Distribution Tool Box

N. T. Hobbs, ESS 575, Systems Ecology, Spring 2013

Discrete distributions	Data $\left(y_{i}\right)$	Shape parameters	Moments	R functions	JAGS functions	Conjugate relationship
Poisson $\begin{aligned} & P\left(y_{i} \mid \lambda\right)= \\ & \frac{\lambda^{y_{i}} e^{-\lambda}}{y_{i}!} \end{aligned}$	Counts of things that occur randomly over time or space, e.g., the number of birds in a forest stand, the number of fish in a km of river, the number of prey captured per minute.	λ, the mean number of occurrences per time or space	$\begin{aligned} & \mu=\lambda \\ & \sigma^{2}=\lambda \end{aligned}$	```dpois(y, lambda, log = FALSE) ppois(q, lambda) qpois(p, lambda), rpois(n, lambda)```	y[i] ~ dpois(lambda)	$\begin{aligned} & P(\lambda \mid \mathbf{y})= \\ & \operatorname{gamma}\left(\alpha+\sum_{i=1}^{n} y_{i}, \beta+n\right) \end{aligned}$
Binomial $\begin{aligned} & P\left(y_{i} \mid n, p\right)= \\ & \binom{n}{p} p^{y_{i}}(1-p)^{n-y_{i}} \\ & \binom{n}{p}=\frac{n!}{y_{i}!\left(n-y_{i}\right)!} p^{y_{i}} \end{aligned}$ Because $\binom{n}{p}$ is a normalizing constant $\begin{aligned} & P\left(y_{i} \mid n, p\right) \propto \\ & p^{y_{i}}(1-p)^{n-y_{i}} \end{aligned}$	Number of "success" on a given number of trials, e.g., number of survivors in a sample of individuals, number of plots containing an exotic species from a sample, number of terrestrial pixels that are vegetated in an image.	n, the number of trials p, the probability of a success $\begin{aligned} & p=1-\sigma^{2} / \mu \\ & n=\mu^{2} /\left(\mu-\sigma^{2}\right) \end{aligned}$	$\begin{aligned} & \mu=n p \\ & \sigma^{2}=n p(1-p) \end{aligned}$	$\begin{aligned} & \text { dbinom(x, size, prob, } \\ & \text { log = FALSE) } \\ & \text { pbinom(q, size, prob) } \\ & \text { qbinom(p, size, prob) } \\ & \text { rbinom(n, size, prob) } \end{aligned}$	$\mathrm{y}[\mathrm{i}] \sim \mathrm{dbin}(\mathrm{p}, \mathrm{n})$	$\begin{aligned} & P(p \mid \mathbf{y})= \\ & \operatorname{beta}(\alpha+y, \beta+n-y) \end{aligned}$
Bernoulli $\begin{aligned} & P\left(y_{i} \mid p\right)= \\ & p^{y_{i}}(1-p)^{1-y_{i}} \\ & \text { for } y_{i} \in\{0,1\} \end{aligned}$	A special case of the binomial where the number of trials $=1$ and the y_{i} can take on values 0 or 1 . Widely used in survival analysis, occupancy models.	p, the probability that the random variable $=1$	$\begin{aligned} & \mu=p \\ & \sigma^{2}=p(1-p) \end{aligned}$	```dbinom(x, size=1, prob, log = FALSE) pbinom(q, size=1, prob) qbinom(p, size=1, prob) rbinom(n, size=1, prob) Note that size *must* = 1.```	y[i] ~dbern (p)	
Multinomial $\begin{aligned} & P(\mathbf{y} \mid \mathbf{p}, n)= \\ & n!\prod_{i=1, k} \frac{p_{i}^{y_{i}}}{y_{i}} \end{aligned}$ \mathbf{y} and \mathbf{p} are vectors	Counts that fall into >2 categories, so that the y must be represented as a vector of counts. e.g., number individuals in age classes, number of pixels in different landscape categories, number of species in trophic categories in a sample from a food web.	y a vector giving the number of counts in each category, \mathbf{p} a vector of the probabilities of occurrence in each category $\begin{aligned} & \sum_{i=1, k} p_{i}=1 \\ & \sum_{i=1, k} y_{i}=n \end{aligned}$	$\begin{aligned} & \mathrm{E}\left[y_{i}\right]=n p_{i} \\ & \operatorname{Var}\left[y_{i}\right]= \\ & n p_{i}\left(1-p_{i}\right) \end{aligned}$	```rmultinom(n, size, prob) dmultinom(x, size, prob, log = FALSE)```	y[i,] dmulti (p[],n)	

Continuous Distributions	Data (y_{i})	Shape parameters	Moments	R functions	JAGS function	Conjugate prior for	Vague Prior
Normal $\begin{aligned} & P\left(y_{i} \mid \mu, \sigma\right)= \\ & \frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{\left(y_{i}-\mu\right)^{2}}{2 \sigma^{2}}} \end{aligned}$	Continuously distributed quantities that can take on positive or negative values. Also applied to strictly positive values when tail of distribution has low probability of overlapping 0 . Sums of things.	μ, σ	μ, σ^{2}	```dnorm(x, mean, sd, log = FALSE) pnorm(q, mean, sd) qnorm(p, mean, sd) rnorm(n, mean, sd)```	```# tau = 1/sigma^2# #likelihood y[i] ~ dnorm(mu,tau) #prior theta ~ dnorm(mu,tau)```	normal mean (with known variance)	dnorm ($0,1 \mathrm{E}-6$) \#This is scale dependent. The larger the parameter value, the smaller tau must be to make the prior uninformative.
Lognormal $\begin{aligned} & P\left(y_{i} \mid \alpha, \tau\right) \\ & \frac{1}{y_{i} \sqrt{2 \pi \beta^{2}}} e^{-\frac{\left(\ln y_{i}-\alpha\right)^{2}}{2 \beta^{2}}} \end{aligned}$	Continuously distributed quantities with positive values. Data that have the property that their logs are normally distributed. Thus if z is normally distributed then $\exp (z)$ is lognormally distributed. Represents products of things. The variance increases with the mean squared.	α, the mean of y_{i} on the \log scale β, the standard deviation of y_{i} on the \log scale $\alpha=\log \left[\operatorname{median}\left(y_{i}\right)\right]$ $\alpha=\ln (\mu)-$ $1 / 2 \ln \left(\frac{\sigma^{2}+\mu^{2}}{\mu^{2}}\right)$ $\beta=\sqrt{\ln \left(\frac{\sigma^{2}+\mu^{2}}{\mu^{2}}\right)}$	$\begin{aligned} & \mu=\mathrm{e}^{\alpha+\frac{\beta^{2}}{2}} \\ & \operatorname{median}\left(y_{i}\right)=e^{\alpha} \\ & \sigma^{2}= \\ & \left(e^{\beta^{2}}-1\right) e^{2 \alpha+\beta^{2}} \end{aligned}$	```dlnorm(x, meanlog, sdlog) plnorm(q, meanlog, sdlog) qlnorm(p, meanlog, sdlog) rlnorm(n, meanlog, sdlog)```	\#likelihood $y[i] \sim$ dlnorm(alpha, tau \#prior theta~ dlnorm(alpha,tau)		
$\begin{aligned} & \text { Gamma } \\ & P\left(y_{i} \mid \alpha, \beta\right)= \\ & \frac{\beta^{\alpha}}{\Gamma(\alpha)} y_{i}^{\alpha-1} e^{-\beta y_{i}} \\ & \Gamma(a)= \\ & \int_{0}^{\infty} t^{\alpha-1} e^{-t} \mathrm{~d} t \end{aligned}$	Any continuous data that are strictly positive.	$\begin{aligned} \alpha & =\text { shape } \\ \beta & =\text { rate } \\ \alpha & =\frac{\mu^{2}}{\sigma^{2}} \\ \beta & =\frac{\mu}{\sigma^{2}} \end{aligned}$ Note-be very careful about rate, defined as above, and scale $=\frac{1}{\beta}$.	$\begin{aligned} & \mu=\frac{\alpha}{\beta} \\ & \sigma^{2}=\frac{\alpha}{\beta^{2}} \end{aligned}$	```dgamma(x, shape, rate, log = FALSE) pgamma(q, shape, rate) qgamma(p, shape, rate) rgamma(n, shape, rate)```	```#likelihood y[i] ~ dgamma(r,n) #prior theta~dgamma(r,n)```	1) Poisson mean 2) normal precision (1/variance) 3) n parameter (rate) in the gamma distribution	dgamma (.001,.001)
Beta $\begin{aligned} & P\left(y_{i} \mid \alpha, \beta\right)= \\ & B y_{i}^{\alpha-1}\left(1-y_{i}\right)^{\beta-1} \\ & B=\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha) \Gamma(\beta)} \end{aligned}$ Because B is a normalizing constant, $\begin{aligned} & P\left(y_{i} \mid \alpha, \beta\right) \propto \\ & y_{i}^{\alpha-1}\left(1-y_{i}\right)^{\beta-1} \\ & \hline \end{aligned}$	Continuous data between 0 and 1-any data that can be expressed as a proportion; survival, proportion of landscape invaded by exotic, probabilities of transition from one state to another.	$\begin{aligned} & \alpha=\frac{\left(\mu^{2}-\mu^{3}-\mu \sigma^{2}\right)}{\sigma^{2}} \\ & \beta= \\ & \frac{\mu-2 \mu^{2}+\mu^{3}-\sigma^{2}+\mu \sigma^{2}}{\sigma^{2}} \end{aligned}$	$\begin{aligned} & \mu=\frac{\alpha}{\alpha+\beta} \\ & \sigma^{2}= \\ & \frac{\alpha \beta}{(\alpha+\beta)^{2}(\alpha+\beta+1)} \end{aligned}$	```dbeta(x, shape1, shape2, log = FALSE) pbeta(q, shape1, shape2,) qbeta(p, shape1, shape2,) rbeta(n, shape1, shape2)```	```#likelihood y[i] ~ dbeta(alpha, beta) #prior theta ~ dbeta(alpha, beta)```	p in binomial distribution	dbeta (1,1)
Uniform $\begin{aligned} & P\left(y_{i} \mid a, b\right)= \\ & \begin{cases}\frac{1}{b-a} & \text { for } a \leq x \leq b, \\ 0 & \text { for } x<a \text { or } x>b\end{cases} \end{aligned}$	Any real number.	$\begin{aligned} & a=\text { lower limit } \\ & b=\text { upper limit } \\ & a=\mu-\sigma \sqrt{3} \\ & b=\mu+\sigma \sqrt{3} \end{aligned}$	$\begin{aligned} & \mu=\frac{a+b}{2} \\ & \sigma^{2}=\frac{(b-a)^{2}}{12} \end{aligned}$	```dunif(x, min, max,log = FALSE) punif(q, min, max) qunif(p, min max) runif(n, min, max)```	$\begin{aligned} & \text { \#prior } \\ & \text { theta~dunif }(\mathrm{a}, \mathrm{~b}) \end{aligned}$		a and b such that posterior is "more than entirely" between a and b

