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Discrete
distributions

Data (yi) Shape parameters Moments R functions JAGS functions Conjugate relationship

Poisson

P (yi | λ) =

λyie−λ

yi!

Counts of things that occur
randomly over time or space,
e.g., the number of birds in a
forest stand, the number of fish
in a km of river, the number of
prey captured per minute.

λ, the mean number
of occurrences per
time or space

µ = λ

σ2 = λ

dpois(y, lambda, log =
FALSE)
ppois(q, lambda)
qpois(p, lambda),
rpois(n, lambda)

y[i] ~ dpois(lambda) P (λ|y) =

gamma

(
α+

n∑
i=1

yi, β + n

)

Binomial

P (yi | n, p) =(n
p

)
pyi (1− p)n−yi(

n
p

)
= n!

yi!(n−yi)!p
yi

Because
(n
p

)
is a

normalizing constant

P (yi | n, p) ∝
pyi (1− p)n−yi

Number of “success” on a given
number of trials, e.g., number
of survivors in a sample of
individuals, number of plots
containing an exotic species
from a sample, number of
terrestrial pixels that are
vegetated in an image.

n, the number of
trials
p, the probability of
a success
p = 1− σ2/µ

n = µ2/
(
µ− σ2

)

µ = np

σ2 = np (1− p)
dbinom(x, size, prob,
log = FALSE)
pbinom(q, size, prob)
qbinom(p, size, prob)
rbinom(n, size, prob)

y[i] ~ dbin(p,n) P (p|y) =

beta (α+ y, β + n− y)

Bernoulli

P (yi | p) =

pyi (1− p)1−yi

for yi∈ {0, 1}

A special case of the binomial
where the number of trials = 1
and the yi can take on values 0
or 1. Widely used in survival
analysis, occupancy models.

p, the probability
that the random
variable = 1

µ = p

σ2 = p (1− p)
dbinom(x, size=1,
prob, log = FALSE)
pbinom(q, size=1,
prob)
qbinom(p, size=1,
prob)
rbinom(n, size=1,
prob)
Note that size *must* =
1.

y[i]~dbern(p)

Multinomial

P (y | p, n) =

n!
∏
i=1,k

p
yi
i

yi

y and p are vectors.

Counts that fall into > 2
categories, so that the y must
be represented as a vector of
counts. e.g., number individuals
in age classes, number of pixels
in different landscape
categories, number of species in
trophic categories in a sample
from a food web.

y a vector giving the
number of counts in
each category, p a
vector of the
probabilities of
occurrence in each
category∑
i=1,k pi = 1∑
i=1,k yi = n

E [yi] = npi

Var[yi] =

npi (1− pi)

rmultinom(n, size,
prob)
dmultinom(x, size,
prob, log = FALSE)

y[i,]~dmulti(p[],n)
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Continuous
Distributions

Data (yi) Shape parameters Moments R functions JAGS function Conjugate
prior for

Vague Prior

Normal
P (yi|µ, σ) =

1
σ
√

2π
e
− (yi−µ)2

2σ2

Continuously distributed
quantities that can take on
positive or negative values.
Also applied to strictly positive
values when tail of distribution
has low probability of
overlapping 0. Sums of things.

µ, σ µ, σ2 dnorm(x, mean, sd, log
= FALSE)
pnorm(q, mean, sd)
qnorm(p, mean, sd)
rnorm(n, mean, sd)

# tau = 1/sigma^2#
#likelihood
y[i]~dnorm(mu,tau)
#prior
theta ~
dnorm(mu,tau)

normal mean
(with known
variance)

dnorm(0,1E-6)
#This is scale
dependent. The
larger the parameter
value, the smaller
tau must be to make
the prior
uninformative.

Lognormal
P (yi | α, τ)

1

yi
√

2πβ2
e
− (ln yi−α)

2

2β2

Continuously distributed
quantities with positive values.
Data that have the property
that their logs are normally
distributed. Thus if z is
normally distributed then
exp(z) is lognormally
distributed. Represents
products of things. The
variance increases with the
mean squared.

α, the mean of yi on
the log scale
β, the standard
deviation of yi on
the log scale
α = log [median(yi)]

α = ln (µ)−
1/2 ln

(
σ2+µ2

µ2

)
β =

√
ln
(
σ2+µ2

µ2

)

µ = eα+ β2

2

median(yi) = eα

σ2 =(
eβ

2 − 1
)
e2α+β

2

dlnorm(x, meanlog,
sdlog)
plnorm(q, meanlog,
sdlog)
qlnorm(p, meanlog,
sdlog)
rlnorm(n, meanlog,
sdlog)

#likelihood
y[i]~dlnorm(alpha,tau)
#prior
theta~
dlnorm(alpha,tau)

Gamma
P (yi|α, β) =
βα

Γ(α)
yα− 1
i e−βyi

Γ(a) =∫∞
0 tα−1e−t dt .

Any continuous data that are
strictly positive.

α = shape
β = rate
α = µ2

σ2

β = µ
σ2

Note–be very careful
about rate, defined
as above, and scale
= 1

β
.

µ = α
β

σ2 = α
β2

dgamma(x, shape, rate,
log = FALSE)
pgamma(q, shape, rate)
qgamma(p, shape, rate)
rgamma(n, shape, rate)

#likelihood
y[i]~
dgamma(r,n)
#prior
theta~dgamma(r,n)

1) Poisson mean
2) normal
precision
(1/variance)
3) n parameter
(rate) in the
gamma
distribution

dgamma(.001,.001)

Beta
P (yi | α, β) =

B yα−1
i (1− yi)β−1

B =
Γ(α+β)

Γ(α)Γ(β)

Because B is a
normalizing
constant,
P (yi | α, β) ∝
yα−1
i (1− yi)β−1

Continuous data between 0 and
1–any data that can be
expressed as a proportion;
survival, proportion of
landscape invaded by exotic,
probabilities of transition from
one state to another.

α =
(µ2−µ3−µσ2)

σ2

β =
µ−2µ2+µ3−σ2+µσ2

σ2 .

µ = α
α+β

σ2 =
αβ

(α+β)2(α+β+1)

dbeta(x, shape1,
shape2, log = FALSE)
pbeta(q, shape1,
shape2, )
qbeta(p, shape1,
shape2, )
rbeta(n, shape1,
shape2)

#likelihood
y[i] ~
dbeta(alpha, beta)
#prior
theta ~
dbeta(alpha, beta)

p in binomial
distribution

dbeta(1,1)

Uniform
P (yi|a, b) =

1
b−a for a ≤ x ≤ b,

0 for x < a or x > b

Any real number. a = lower limit
b = upper limit
a = µ− σ

√
3

b = µ+ σ
√

3

µ = a+b
2

σ2 =
(b−a)2
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dunif(x, min, max,log
= FALSE)
punif(q, min, max)
qunif(p, min max)
runif(n, min, max)

#prior
theta~dunif(a,b)

a and b such that
posterior is “more
than entirely”
between a and b
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