to the first304

element in the chain. There are two important things to notice about this statement.305

15

Algorithm 2 R code for running logistic JAGS script.

setwd("/Users/Tom/Documents/Ecological Modeling Course/JAGS Primer")
rm(list=ls())
pop.data=(read.csv("Logistic Data II.csv"))
names(pop.data)=c("Year","Population Size", "Growth Rate")
inits=list(
list(K=1500, r=.2, tau=2500)
)#chain 1

n.xy = nrow(pop.data)
data=list(

n=n.xy,
x=as.double(pop.data$"Population Size"),
y=as.double(pop.data$"Growth Rate")
)

library(rjags)
##call to JAGS
library(rjags)
##call to JAGS
n.adapt=5000
n.update = 10000
n.iter = 10000
jm=jags.model("Logistic example JAGS.R",data=data,inits,n.chains=length(inits),
n.adapt = n.adapt)
#Burnin the chain.
update(jm, n.iter=n.update)
#generate coda object
zm=coda.samples(jm,variable.names=c("K", "r", "sigma"), n.iter=n.iter, thin=1)

First, initial conditions must be specified as as “list of lists”, as you scan see in the code.306

If you create a single list, rather than a list of lists, i.e.,307

inits= list(K=1500, r=.5, tau=2500) #WRONG308

you will get an error message when you execute the jags.model statement and your code309

will not run. Second, this statement allows you to set up multiple chains3, which are needed310

3I start my work with a single chain. Once everything seems to be running, I add additional ones.

16

for some tests of convergence and to calculate DIC (more about these tasks later). For311

example, if you want three chains, you would use something like:312

inits=list(313

list(K=1500, r=.5, tau=1500), #chain 1314

list(K=1000, r=.1, tau=1000), #chain 2315

list(K=900, r=.3, tau=900) #chain 3316

) #end of inits list317

Now it is really easy to see why we need the “list of lists” format—there is one list for each318

chain; but remember, you require the same structure for a single set of initial conditions,319

that is, a list of lists.320

Which variables in your JAGS code require initialization? Anything you are estimating321

must be initialized, which means anything on the right hand side of a conditioning symbol322

(except, of course, data) Think about it this way. When you were writing your own Gibbs323

sampler, every chain required a value as the first element in the vector holding the chain.324

That is what you are doing when you specify initial conditions here. You can get away325

without explicitly specifying initial values–JAGS will choose them for you if you don’t specify326

them—however, I strongly urge you to provide explicit initial values, particularly when your327

priors are vague. This habit also forces you to think about what you are estimating.328

The next couple of statements,329

n.xy = nrow(pop.data)330

data=list(n=n.xy,331

x=as.double(pop.data$"Population Size"),332

y=as.double(pop.data$"Growth Rate"))333

specify the data that will be used by your JAGS program. Notice that you can assign data334

vectors on the R side to different names on the JAGS side. For example, the bit that reads335

17

x=as.double(pop.data$"Population Size")336

says that the x vector in your JAGS program (algorithm 1) is composed of the column in337

your data frame called Population Size and the bit that reads338

y=as.double(pop.data$"Growth Rate")339

creates a y vector required by the JAGS program from the column in your data frame called340

Growth Rate (pretty cool, I think). Notice that if I had named the variable Growth.Rate341

instead of Growth Rate, the quotes would not be needed. It is important for you to un-342

derstand that the left hand side of the = corresponds to variable name for the data in the343

JAGS program and the right hand side of the = is what they are called in R. Also, note344

that because pop.data is a data frame I used as.double()4 to be sure that JAGS received345

real numbers instead of characters or factors, as can happen with data frames. This can346

be particularly important if you have missing data in the data. The n is required in the347

JAGS program to index the for structure (algorithm 2) and it must be read as data in348

this statement5. By the way, you don’t need to call this list “data”—it could be anything349

(“apples”, “bookshelves”, “xy” etc.)350

Now that you have a list of data and initial values for the MCMC chain you make calls351

to JAGS using the following:352

library(rjags)353

##call to JAGS354

n.adapt=5000355

n.update = 10000356

n.iter = 25000357

jm=jags.model("Logistic example JAGS.R",data=data,inits,n.chains=length(inits),358

4This says the number is real and is stored with double precision, i.e., 64 bits in computer memory. This
varies with the type of number being stored, but a good rule of thumb is that 16 decimal places can be kept
in memory. This is usually sufficient for ecology!

5You could hard code the for index in the JAGS code, but this is bad practice.

18

n.adapt = n.adapt)359

#Burnin the chain.360

update(jm, n.iter=n.update)361

#generate coda object362

zm=coda.samples(jm,variable.names=c("K", "r", "sigma"), n.iter=n.iter, thin=1)363

There is a quite a bit to learn here, so if your attention is fading, go get an espresso or come364

back to this tomorrow. First, we need to get the library rjags. We then specify 3 scalars,365

n.adapt, n.update, and n.iter. These tell JAGS the number of iterations in the chain366

for adaptation (n.adapt), burn in (n.udpate) and the number to keep in the final chain367

(n.iter). The first one, n.adapt, may not be familiar– it is the number of iterations that368

JAGS will use to choose the sampler and to assure optimum mixing of the MCMC chain.369

The second, n.update, is the number of iterations that will be discarded to allow the chain370

to converge before iterations are stored (aka, burn in) . The final one, n.iter, is the number371

of iterations that will be stored in the chain as samples from the posterior distribution–it372

forms the “rug.”373

The jm=jags.model.... statement sets up the MCMC chain. Its first argument is the374

name of the file containing the BUGS code. Note that in this case, the file resided in the375

current working directory, which I specified at the top of the code (algorithm 2). Otherwise,376

you would need to specify the full path name. (It is also possible to embed the BUGS code377

within your R script, see Algorithm 3,). The next two expressions specify where the data378

come from, where to get the initial values, and how many chains to create (i.e., the length379

of the list inits). Finally, it specifies the “burn-in” how many samples to throw away before380

beginning to save values in the chain. Thus, in this case, we will throw away the first 10,000381

values.382

The second statement (zm=coda.samples...) creates the chains and stores them as383

an MCMC list (more about that soon). The first argument (jm) is the name of the jags384

model you created in the jags.model function. The second argument (variable.names)385

19

Algorithm 3 Example of code for inserting BUGS code within R script. This should be
placed above the jags.model() statement (algorithm). You must remember to execute
the code starting at sink and ending at sink every time you make changes in the model.

sink("logisticJAGS.R")
#This is the file name for the bugs code
cat(" model{

K~dgamma(.001,.001)
r~dgamma(.001,.001)
tau~ dgamma(.001,.001)
sigma<-1/sqrt(tau)
#likelihood
for(i in 1:n){

mu[i] <- r - r/K * x[i]
y[i] ~ dnorm(mu[i],tau)

} #end of i for

} #end of model
",fill=TRUE)
sink()

tells JAGS which variables to “monitor.” These are the variables for which you want poste-386

rior distributions. Finally, n.iter=n.iter says we want 25000 elements in each chain and387

n.thin specifies how many of these to keep. For example, if n.thin = 10, we would store388

every 10th element. Sometimes setting n.thin > 1 is a good idea to reduce the size of the389

data files that you will analyze.390

Exercise: Coding the logistic regression Write R code (Algorithm 2) to use the JAGS391

model to estimate the parameters, r,Kand σ. When your model is running without error392

messages, proceed to get output, as described below.393

20

6 Output from JAGS394

6.1 coda objects395

6.1.1 Summarizing coda objects396

The zm object produced by the statement397

zm=coda.samples(jm,variable.names=c("K", "r", "sigma"), n.iter=n.iter,n.thin=1)398

is a “coda” object, or more precisely, an MCMC list. Assuming that the coda library is399

loaded [i.e. library(coda)], you can obtain a summary of statistics from MCMC chains400

contained in a coda object using summary(objectname). All of the variables in the401

variable.names=c() argument to the coda.samples function will be summarized. For402

the logistic example, summary(zm)produces:403

Iterations = 15001:25000404

Thinning interval = 1405

Number of chains = 3406

Sample size per chain = 10000407

1. Empirical mean and standard deviation for each variable,408

plus standard error of the mean:409

Mean SD Naive SE Time-series SE410

K 1.313e+03 1.180e+02 6.811e-01 1.244e+00411

r 1.998e-01 1.101e-02 6.359e-05 1.113e-04412

sigma 2.538e-02 5.204e-03 3.004e-05 3.604e-05413

2. Quantiles for each variable:414

2.5% 25% 50% 75% 97.5%415

K 1.125e+03 1.235e+03 1.300e+03 1.374e+03 1.583e+03416

r 1.776e-01 1.928e-01 1.999e-01 2.070e-01 2.213e-01417

sigma 1.759e-02 2.169e-02 2.460e-02 2.814e-02 3.773e-02418

21

Each of the two tables above has the properties of a matrix6. You can output the cells of419

these tables using syntax as follows. To get the mean and standard deviation of r,420

> summary(zm)$stat[2,1:2]421

Mean SD422

0.19980128 0.01101439423

To get the upper and lower 95% quantiles on K,424

> summary(zm)$quantile[1,c(1,5)]425

2.5% 97.5%426

1124.539 1582.647427

Exercise: Manipulating coda summaries Build a table that contains the mean, stan-428

dard deviation, median and upper and lower 2.5% CI for parameter estimates from the429

logistic example. Output your table with 3 significant digits to .csv file readable by Excel430

(hint, see the signif() function).431

6.1.2 The structure of coda objects (MCMC lists)432

So, what is a coda object? Technically, the coda object is an MCMC list. It looks like this:433

[[1]]434

Markov Chain Monte Carlo (MCMC) output:435

Start = 60001436

End = 60010437

Thinning interval = 1438

K r sigma439

6Consider m=summary(zm). The object m is a list of two matrices, one for the table of means and the
other for the table of quantiles. As with any list, you can access these tables with m[[1]] and m[[2]] or the
syntax shown above. Try it.

22

[1,] 1096.756 0.1914722 0.02889710440

[2,] 1196.326 0.2088859 0.03155777441

[3,] 1401.511 0.1804327 0.02553913442

[4,] 1471.539 0.1754886 0.03589013443

[5,] 1245.909 0.1567580 0.04248644444

[6,] 1134.738 0.2114307 0.04151478445

[7,] 1105.661 0.2303630 0.03141035446

[8,] 1108.569 0.2169765 0.03708956447

[9,] 1134.755 0.1964426 0.02660658448

[10,] 1161.750 0.2152418 0.03700475449

.450

.451

.452

as many rows as you have thinned iterations453

So, the output of coda is a list of matrices (or tables if you prefer) where each matrix contains454

the output of the chains for each parameter to be estimated. Parameter values are stored in455

the columns of the matrix; values for one iteration of the chain are stored in each row. So,456

the example above is a case where we had 10 iterations of one chain. If we had 2 chains, 5457

iterations each, the coda object would look like:458

[[1]]459

Markov Chain Monte Carlo (MCMC) output:460

Start = 10001461

End = 10005462

Thinning interval = 1463

K r sigma464

[1,] 1070.013 0.2126878 0.02652204465

[2,] 1085.438 0.2279789 0.02488036466

23

[3,] 1170.086 0.2259743 0.02331958467

[4,] 1094.564 0.2228788 0.02137309468

[5,] 1053.495 0.2368199 0.03209893469

[[2]]470

Markov Chain Monte Carlo (MCMC) output:471

Start = 10001472

End = 10005473

Thinning interval = 1474

K r sigma475

[1,] 1137.501 0.2657460 0.04093364476

[2,] 1257.340 0.1332901 0.04397191477

[3,] 1073.023 0.2043738 0.03355776478

[4,] 1159.732 0.2339060 0.02857740479

[5,] 1368.568 0.2021042 0.05954259480

attr(,"class")481

[1] "mcmc.list"482

Exercise: Understanding coda objects: Modify your code to produce a coda object with483

3 chains called zm.short, setting n.adapt = 500, n.update=500, and n.iter = 20.484

1. Output the estimate of σ for the third iteration from the second chain.485

2. Output all of the estimates of r from the first chain.486

3. Verify your answers by printing the entire chain, i.e. enter zm.short at the console.487

6.1.3 Manipulating coda objects488

Any coda object can be converted to a data frame using syntax like489

df = as.data.frame(rbind(co[[1]], co[[2]],co[[n]]))490

24

where df is the data frame, co is the coda object and n is the number of chains in the coda491

object, that is, the number of elements in the list. Once the coda object has been coverted to492

a dataframe, you can use any of the R tricks you have learned for manipulating data frames.493

The thing to notice here is the double brackets, which is how we refer to the elements of a494

list. Think about what this statement is doing.495

Exercise: Convert the zm object to a data frame. Using the elements of data frame (not496

zm) as input to functions:497

1. Find the maximum value of σ.498

2. Estimate the mean of r for the first 1000 and last 1000 iterations in the chain.499

3. Produce a publication quality plot of the posterior density of K.500

4. Estimate the probability that the parameter K exceeds 1600. (Hint: Look into using501

the ecdf() function.) Estimate the probability that K falls between 1000 and 1300.502

6.2 JAGS objects503

6.2.1 Why another object?504

The coda object is strictly tabular–it is a list of matrices where each element of the list an505

MCMC chain with rows holding iterations and columns holding values to be estimated. This506

is fine when the parameters you are estimating are entirely scalar, but sometimes you want507

posterior distributions for all of the elements of vectors or for matrices and in this case, the508

coda object can be quite cumbersome. For example, presume you would like to get posterior509

distributions on the predictions of your regression model. To do this, you wold simply ask510

JAGS to monitor the values of mu by changing your coda.samples statement to read:511

zm=coda.samples(jm,variable.names=c("K", "r", "sigma", “mu”),512

n.iter=n.iter, n.thin=1)513

25

Exercise: vectors in coda objects: Modify your code to include estimates of µ and514

summarize the coda object. What if you wanted to plot the model predictions with 95%515

credible intervals against the data. How would you do that?516

6.2.2 Summarizing the JAGS object517

As an alternative, replace coda.samples function with518

zj=jags.samples(jm,variable.names=c("K", "r", "sigma","mu"),519

n.iter=n.iter, n.thin=1)520

If you run this and enter zj at the console, R will return the means of all the monitored521

variables7. Try it. If you want other statistics, you would use syntax like:522

summary(zj$variable.name,FUN)$stat523

that will summarize the variable using the function, FUN. The most useful of these is illus-524

trated here:525

hat=summary(zj$mu,quantile,c(.025,.5,.975)$stat526

which produces the median and upper and lower .025% quantiles for µ, preserving its vector527

structure. You can also give JAGS objects as arguments to other functions, a very handy528

one being the empirical cumulative distribution function, ecdf(). For example the following529

would estimate the probability that the parameter K is less that 900:530

pK.lt.900 = ecdf(zj$K)(900)531

7There is a very important caveat here. If the rjags library is not loaded when you enter an jags object
name, R will not know to summarize it, and you will get the raw iterations. There can be a lot of these,
leaving you bewildered as they fly by on the console. If you simply load the library, you will get more well
behaved output.

26

Exercise: making plots with JAGS objects For the logistic example:532

1. Plot the observations of growth rate as a function of observed population size.533

2. Overlay the median of the model predictions as a solid line534

3. Overlay the 95% credible intervals as dashed lines.535

4. Prepare a separate plot of the posterior density of K.536

6.2.3 The structure of JAGS objects (MCMC arrays)537

Like coda objects, JAGS objects have a list structure, but instead of each element of the538

list holding an array (i.e., matrix) for each chain, the JAGS objects holds an array for each539

quantity estimated. This is easier illustrated than explained. The JAGS object below8 below540

contains 5 iterations and two chains. Look at the object and think about how it is structured.541

Note how the vector structure is preserved for the 16 estimates of mu:542

> zj543

$K544

, , 1545

[,1] [,2] [,3] [,4] [,5]546

[1,] 1424.628 1411.863 1307.185 1338.801 1351.346547

, , 2548

[,1] [,2] [,3] [,4] [,5]549

[1,] 1279.262 1326.353 1345.851 1243.561 1157.157550

attr(,"class")551

[1] "mcarray"552

$mu553

, , 1554

[,1] [,2] [,3] [,4] [,5]555

[1,] 0.17072948 0.19509308 0.19127273 0.19714752 0.19323022556

[2,] 0.16631829 0.19000444 0.18586162 0.19170919 0.18795213557

[3,] 0.16568811 0.18927749 0.18508861 0.19093228 0.18719812558

[4,] 0.16442777 0.18782360 0.18354257 0.18937848 0.18569010559

[5,] 0.15951244 0.18215340 0.17751305 0.18331862 0.17980879560

[6,] 0.15888227 0.18142645 0.17674003 0.18254172 0.17905478561

[7,] 0.14388420 0.16412508 0.15834225 0.16405139 0.16110928562

[8,] 0.13770852 0.15700098 0.15076670 0.15643772 0.15371995563

[9,] 0.12170217 0.13853649 0.13113209 0.13670435 0.13456802564

[10,] 0.11628270 0.13228473 0.12448416 0.13002297 0.12808351565

[11,] 0.09410068 0.10669615 0.09727399 0.10267593 0.10154226566

8Actually, rjags makes it hard to “see” the object. If rjags is loaded, it presumes you want summaries. If
you want to look at a complete listing of a JAGS object you save it, quit R, and restart it, load the JAGS
object without loading rjags. The JAGS object then has the structure shown in the example.

27

[12,] 0.09258827 0.10495147 0.09541876 0.10081136 0.09973263567

[13,] 0.07822037 0.08837704 0.07779399 0.08309794 0.08254113568

[14,] 0.06322230 0.07107567 0.05939621 0.06460761 0.06459562569

[15,] 0.05288749 0.05915372 0.04671875 0.05186637 0.05222981570

[16,] 0.03839356 0.04243390 0.02893938 0.03399757 0.03488752571

, , 2572

[,1] [,2] [,3] [,4] [,5]573

[1,] 0.19328215 0.18103879 0.18031947 0.18834429 0.187960699574

[2,] 0.18768794 0.17599534 0.17537282 0.18272716 0.181909482575

[3,] 0.18688876 0.17527484 0.17466616 0.18192471 0.181045022576

[4,] 0.18529042 0.17383386 0.17325283 0.18031982 0.179316103577

[5,] 0.17905686 0.16821401 0.16774086 0.17406073 0.172573319578

[6,] 0.17825769 0.16749352 0.16703420 0.17325828 0.171708860579

[7,] 0.15923735 0.15034577 0.15021561 0.15416003 0.151134723580

[8,] 0.15140544 0.14328494 0.14329031 0.14629604 0.142663020581

[9,] 0.13110643 0.12498440 0.12534106 0.12591388 0.120705748582

[10,] 0.12423353 0.11878816 0.11926375 0.11901283 0.113271397583

[11,] 0.09610261 0.09342679 0.09438920 0.09076667 0.082842422584

[12,] 0.09418460 0.09169760 0.09269321 0.08884080 0.080767719585

[13,] 0.07596343 0.07527035 0.07658128 0.07054500 0.061058042586

[14,] 0.05694309 0.05812261 0.05976269 0.05144675 0.040483906587

[15,] 0.04383664 0.04630652 0.04817341 0.03828661 0.026306770588

[16,] 0.02545564 0.02973517 0.03192015 0.01983031 0.006424201589

attr(,"class")590

[1] "mcarray"591

$r592

, , 1593

[,1] [,2] [,3] [,4] [,5]594

[1,] 0.1795519 0.2052704 0.2020950 0.2080242 0.2037864595

, , 2596

[,1] [,2] [,3] [,4] [,5]597

[1,] 0.2044706 0.1911257 0.1902128 0.1995786 0.2000631598

attr(,"class")599

[1] "mcarray"600

$sigma601

, , 1602

[,1] [,2] [,3] [,4] [,5]603

[1,] 0.03038826 0.02973461 0.03196986 0.02771297 0.02342979604

, , 2605

[,1] [,2] [,3] [,4] [,5]606

[1,] 0.02939191 0.02266891 0.01886645 0.01684712 0.02437535607

attr(,"class")608

[1] "mcarray"609

6.2.4 Manipulating JAGS objects610

To understand how you can extract elements of the JAGS object you need to know its611

dimensions. For mcmc arrays that include scalars and vectors, each element in the list has612

three dimensions. For the scalars in the list, the first dimension9 is always = 1, the second613

9This gives the the length. A scalar is a vector with length = 1.

28

dimension = number of iterations and the third dimension = the number of the chain.614

For vectors, the first dimension of the JAGS object is the length of the vector, the second615

dimension is the number of iterations, and the third dimension is the number of the chain.616

An easy way to remember this is simply to enter dim(jags.object) at the console. Because617

the dimensions are named, there is no ambiguity about the structure of the object. So for618

example,619

#dimensions of mu in the zj jags object:620

dim(zj$mu)621

#a vector containing all iterations of the second chain for K:622

zj$K[1„2]623

#a matrix for sigma with 2 rows, one for each chain, containing624

#iterations 1 to 1000:625

zj$sigma[1,1:1000,]626

#a matrix containing 16 rows, one for each element of mu627

#containing elements from the third chain:628

zj$mu[„3]629

So, if you wanted to find the mean of the third prediction of mu across all iterations and all630

chains, you would use631

mean(zj$mu[3„])632

Exercise: Manipulating JAGS objects633

1. Calculate the median of the second chain for K.634

2. Calculate the upper and lower 95% quantiles for the 16th estimate of µ without using635

the summary function.636

3. Calculate the probability that the 16th estimate of µ < 0.637

29

6.2.5 Converting JAGS objects to coda objects638

It is possible to convert individual elements of the JAGS object to coda objects, which can639

be helpful for using convergence diagnostics (as described in th next section) if you haven’t640

created a coda object directly using the coda.samples function. The syntax is641

coda.object=as.mcmc.list(object.name$element.name).642

So, for example, if you want to create a coda object for K, you would use643

K.coda = as.mcmc.list(zj$K)644

It is not possible to convert all of the elements of a JAGS object into coda objects in a single645

statement, i.e., the following will not work:646

#wrong647

jm = as.mcmc.list(zj)648

7 Which object to use?649

Coda and JAGS objects are both useful, and for most of my work I eventually create both650

types. Coda objects are somewhat better for producing tabular summaries of estimates and651

are required for checking convergence, but JAGS objects are somewhat better for plotting.652

Coda objects are also produced by WinBUGS and OpenBUGS, so if you ever need to use653

them, everything you learned about coda objects will apply. I generally start development654

of models using coda objects alone, and when I reach the final output stage, I produce both655

types of objects with multiple chains.656

8 Checking convergence using the coda package657

Remember from lecture that the MCMC chain will provide a reliable estimate of the posterior658

distribution only after it has converged, which means that it is no longer sensitive to initial659

30

conditions and that the estimates of parameters of the posterior distribution will not change660

appreciably with additional iterations. The coda package (Plummer et al., 2010) contains661

a tremendous set of tools for evaluating and manipulating MCMC chains produced in coda662

objects (i.e., MCMC lists). I urge you to look at the package documentation in R Help,663

because we will use only a few of the tools it offers.664

There are several ways to check convergence, but we will use four here: 1) visual inspection665

of density and trace plots 2) Gelman and Rubin diagnostics, 3) Heidelberger and Welch666

diagnostics, and 4) Raftery diagnostics. For all of these to work, the coda library must be667

loaded.668

8.1 Trace and density plots669

There are three useful ways to plot the chains and the posterior densities. I am particularly670

fond of the latter two because they show more detail.671

plot(coda.object)672

xyplot(coda.object)673

densityplot(coda.object)674

You will examine how to use these for diagnosing convergence in the subsequent exercise.675

8.2 Gelman and Rubin diagnostics676

The standard method for assuring convergence is the Gelman and Rubin diagnostic (Gelman677

and Rubin, 1992), which “determines when the chains have ‘forgotten’ their initial values,678

and the output from all chains is indistinguishable”(R Core Team, 2012). It requires at least679

2 chains to work. For a complete treatment of how this works, enter ?gelman.diag at the680

console and read the section on Theory. We can be sure of convergence if all values for point681

estimates and 97.5% quantiles approach 1. More iterations should be run if the 95% quantile682

> 1.05.683

31

The syntax is684

gelman.diag(coda.object)685

8.3 Heidelberger and Welch diagnostics686

The Heidelberger and Welch diagnostic (Heidelberger and Welch, 1983) works for a single687

chain, which can be useful during early stages of model development before you have initial-688

ized multiple chains. The diagnostic tests for stationary in the distribution and also tests if689

the mean of the distribution is accurately estimated. For details do ?heidel.diag and read690

the part on Details. We can be confident of convergence if out all chains and all parameters691

pass the test for stationarity and half width mean. We can be sure that the chain converged692

from the first iteration (i.e, burn in was sufficiently long) if the start iteration = 1. If it is693

greater than 1, the burn in should be longer, or 1:start.iteration should be discarded694

from the chain.695

The syntax is696

heidel.diag(coda.object)697

8.4 Raftery diagnostic698

The Raftery diagnostic Raftery and Lewis (1995) is useful for planning how many iterations699

to run for each chain. It is used early in the analysis with a relatively short chain, say 10000700

iterations. It returns and estimate of the number of iterations required for convergence for701

each of the parameters being estimated. Syntax is702

raftery.diag(coda.object)703

Exercise: Using the zm.short object your created above, increase n.iter in increments of704

500 until you get convergence. For each increment:705

32

1. Plot the chain and the posterior distributions of parameters using xyplot and densityplot.706

2. Do Gelman-Rubin, Heidelberger and Welch, and Raftery diagnostics.707

Discuss with you labmates how the plotting reveals convergence.708

9 Monitoring deviance and calculating DIC709

It is often a good idea to report the deviance of a model which is defined as −2log [P (y|θ)].710

To obtain the deviance of a JAGS model you need to do two things. First, you need to add711

the statement712

load.module("dic")713

above your jags.samples statement and/or your coda.samples statement. In the list of714

variables to be monitored, you add “deviance” i.e.,715

zm=coda.samples(jm,variable.names=c("K", "r",716

"sigma", "deviance"), n.iter=25000, n.thin=1)717

Later in the course we will learn about the Bayesian model selection statistic, the deviance718

information criterion (DIC). DIC values are generated using syntax like this:719

dic.object.name = dic.samples(jags.model, n.iter, type=”pD”)720

So, to use your regression example, you would write something like:721

dic.j = dic.samples(jm,n.iter=2500, type="pD")722

If you enter dic.j at the console (or run it as a line of code in your script) R will respond723

with something like:724

Mean deviance: -46.54725

penalty 1.852726

Penalized deviance: -44.69727

33

10 Differences between JAGS and WinBUGS / Open-728

BUGS729

The JAGS implementation of the BUGS language closely resembles the implementation730

in WinBUGS and OpenBUGS, but there are some important structural differences that are731

described in Chapter 8 of the JAGS manual (?). There are also some functions (for example,732

matrix multiplication and the ^ symbol for exponentiation) that are available in JAGS has733

but that are not found in the other programs.734

11 Troubleshooting735

Some common error messages and their interpretation are found in Table 1.736

34

Message Interpretation

Unable to resolve

parameter O[38,1:2]

(one of its ancestors

may be undefined)

May be due to NA in data or illegal value in

variable on rhs of <- or ~.

Error parsing model

file: syntax error on

line 9 near "="

You used an = instead of <- for assignment

Error: Error in node

Failure to calculate log

density

You will get this with a Possion density if you

give it continuous numbers as data. It will also

occur if variables take on undefined values like

log of negative.

Warning message: In

readLines(file) :

incomplete final line

found on ’SS2.R’

Will occur when you don’t have a hard return

after the last } for the model

syntax error,

unexpected ’}’,

expecting $end

Occurs when there are mismatched parens

Error in

jags.model("beta",

data = data, n.chain =

1, n.adapt = 1000) :

Error in node y[7]

Invalid parent values

Occurs when there is an illegal mathematical

operation or argument on the rhs. For example,

negative values for argument to beta

distribution or Poisson, divide by 0, log of

negative, etc.

Error in setParame-

ters(init.values[[i]], i) :

Error in node sigma.s[1]

Attempt to set value of

non-variable node

You get this error when you have a variable in

your init list that is not a stochastic node in

the model, i.e., it is constant

Error in

jags.samples(model,

variable.names, n.iter,

thin, type = "trace", :

Failed to set trace

monitor for node

This means that your the variable list in your

coda.samples() or jags.samples statement

includes a variable that is not in your model. It

also may mean that you asked to monitor a

vector (for example the predictions of

population size over time) that does not have

an initial value. You can fix this by giving the

vector any initial value.

Error: Error in node

x[3,5,193] All possible

values have probability

zero

caused by uninitialized values for the array x.

Error in setParame-

ters(init.values[[i]], i) :

Error in node sigma

Attempt to set value of

non-variable node

when sigma is defined by <- instead of ~ and

you have an init for sigma

Error in

jags.model("Logistic

example BUGSIII.R",

data = data, inits, :

RUNTIME ERROR:

Unable to evaluate

upper index of counter i

The value for the upper range of the loop was

omitted from the data statement

Error in

jags.model("IslandBugIII.R",

data = data, inits,

n.chains =

length(inits), :

RUNTIME ERROR:

Unknown parameter

P20

The parameter name was misspelled. Should

have been p20

multiple definitions of

node [x]

You probably forgot the index on a variable

within a for loop.

Wrong number of

arguments to

distribution name

You have a <- instead of a ~ on the lhs of

distribution

Error in

jags.model("model.txt",

data = data, inits =

inits, n.adapt = 3) :

Length mismatch in

inits

You have a list of inits that specifies more than

one chain, but you failed to tell the jags model

statement that there were > 1 chain. Adding

the n.chain=length(inits) to the jags.model

function will fix it.

Error in

jags.model("model.txt",

data = data, inits =

inits, n.adapt = 3000) :

Error in node y[15]

Observed node

inconsistent with

unobserved parents at

initialization

This will happen whenever you have latent 0-1

quantities, as in mark recapture or occupancy

models and you fail to initialize them. They

should be initialized at 1.

Slicer error This usually occurs with hierarchical models

with vague gamma priors for hyper parameters

(e.g., a,b)to a beta distribution. There are a

couple of things you can do. First, try a

uniform instead of a gamma. Second, you can

prevent the values of the ~dbeta(a,b) from

going where they shouldn’t using ~ dbeta(a,b

)T(.001,.999)

When using

gelman.diag():

Error in

chol.default(W) : the

leading minor of order

7 is not positive definite

This means you have derived quantities in you

coda output–quantities that are functions of

parameters you estimate. Eliminate them

before running the diagnostic.

737

35

12 Answers to exercises738

Exercise: using for loops Write a code fragment to set vague normal priors [dnorm(0,10e-6)]739

for 5 regression coefficients stored in the vector B.740

for(i in 1:5){741

B[i] ~ dnorm(0,.000001)742

}743

Exercise: Understanding coda objects Modify your code to produce a coda object744

with 3 chains with 5 iterations each. Output745

1. The estimate of σ for the third iteration from the second chain, zm[[2]][2,3]746

2. All of the estimates of r from the first chain. zm[[1]][,2]747

Exercise: Manipulating coda summaries748

m=summary(zm)749

mu_sd=m$stat[,1:2] #make columns for mean and sd750

q=m$quantile[,c(3,1,5)] #make columns for median and CI751

table=cbind(mu_sd,q) #make table752

write.csv(file="/Users/Tom/Documents/Ecological Modeling Course/JAGS Primer/table_exercise.csv", signif(table, 3)) #output753

Exercise: Convert the zm object to a data frame. Using the elements of data frame (not754

zm) as input to functions:755

1. Find the maximum value of σ.756

2. Estimate the mean of r for the first 1000 and last 1000 iterations in the chain.757

3. Plot the density of K. (This is very handy for producing publication quality graphs of758

posterior distributions.)759

36

4. Estimate the probability that the parameter K exceeds 1600. (Hint: Look into using760

the ecdf() function.) Estimate the probability that it falls between 800 and 1200.761

#exercises on manipulating coda objects converted to data frames762

df=as.data.frame(rbind(zm[[1]],zm[[2]],zm[[3]]))763

max(df$sigma) #problem 1764

mean(df$K[1:1000]) #problem 2, first part765

nr=length(df$K)766

mean(df$K[(nr-1000):nr]) #problem 2, second part767

plot(density(df$K),main="",xlim=c(800,2000),xlab="K") #problem 3768

1-ecdf(df$K)(1600) #problem 4, first part769

ecdf(df$K)(1200)-ecdf(df$K)(800) #problem 4, second part.770

Exercise: vectors in coda objects: Modify you code as described above and summarize771

the coda object. What if you wanted to plot the model predictions with 95% credible intervals772

against the data. How would you do that? There are several ways this can be done, but773

the general idea is that you need to extract the rows of the coda object that contain the774

quantiles for µ, which can be tedious and error prone. For example, if you use rows in the775

summary table and add or subtract parameters to be estimated, then your row counts will776

be off. There are ways to use rownames, but a far better way to plot vectors is described in777

the section on JAGS objects.778

Exercise: using JAGS objects to plot vectors For the logistic example:779

1. Plot the data as points,780

2. Overlay the median of the model predictions as a solid line781

3. Overlay the 95% credible intervals as dashed lines.782

zj=jags.samples(jm,variable.names=c("K", "r", "sigma", "mu"),783

37

n.iter=50000, n.thin=1)784

b=summary(zj$K,mean)$stat b=summary(zj$mu,quantile,785

c(.025,.5,.975))$stat786

plot(pop.data$"Population Size", pop.data$"Growth Rate", xlab="N",787

ylab="Per capita growth rate")788

lines(pop.data$"Population Size",b[2,])789

lines(pop.data$"Population Size",b[1,],lty="dashed")790

lines(pop.data$"Population Size",b[3,],lty="dashed")791

plot(density(zj$K),xlab="K", main="", xlim=c(800,2500))792

200 400 600 800 1000

0.
05

0.
10

0.
15

0.
20

N

P
er

 c
ap

ita
 g

ro
w

th
 ra

te

1000 1500 2000 2500

0.
00
0

0.
00
2

0.
00
4

K

D
en
si
ty

Figure 1: Median and 95% credible intervals for predicted growth rate and posterior density
of K.

Exercise: Manipulating JAGS objects793

1. Calculate the median of the second chain for K.794

2. Calculate the upper and lower 95% quantiles for the 16th estimate of µ without using795

the summary function.796

3. Calculate the probability that the 16th estimate of µ < 0.797

38

> median(zj$K[1„2])798

[1] 1275.208799

> quantile(zj$mu[16„],c(.025,.975))800

2.5% 97.5%801

-0.01539839 0.05925297802

> ecdf(zj$mu[16„])(0)803

[1] 0.1096533804

>805

39

Literature Cited806

Gelman, A. and D. B. Rubin, 1992. Inference from iterative simulation using multiple807

sequences. Statistical Science 7:457–511.808

Heidelberger, P. and P. Welch, 1983. Simulation run length control in the presence of an809

initial transient. Operations Research 31:1109–1044.810

Knops, J. M. H. and D. Tilman, 2000. Dynamics of soil nitrogen and carbon accumulation811

for 61 years after agricultural abandonment. Ecology 81:88–98.812

McCarthy, M. A., 2007. Bayesian methods for ecology. Cambridge University Press, Cam-813

bridge, UK.814

Plummer, M., 2011. JAGS version 3.0.0 user manual. http: // sourceforge. net/815

projects/ mcmc-jags/ files/ Manuals/ 3. x/ jags_ user_ manual. pdf .816

Plummer, M., N. Best, K. Cowles, and K. Vines, 2010. coda: Output analysis and diagnostics817

for MCMC. R package version 0.14-4. http: // CRAN. R-project. org/ package= coda .818

R Core Team, 2012. R: A Language and Environment for Statistical Computing. R Foun-819

dation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0.820

Raftery, A. and S. Lewis, 1995. The number of iterations, convergence diagnostics and821

generic Metropolis algorithms. Chapman and Hall, London, UK.822

40

Index
A823

as.double, 17824

as.mcmc.list, 30825

C826

c(), 14827

coda.samples, 19828

D829

densityplot(coda.object), 31830

deviance information criterion, 33831

DIC, 33832

dic.samples, 33833

dim(jags.object), 29834

F835

for loops, 11836

G837

Gelman and Rubin diagnostic, 31838

gelman.diag, 32839

H840

Heidelberger and Welch diagnostic, 32841

heidel.diag, 32842

J843

jags.model, 19844

L845

length(), 13846

list of lists, 17847

M848

max, 15849

MCMC arrays, 27850

MCMC lists, 22851

model statement, 10852

N853

nested for loops, 13854

P855

plot(coda.object), 31856

precision, 14857

product likelihood, 13858

R859

Raftery diagnostic, 32860

raftery.diag, 32861

U862

undefined values, 15863

X864

xyplot(coda.object), 31865

41

