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6.1 Introduction

In many applications raw MCMC methods, in particular the Gibbs sam-
pler, work surprisingly well. However, as models become more complex,
it becomes increasingly likely that untuned methods will not miz rapidly.
That is, the Markov chain will not move rapidly throughout the support of
the target distribution. Consequently, unless the chain is run for very many
iterations, Monte-Carlo standard errors in output sample averages will be
large. See Roberts (1995) and Tierney (1995) in this volume for further
discussion of Monte-Carlo standard errors and Markov chain mixing.

In almost any application of MCMC, many models must be explored
and refined. Thus poor mixing can be severely inhibiting. Run times of the
order of seconds or minutes are desirable, runs taking hours are tolerable,
but longer run times are practically impossible to work with. As models
become more ambitious, the practitioner must be prepared to experiment
with strategies for improving mixing. Techniques for reducing the amount
of computation per iteration are also important in reducing run times.

In this chapter, we review strategies for improving run times of MCMC.
Our aim is to give sufficient detail for these strategies to be implemented:
further information can be found in the original references. For readers who
are new to MCMC methodology, we emphasize that familiarity with the
material in this chapter is not a prerequisite for successful application of
MCMC; Gilks et al. (1995b: this volume) provide enough information to
permit application of MCMC in straightforward situations.

For simplicity, we will mostly assume that the Markov chain takes values
in k-dimensional Euclidean space IR*, although most of the techniques we
discuss apply more generally. The target density (for example a posterior
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distribution) is denoted x(.), and X; = (X1, Xt2, .- X x)T denotes the
state of the chain at iteration t. Note that throughout this chapter X
will denote a scalar. A generic point in the sample space will be denoted
X = (X.l,X.z, . .,X,k)T.

6.2 Reparameterization

In this section, we consider simple techniques for reparameterizing com-
monly used models to improve mixing. We begin by examining the con-
sequences of correlations among the {X i}

6.2.1 Correlations and transformations

Both the Gibbs sampler and the Metropolis—Hastings algorithm may be
sensitive to the choice of parameterization of the model. Consider for ex-
ample the two-dimensional target density () illustrated in Figure 6.1(a).
The ellipses represent contours of x(.), and indicate that the probability in
x(.) is concentrated around the diagonal line X ; = X 3.

To sample from this target distribution, we might use a Gibbs sampler,
updating one component of X at a time. Suppose that, at iteration £, the
current point Xy is at the intersection of the arrows in Figure 6.1(a). Up-
dating one of the components of X; will produce a new point Xi41 lying in
the direction of one of the arrows (depending on which component is up-
dated). Since 7(.) is concentrated around the diagonal, the full conditional
densities 1r(Xt+1,1|X,,2) and 1r(Xt+1,2|X,,1) will be concentrated near X:
(see Figure 6.1(c)) and so Xi41 will probably lie quite close to the cur-
rent point. This will tend to happen at every iteration, so the Gibbs chain
will move around rather slowly, in general taking small steps so as to stay
close to the main diagonal. The consequence of this slow mixing is that a
long simulation will be required to obtain adequate precision in the output
analysis.

Alternatively, a Metropolis algorithm might be used for this problem.
Suppose, for simplicity, that the Metropolis proposal comprises a uniform

distribution on a disc centred on the current point X;. This is indicated by
the circle in Figure 6.1(a). As most of the disc lies away from the diagonal,

the proposal distribution will tend to generate candidate points X' for

which m(X') is small compared to x(X:). Such candidates will probably be
rejected (the acceptance probability being min(1, 7(X’)/7(X:)]) and then

X4 will be identical to X;. Thus the chain is likely to get stuck at X;
for several iterations. When a candiate point is eventually accepted, it will
probably lie close to the main diagonal, and the same problem will recur at

the next iteration. Consequently, this Metropolis algorithm will mix slowly. 3
A solution to the slow mixing of the Gibbs sampler and Metropolis 1

algorithms in this example is to transform X to a new variable Y. Let
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on a diagonally oriented elliptical disc would generate a more rapidly mix—
ing chain. However, using a transformed proposal for the original var¥able
X is equivalent to using the original proposal for a transformed var}able
Y (X). For present purposes, it 1s convenient to think in tern.ls‘of Yarlable
transformation, since thereby we can address the issue of mixing in both
Gibbs samplers and Metropolis-Hastings algorithms simultaneously.

After running the MCMC for the transformed variable Y, the original
variables X can be recovered simply by transforming back the values in the
MCMC output; (we assume that a unique inverse transform X (Y') exists).
In the above example, this would involve calculating for each iteration ¢:
Xe1=3Yea + Yz and Xi o = Y- 1Y .

Placing the above discussion in a Bayesian context, variable X represents
a vector of parameters; 7(X) is a posterior distribution; Figure 6.1(a) il-
lustrates a strong posterior correlation; and any one-to-one transformation
Y (X) represents a reparameterization. Below, we discuss reparameteriza-
tion strategies designed to reduce posterior correlations in commonly used
models. However, posterior correlations are not the only cause of slow mix-
ing; we return to this point in Section 6.2.5.

6.2.2 Linear regression models

Problems of slow mixing can occur in the simplest of statistical models.
Consider for example the linear regression model

vi=a+pBzi+e, €~N006%), i=1...n,

where N(a,b) generically denotes a normal distribution with mean a and
variance b. Here z; and y; are observed and, for simplicity, we assume that
o is known. For a Bayesian analysis of these data, we will assume flat priors
on the parameters o and 3. The posterior correlation between o and § can
then be shown to be

z
)
8+ £ 20 (mi — 2

where £ = L 3°7 z;. If |z| is large compared to the sample standard devi-
ation of {z;}, then pag will be close to 1 or minus 1. As discussed above
and in Roberts (1995: this volume), high posterior correlations cause poor
mixing in Gibbs samplers and in untuned Metropolis—Hastings algorithms.

A simple remedy is to work with centred covariates zj = 2; — Z. Then
the regression equation becomes y; = o’ + #'z} + ¢; where o’ = a+ 7 and
B’ = B. Note that this has induced a reparameterization (a, 8) — (¢/, 8'),
for which the posterior correlation pa/gr = 0. In this parameterization,
the Gibbs sampler will work well. In fact o' and B’ are a posterior: in-
dependent, so the Gibbs sampler will produce samples immediately from
the posterior distribution without any burn in. A simple Metropolis algo-

Pag = —
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rithm with independent normal proposals for o’ and ' will also work well,
provided that the proposals are scaled adequately; see Roberts (1995: this
volume).

More generally, consider the multiple linear regression model

vi =0Tz, +€;, €& ~N(0,0%), i=1...n,

where z; is a vector of covariates (the first covariate being unity); 6 is
a vector of parameters with a flat prior; and ¢ is assumed known. For
this model, the posterior variance matrix of 6 is 02{zTz}~!, where z =
(z1,22,...,2n)7T is the design matrix. If the elements of  are to be un-
correlated in the posterior, the columns of z must be orthogonal. Ortho-
gonalization with respect to the first column of z is achieved by centring,
as described above. For orthogonalizing the whole of 2, Gram-Schmidt or-
thogonalization might be used. However, adequate mixing can be achieved
without perfect orthogonalization, since it is usually sufficient to avoid
nearly collinear covariates (Hills and Smith, 1992). Also, scaling covari-
ates to roughly equalize sample standard deviations can often help mixing
in ‘off-the-shelf” Metropolis—Hastings algorithms. The same general recom-
mendations carry over to generalized linear models, with known or unknown
scale parameters.

6.2.3 Random-effects models

Gibbs sampling has proved particularly successful for random-effects mod-
els, as several chapters in this volume testify. By comparison with fixed-
effects models, random-effects models typically contain many parameters,
but mixing is usually rapid. However, in some circumstances, mixing can
be very poor. To see this, consider the simple random-effects model

Y = ptotej, (6.1)
a; ~ N(0,02%),

i=1,...,m,j=1,...,n; where ¢; ~ N(O,a’ﬁ). For simplicity we suppose
04 and oy are known, and assume a flat prior on u. Gelfand et al. (1995a)
show that posterior correlations for this model depend on the relative sizes
of the variance components. Posterior correlations for model (6.1) are

2 -'% 2y-1
Pua; = — {1 + %’g‘} y  Pai,a; = {1 + %} s

for ¢ # j. Large posterior correlations and poor mixing will be avoided if
o2/n is not small in relation to o2 /m. Thus a large number m of random
effects or a small random-effects variance o2 will improve mixing, but a
large number n of observations per random effect or small observational

variance 03 will worsen mixing. In short, mixing is worst when the data
are most informative!
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We now consider two methods for reparameterizing random-effects mod-
els.

Reparameterization by hierarchicel eentring

Gelfand et al. (1995a) propose reparameterization to improve mixing in
model (8.1). Let m; = p + oy, then the reparameterized model is:

Vii = 1+, {(6.2)
m o~ N(uod)

With this parameterization, Gelfand et al. calculate posterior correlations:
2 2
Pun: = {1+ %}_%: Pron; = {1+ 311:%1}-1’ (6.3)

for i # j. Here, large m or n both improve mixing, and poor mixing will
only result if o2 is very small. Thus, in general, parameterization (6.2)
will be preferred since o2 will not be small if random effects are deemed
necessary.

Gelfand et al. (1995a) call (6.2) a centred parameterization. Note that
‘centring’ is used here in a quite different sense than in Section 6.2.2; here
we are centring parameters, and in Section 6.2.2 we were centring (in a
different way) covariates. Gelfand et el. extend their approach to nested
random-effects models. For example,

Wije = ptoit By ek, {6.4)
Bij ~ N(0,03),
o ~ N(0,0"i),

where i = 1,....m; j =1,...,n; k = 1,...,7 and €5z ~ N(0,07). As
before, we assume a flat prior on p and fixed variance components. For this
model, the hierarchically cenired parameterization is Gij = p+ o+ B3
7 = p + @i, so the reparameterized model is:

Yise = Lij t €k,
Gi ~ N(m,o3),
m o~ N(g,ob)

Partial centrings are also possible, for example the 5 parameters might be
centred but not the a, giving a (g, @, {) parameterization; or the o param-
eters might be centered but not the 3, giving a (4,7, 5) parameterization.
As before, the best of these parameterizations will depend on variance com-
ponents, and Gelfand ¢t al. recommend that effects having large pos_terior
variance relative to 63 should be centred, along with all effects lower In Fhe
hierarchy. If vatiance components are unknown, the authors suggest using
posterior expectations of variance components estimated from a prelimi-

nary MCMC run.
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Gelfand et al. (1995a, 1995b) further generalize their approach to linear
and generalized linear mixed-effects models incorporating covariates. With
these more general models exact calculations are more difficult, but the
recommendation is still to try centred parameterizations.

Reparameterization by sweeping

Vines ef al. (1995) propose a different approach to reparameterizing random-
effects models. They note that model (6.1) is essentially overparameterized.
For example, a quantity ¢ could be added to i and subtracted from each
o; without altering the likelihood of the data. Thus the data are unable
to provide any information on the single degree of freedom u — &, where
& = é >_; @;. This suggests reparameterizing ¢; = o; — @; ¥ = g + &; and
§ = p—a. This is called sweeping, since the mean is swept from the random
effects and onto u. This reparameterization gives the model:

¥; = v+t ey,
¢~m o Nm—l(oiaczxffm—l): (65)
m=1
¢m = - E o,
i=l
where ¢_, = (é1,%2,.-.,8m—-1)T; Np—1 denotes an (m — 1)-dimensional

multivariate normal distribution; and Ky, is an (m— 1) x (m — 1) matrix
with 1 — L on the main diagonal and — L everywhere else. Clayton (1995:
this volume) also discusses this reparameterization.

The random effects {#;} are now no longer a priori independent, and
v and & have flat priors. The unidentified degree of freedom 6 can be ig-
nored, since the data and other parameters do not depend on it. Note that
the original random effects {a;} are interpretable as deviations from the
population mean g, whilst the reparameterized random effects {¢;} are
interpretable as deviations from the sample mean v.

The swept parameterization gives posterior correlations

Pvg; = 0, Poid; = _#;

for ¢ # j. These correlations are not large for any m > 1. They do not
depend on n or on variance components o2 and 0'3, unlike those produced
by hierarchical centring {6.3).

Vines et al. (1995) generalize their approach to models with multiple sets
of random effects in generalized linear models, and Vines and Gilks (1994)
further extend the approach to accommodate random effects and hierarch-
ical interactions of arbitrary order. The technique is to sweep means from
high-ordet interactions onto lower-order terms. For example, for the nested
random-effects model (6.4}, the reparameterization proceeds in two stages.
First, row means f5; = %E ; Bi; ate swept from the {5;; } parameters onto
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the {a;}; then the mean of {o; + B:} is swept onto y, giving % = B~ Bs;
¢ =a; —a+ B — ,B,a.ndu—,u+a+ﬁ,where,8..m"z‘ ,6’.J This
reparameterization gives the model:

Yijp = v+éi+ i+ ik,
wi,—ﬂ o Nﬂ—]. (01 UEKI’I—I) 1
n—1
Pin = — Z i,

i=1

1
¢-m ~ Nm- (0,03;4“ ;JgKm-l) ,
where ¢; _n = (1;‘;,'1,1{),-2,...,1};,-,,,_1)1', and v has a flat prior.

Unknown veriance componenis

The above reparameterizations can reduce posterior correlations between
random effects even if variance components are unknown. However, lack
of information about variance components can itself be a source of slow
mixing. Moreover, when this problem arises it seems difficult to cure. In the
simple random effects model (6. 1) slow mixing tends to occur if the prior
on the random-effects variance ¢2 gives non-negligible probability to values
near zero. An extreme form of thls is the improper prior P{c?) x o2,
which gives an improper posterior (see DuMouchel and Waternaux, 1992)
Then the MCMC sampler will get stuck for long periods where 2 and
the sample variance of random effects = ¥ (o — @) are both small. At
present, the only remedy we can suggest 18 to use a different prior, perhaps

; 2
bounding o away from zero.

5.2.4 Nonlinear models

It is difficult to lay down hard and fast rules for reparameterization with
nonlinear models. However, much of the experience gained in dealing with
such models in the context of maximum likelihood (see for example Ross,
1990) or numerical quadrature (see Hills and Smith, 1992, and references
therein) is still of relevance for MCMC, since the aim is often to reparame-
terize to produce open, independent-normal-like contours as illustrated in
Figure 6.1(b).

The advice of Ross (1990) is to reparameterize so that parameters corres-
pond approximately to contrasting features of the data. These are called
stable parameters. For example, consider the model

E(y) =a+ e 7",

i = 1,...,m. If the data are approximately linear, y will be small. Then
E(y:) ~ a + f# — fyzi, giving high posterior correlations between the
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parameters. A stable parameterization would be

E(w) =o' + Bfi(y) — F(),
where

1 .
; = —y{z.—x")
ft(7) Yzt € )

i) = =4

and z* is some central value of . Now for small v, E{y) = o' + 8'(2; — &},
as motivated in Section 6.2.2. The stable parameters o and # correspond
approximately to the mean height of the curve and the slope at &*.

In general, divination of stable parameterizations must be done on a
model-by-model basis, although similarity with well understood modeis can
help. See Ross (1990) for further suggestions; see also Bennett et al. (1995:
this volume) for an application of MCMC to nonlinear models.

6.2.5 General comments on reparameterization

We have indicated some strategies for reparameterizing commonly used
statistical models to reduce posterior correlations. More ambitious strat-
egies aim to reparameterize on the basis of posterior correlations estimated
from the output from a preliminary MCMC run (Miiller, 1994; Hills and
Smith, 1992; Wakefield, 1992). However, the performance of these methods
in high dimensions is unknown. Moreover, such methods may have sub-
stantial computational overheads, partly through destroying conditional-
independence relationships present in the original parameterization.

Conditional-independence relationships allow high-dimensional problems
to be tackled effictently using the Gibbs sampler or a single-component
Metropolis—Hastings algorithm (Spiegelhalter et al., 1995b: this volume}.
For example, the full conditional distribution for &; in meodel (6.1) is al-
gebraically independent of {yz;;k # 4,5 = 1,...,n} and can therefore be
rapidly calculated. ‘Natural’ parameterizations, which maintain a healihy
conditional-independence structure, are therefore advantageous.

Models often admit several natural parameterizations, as illustrated in
Section 6.2.3. In the absence of knowledge about which will produce rapid
mixing, all might be tried in a random or cyclic order (Gilks, 1995a). The
combined strategy will mix well if at least one parameterization mixes well
(Tierney, 1994).

For roughly normal or log-concave posterior distributions, the avoidance
of high posterior correlations will often be sufficient to produce good mix-
ing (Hills and Smith, 1992). However, other forms of posterior can yield
poor mixing even in the absence of posterior correlations. For example, the
Metropolis algorithm can be non-geometrically ergodic with heavy-tailed
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distributions (see Roberts, 1995: this volume). Hills and Smith (1992} sug-
gest a signed root transformation to help in such situations. Another cause
of slow mixing is multimodality in x(.). Reparameterization may not help
here, and we may need to turn to other strategies.

6.3 Random and adaptive direction sampling

The Gibbs sampler moves in directions parallel to the coordinate axes and,
as we have seen, these directions may not be conducive to rapid mixing.
Linear reparameterization is equivalent to changing the directions in which
the Gibbs sampler moves. For example, Gibbs sampling with the reparam-
eterization described in Section 6.2.1 is equivalent to Gibhs sampling in
directions X3 = X4 and X3 = —X; in the original parameterization.
When it is not clear how to choose sampling directions to produce rapid
mixing, a solution might be to construct a sampler which can sample in
any direction. In this section, we describe some such samplers, the simplest
being the h#t-and-run algorithm.

6.3.1 The hit-end-run algorithm

The hit-and-run algorithm (Schmeiser and Chen, 1991) is a MCMC sampler
which chooses sampling directions in IR at random. At each iteration {, the
hit-and-run algorithm first randomly samples a direction ey (a unit vector
of dimension k). Then X 4 is chosen according to the full conditional
distribution along the straight line passing through Xy in direction e;. Thus
each hit-and-run iteration comprises:

Step 1: sample ¢;;
Step 2: sample a scalar r; from density f(r) o< m(X; + re;);
Step 3: set Xy = Xi + ree.

Often, but not necessarily, ¢; is chosen uniformly on the unit £-dimensional
sphere. This may be done by generating k independent standard normal
random variates {z; i = 1,..., %}, and then setting

%i

€4 = —FT/—/—>
2

i %
fori=1,...,k

Under extremely weak regularity conditions, the hit-and-run algorithm
is irreducible. Moreover, it can often mix better than the Gibbs sampler.
Consider for example the target density in Figure 6.1(a). Most of the sam-
pling directions generated by the hit-and-run algorithm will be away from
the diagonal line X 5 = X |, and consequently X;;; will tend to lie near X;.
Occasionally, however, a sampling direction ¢lose to the diagonal line will
be generated, and then X4 will have the opportunity to move well away
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from X;. This would not happen for the Gibbs sampler without repara-
meterization. The hit-and-run algorithm can also work well in multimodal
problems, allowing mode-hopping when the sampling direction traverses
two or more modes of m(.). The algorithm can be especially useful as an
exploratory tool for discovering effective sampling directions.

If #(.) has moderately sharp ridges or spikes, random directions may not
pick out regions of high probability content sufficiently often to promote
rapid mixing. These problems are exacerbated in high dimensions, where
the method may perform poorly.

6.9.2 Adaptive direction sampling (ADS)

ADS (Gilks ef al., 1994; Roberts and Gilks, 1994) can be thought of as a
generalization of the hit-and-run algorithm. It is an edaptive method in the
sense that the direction to be sampled, e;, can be chosen on the basis of
other previously sampled points.

In general, care must be taken when using adaptive methods since the
stationarity of the target distribution m(.) can be compromised by adapta-
tion (see for example Gelfand and Sahu, 1994). ADS avoids this problem
by enlarging the Markov chain space to allow points on which adaptation
is based to be part of the Markov chain state vector.

Specifically, at each iteration we store m peints {X,m, Xtm, . ‘,Xt(m)}.
These m points are called the current set. Each point of the current set
is a k-vector in its own right. At each iteration, a point Xfc) is randomly
selected from the current set, and is updated. Its new value is sampled
along a line passing through Xt(c) in a direction e; {not necessarily a unit
vector) which may depend on any or all of the points in the current set. The
remaining points in the current set are not changed. Thus each iteration of
ADS comprises:

Step 1: select one point Xt(c) at random from current set;
Step 2: choose a k-vector e;;

Step 3: sample a scalar r, from a density f(r);
Step 4: set Xt(i)l = §“) + reeg;
Step 5: set X,(:EI =XxPfori#e
With the general framework for constructing direction e, and density f{.}
des:cribed below, the stationary distribution for ADS is the distribution of
m independently sampled points from the target density =(.). The simplest
special case of ADS is the hit-and-run algorithm, where m — 1, and ¢; and
r¢ are sampled as described in Section 6.3.1.
A more interesting special case of ADS is the snooker algorithm. For this,
the sampling direction is e; = X,('] - X}c), where Xt(') is a second point
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chosen at random from the current set; and the density
F(r) o 1(XE + re)|L — 1

Thus Xt(i)l lies along the straight line passing through X¢(c) and Xf,(é‘). This
is illustrated in Figure 6.2. Heuristically, the idea of the snooker algorithm is
that, as the algorithm proceeds, sampling directions are increasingly likely
to traverse regions of high probability under 7(.), since both Xt(c) and XE')
will increasingly tend to be in such regions. Note that f(r) is just the full
conditional density along the line Xt{c] + re;, multiplied by |1 — r[*~1. This
multiplier derives from a Jacobian matrix: it arises because the sampling
direction for updating X! depends on X! itself, unlike the hit-and-run
algorithm and Gibbs sampler.

Figure 6.2 Hustrating the snooker algorithm. Ellipses denote contours of the tar-
get density x(.}; dots denote points in the current set; and the broken line is the

sampling direction for updating ch).

The snooker algorithm has some desirable theoretical properties, and can
work well in problems where the Gibbs sampler fails badly. However, the in-
creased computational burden it demands, and its inconsistent performance
on some problems that simpler algorithms solve easily, suggest the .need for
schemes which make more productive use of the adaptive information con-

tained in the current set. o i
For the general form of ADS, the sampling direction is e, = ueX; " + Vi

where u; is a random scalar drawn independently of the current set, and
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V; 1s a random k-vector depending on the m — 1 points {Xt(i); i # ¢}. Then
fir) x TI'(XEC} +re |1+ rug L

ADS can be generalized still further to Metropolized. versions (Adaptive
Metropolis Sampling, AMS). Like ADS, AMS updates a randomly chosen

point XEC) from a current set of m points, but does this using a Metropolis—
Hastings step, where the proposal for a new current set {Y{;i=1,...,m}

has density q({Xt(“)‘}; {Y¥)}), and depends on any or all of the points in
the current set {Xr[‘)? i=1,...,m}. The acceptance probability is

3 {1 (YO (XONITL a(v )
(XY Y OD T, #(X)
The stationary distribution for AMS is the distribution of m independently
sampled points from the target density w(.). As for ADS, successful im-
plementation of AMS requires effective use of the adaptive information
contained in the current set.

AMS provides a general framework for adaptation where the informa-
tion from which the adaptation is based depends on only a finite history
{the m points of the current set). Adaptive methods where the whole his-
tory of the chain is taken into account cannot be considered in this way.
It is also doubtful that purely adaptive methods are advisable. Adapta-
tion to the ‘wrong’ informatton, obtained early on in the MCMC, might
worsen mixing. We might then never discover that the early information
was misleading. Mathematically, this problem manifests itself in that many
adaptive algorithms are not geometrically convergent (see Roberts, 1995:
this volume). It is always advisable when using adaptive methods to use the
adaptive strategy in hybridization with some fixed non-adaptive strategy.

6.4 Modifying the stationary distribution

This section describes techniques which aim to improve mixing by modify-
ing the stationary distribution x(.) of the Markov chain.

6.4.1 Importance sampling

Suppose we can devise a MCMC sampler which mixes well but has a modi-
fied stationary distribution #*(.), where 7*(X) &~ 7(X) for all X. We can
estimate the expectation under a(.) of an arbitrary function g(X) of interest
by importance reweighting the output {X;; t = 1,...,n} from the chain
with stationary distribution x*(.) (Fosdick, 1963; Hastings, 1970). Thus,

Brg(X) e Lt t8(Xe) (6.6)

2 W
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where the importance weight wy = 7(X,)/7*(X;). See, for example, Rip-
ley (1987) for further discussion of importance sampling.

Jennison (1993) suggests using the form 7*(X) = r(X)’}', where T > 1.
This form of modification of the target #(.) is used in the optimization
technique of simulated annealing, where T is called temperature. Heating
the target (T > 1) will flatten #(.) and may make it easier for the modi-
fied MCMC sampler to explore the support of =(.). For example, suppose
x(.) is multimodal with well-separated modes which contain most of the
probability content of «(.). For this (), a Metropolis algorithm propos-
ing mainly local moves will mix poorly, since the chain will be trapped for
long periods at one mode before escaping to another mode. Heating the
target will flatten the modes and place more probability between them, so
the modified MCMC sampler will travel more easily between modes. Note
that this 7*(.) is unnormalized, but this presents no problem for MCMC
methods.

Another useful form of modification of the target distribution is to add
stepping stones between regions of the state-space which contain substan-
tial amounts of x(.) but which do not communicate well (i.e. between which
the MCMC sampler seldom moves). This is illustrated in Figure 6.3, in
which the support D of 7{.) is concentrated in two disjoint regions. The
Gibbs sampler (or a single-component Metropolis—Hastings algorithm mak-
ing moves parallel to the axes) applied to this problem would be reducible,
since moving between the two regions would entail an intermediate move
X; outside D, where #(X;) = 0. This problem can be avoided by placing
a stepping stone E, containing a small amount of probability ¢, such that
E communicates with both regions of D as illustrated in Figure 6.3. Then
T (X) o 7{X) + ee(X), where e(X) is a density having support on E.
If D and E are disjoint, importance reweighting as in (6.6} dictates that
output samples which belong to E should be ignored. This technique can
be useful in problems which place intricate constraints on X, as can occur
for example in genetics applications (Sheehan and Thomas, 1993; see also
Thomas and Gauderman, 1995: this volume).

In general, if 7"(X) differs substantially from 7(X), importance weights
will be unstable and the variance of (6.6) will be inflated, which may ne-
cessitate lengthening the MCMC run. Therefore, the success of the method
relies on being able to obtain a rapidly mixing MCMC with only slight
modification of the stationary distribution #(.). This may be unrealistic for
problems where mixing is very slow. However, importance reweighting of
MCMC output is useful for other reasons, for example for exploring the
impact of small changes in the prior or likelihood of a model (Besag et
al., 1995).
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Figure 6.3 Adding a stepping stone E to allow communication between disjoint
regions D of the support of x(.), as indicated by the arrows.

6.4.2 Metropolis-coupled MCMC

Geyer {1991) proposes running in parallel m MCMC chains with different
stationary distributions m;(X), ¢ = 1,...,m, where m(X)} = n(X) and
{m:(X); i > 1} are chosen to improve mixing. For example, incremental
heating of the form

7 (X) = #( X)) TR, A0,
is often convenient, but not always desirable; see Geyer and Thompson

(1995). After each iteration an attempt is made to swap the states of two

of the chains using a Metropolis—Hastings step. Let X fi) denote the state of
§ha.in i at iteration ¢. Suppose that after iteration £ a swap between chains
i and j is proposed. The probability of accepting the proposed swap is

_ {1 m (X )3 (X()
"X (x Dy |

At the end of the run, output from the modified chains {X?); t>0,i>1}
can be discarded. This method is called Metropolis-couplied MCMC {or
MCMCMC).

Heuristically, swapping states between chains will confer some of the
rapid mixing of the modified chains upon the unmodified chain. For ex-
ample, suppose that w(.) has well separated modes and that a modified
chain moves freely between modes. Proposing swaps between this modified
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chain and the unmodified chain will sometimes result in the unmodified
chain changing modes, thereby improving mixing. Proposed swaps will sel-
dom be accepted if x:(X)}/m;j{X) is very unstable; this is the reason for
using several chains which differ only gradually with <.

An obvious disadvantage of Metropolis-coupled MCMC is that m chains
are run but the output from only one is utilized. However, Metropolis-
coupled MCMC is ideally suited to implementation on a parallel process-
ing machine or even on a network of workstations (each processor being
assigned one chain), since each chain will in general require about the same
amount of computation per iteration, and interactions between chains are

simple.

6.4.3 Simulaied tempering

An idea closely related to Metropolis-coupled MCMC is simulated temper-
ing (Marinart and Parisi, 1992; Geyer and Thompson, 1995). Instead of
running in parallel m MCMC samplers with different stationary distribu-
tions, they are run in series and randomly interchanged. Thus simulated
tempering produces one long chain, within which are embedded variable
length runs from each sampler and occasional switches between samplers.
The term ‘simulated annealing’ arises from an analogy with repeated heat-
ing and cooling of a metal.

Let m;(.) denote the stationary distribution of the i'® sampler, where
i = 1 denotes the unmodified {cold) sampler, and let I; indicate which
sampler is current at iteration ¢ of the simulated tempering chain. The state
of the chain at time ¢ comprises the pair { X;, I;). One iteration of simulated
tempering involves an update of the current point X; using sampler I,
followed by a Metropolis-Hastings update of I;.

Consider now the Metropolis—Hastings update of I;. Let ¢; ; denote the
probability that sampler j is proposed given that the current sampler is
the #*%. Geyer and Thompson (1995) suggest setting ¢;i41 = gii—1 = 0.5
if1 <i<mand g2 = gmm-1 = 1, so that only adjacent samplers
are proposed. Then the proposal to change to sampler j is accepted with

probability
min {l, M} ; (6.7)
eimi(Xi)gi s
where i = I; and the {¢;; i = 1,...,m} are conveniently chosen constants
(see below).

The stationary distribution of the simulated tempering chain is #(X, J) «
eym(X). Since we are usually interested only in m(.) = ={.), at the end
of the run all samples for which 7, # 1 are normally discarded. After an
initial burn-in, all samples {X;} for which I; = 1 are retained; there is no
need for a new burn-in after each change of sampler.

The constants {¢;; § = 1,...,m} are chosen so that the chain divides its
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time roughly equally among the m samplers. If the m;(.) were normalized,
this would be achieved by setting ¢; = 1 for all i. However, m;(.) will usually
be known only up to a normalizing constant, so it will be necessary to set
ci % 1/ f m(X)dX. Thus simulated tempering requires estimation of nor-
malizing constants, unlike Metropolis-coupled MCMC. Precise estimation
of the {c;} is not required for valid analysis of (.}, but even approximate
estimation of the {¢;} can be tricky. Geyer (1993) suggests several ad hoc
techniques, the most formal of which is reverse logistic regression.
Reverse logistic regression (Geyer, 1993) requires a preliminary run of
Metropolis-coupled MCMC which at least mixes a little. The {c;} are then
estitnated by maximizing with respect to {¢;} a log quasi-likelihood

ta(c) =3 logpi( X", ¢)
t =1

in the notation of Section 6.4.2, where
_ _ am(X)
Z?:l T X))

An arbitrary constraint on the {¢;} is required to identify the optimization.
Note that reverse logistic regression ‘forgets’ the sample 7 from which each
X belongs.

Geyer and Thomson (1995) suggest setting the number of samplers m
and the ‘spacing’ of their stationary distributions (for example, the temper-
ature spacing A) so that average acceptance rates in (6.7) are between 20%
and 40%. This range of acceptance rates is also recommended for Metropo-
lis algorithms in other settings (Gelman ef al., 1995; Roberts, 1995: this
volume). See Geyer (1993} and Geyer and Thomson (1995) for further im-
plementational suggestions.

If the m'? sampler draws samples independently from m,(.), the simu-
lated tempering chain will ‘forget’ its past (i.e. regeneraie) whenever sam-
pler m is used. This is the basis of regenerative simulation techniques (Myk-
land et al., 1995; see also Tierney, 1995: this volume). In particular, sam-
ple paths between regenerations are independent so Monte-Carlo standard
errors can be estimated easily. Also, there is no need for an initial burn-in
if the chain is begun with a draw from sampler m.

pl'(X) C)

6.4.4 Auziliary variables

f&dding variables can often simplify calculations and lead to improved mix-
mg. For example, when some data z,, are missing, it may be difficult to
work with the marginal posterior density m(8) o< P(8) [ P(x,, Zm|0)dzm
of t.ht_a model parameters given the observed data x,, particulatly if the
marginal is not available in closed form. In general, it will be far simpler
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to run the MCMC on an augmented state vector {f, &) and a full poster-
ior (8, 2m) x P(8)P(2o,2m|0), sampling both missing data and model
parameters in the MCMC. An important example occurs in survival ana-
lysis, where =, is the set of true (but unknown) failure times for censored
individunals.

Added variables are called auziliary variables by Besag and Green (1993),
and the idea of running a MCMC on an augmented state vector is the
essence of dale augmeniation (Tanner and Wong, 1987). Auxihary vari-
ables I/ need not have an immediate interpretation such as missing data.
The task is to choose a convenient conditional density P(U|X) and an
MCMC sampler which samples both X and U with stationary distribution
7 (X,U) = m(X)P(U|X), such that the resulting chain is rapidly mixing.
Note that the marginal distribution for X is a(X), as required. Note also
that, in the Bayesian context, =(X) implicitly conditions on the observed
data; therefore w(I/|X) may also condition on the observed data. Having
run the MCMC, the {X;} samples can be used for inference about x( X},
and the {U;} samples can be ignored.

The most famous example of the use of auxiliary variables is the Swe nd-
sen—Wang algorithm (Swendsen and Wang, 1987), which finds application
in certain lattice models; this is discussed in Green (1995: this volume).
Same of the strategies discussed above can be viewed as auxiliary variables
methods, as can adaptive rejection Metropolis sampling (Gilks et el., 1995a;
Gilks, 1995b: this volume).

Here we somewhat speculatively suggest another auxiliary variable strat-
egy, for use when the target density x(.) can be approximated by a more
convenient density mo(.) for most X, but not everywhere. For example,
7o(.) might be a multivariate normal approximation to the target den-
sity, permitting independent sampling. Another example might be a pos-
terior density having a simple form apart from an awkward multiplicative
term arising perhaps through an ascertainment mechanism. Such terms of-
ten make little difference for moderately probable parameter values, but
typically involve numerical integration. Here mo(.) would be the posterior
without the awkward multiplier.

As usual we do not need to assume that 7{.) and mo(.) are normalized
densities. Define a region A such that #(X) = mp(X) for all X € A; see
Figure 6.4. Let ¢ be a constant such that ¢ < x(X)/mo(X) for all X € A.
Region A might be chosen to make the calculation of ¢ easy. Define a scalar
auxiliary variable U taking values 0 and 1, with

g X =

M) ifreA

PU=1iX) = *(X) 3 6.8
( %) { 0 otherwise (6:8)
Note that ¢ ensures P(U = 1|X) £ 1. Two different MCMC samplers S1
and Sp are employed for updating X; 51 having stationary density propor-
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tional to mg(X)I(X € A), and Sp having stationary density proportional
to m(X) — cmo(X)}I(X € A). Here I(.) is the indicator function, taking the
value 1 when its argument is true, and zero otherwise. Each iteration of
the algorithm then proceeds as follows:
Step 1: If U/; = 1 sample X;4, using sampler S
else sample X;;; using sampler Sg;
Step 2: Sample Uy directly from (6.8).

This chain has the required stationary distribution =*(X, /).

U=0 | U=0or1

E
I
I
|
I
I

Figure.ﬁ.“! Tiustrating the use of an guxiliary variable U; wo(X) approzimates
x(X) in region A. See text for explanation.

If independent sampling from mg(.) is possible, 51 might sample independ-
ently from w4(.), rejecting any samples falling outside A; and Sy might be
a Metropolis algorithm. If A and ¢ are chosen well, the chain should spend
most of its time with I/; = 1, where mixing is rapid. When U; = 0, the chain
may mix less well, but careful chotce of S5 may help prevent the chain from
getting stuck in one place for many iterations. Whenever U/, = 1, the chain
reg.enemtes, and techniques of regenerative simulation can be employed to
estimate Monte-Carlo standard errors (Mykland et al., 1995; Tierney, 1995:
this volume; see also Section 6.4.3 below).

As noted above, 7{X;) may be particularly expensive to compute. While
Uy = 1, n(X:) need not be evaluated at Step 1 since sampler S; needs
to evaluate only m(X,). However, 7(X,) must be evaluated in Step 2. If
an upper bound d > w(X)/me(X) for all X € A is available, considerable
computational savings can be made in Step 2. According to (6.8),if X; ¢ A,
we must have U,y = U; = 0. If X, € A, Step 2 can be performed by:

Step 2a: Set Uy = 1 with probability £;
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Step 2b: If now U;y1 = 0, reset Uyyy = 1 with
. ( Xy

prabability ¢ s ori -2
If ¢ and d squeeze 7(X)/7o(X) tightly within region A, Uy will usually
be set to 1 at Step 2a, and w(X,;)/7o(X:) will not need to be evaluated.
Thus if the chain spends most of the time with U; = 1, good mixing will
be achieved with minimal computation.

The above techniques can be readily generalized to single-component
Metropolis—Hastings samplers, so that for each full conditional distribution
x(. | {X:j;j # i}) an approximation mo(. | {X,;;j # i}) is devised, and
an auxiliary variable U; is constructed analogously to (6.8).

6.5 Methods based on continuous-time processes

There are a number of MCMC methods derived from the properties of
continuous-time Markov processes which can be used to simulate from tar-
get densities. See Chapter 5 of Neal (1993) for a review of many of these
methods and their motivations from a physical perspective.

First, we consider a k-dimensional diffusion process {a continuous-time,
continuous-sample-path Markov chain in k dimensions) which has a station-
ary distribution 7(.}. Diffusion processes are best described by stockastic
differential equaiions of the form

dX, = ©3dB, + p(X:)dt (6.9)

where dX; is the change Xy 4 — X; in state vector X occuring in an
infinitessimally small interval of time di; £ is a constant positive-definite
k x k matrix; p is a vector-valued function of length %; and dB, is an
increment of k-dimensional Brownian motion. Loosely speaking, (6.9) says
that, given X,

Xepar ~ Ne(Xy + p(Xy)dt, £dt), (6.10)

where Ni denotes a k-dimensional multivariate normal density.
If we set

1
p(X) = EVlogr(X), {(6.11)
where V denotes (55—, 8;3—_2, .y 555)7, and if £ = I (the identity mat-

rix) then, under suitable regularity conditions (see for example Roberts and
Tweedie, 1995), 7(.) is the unique stationary and limiting distribution for
the process X, and X is called the Langevin diffusion for «(.}). From now
on, we shall assume that (6.11) holds.

Thus, if we were able to run this continuous-time process, at each time ¢
after a suitable burn-in, the sample X; could be regarded as a sample from
the target density w(.). In practice of course, simulation from diffusions is
impossible and a discrete-time approximation is necessary. A natural choice
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is suggested by (6.10):
Xers ~ Ne(Xe + 6u(Xz), 81), (6.12)

for some small 6 > 0. Neal (1993) discusses the interpretation of this algo-
rithm in terms of Hamiltonian dynamics, the use of correlated noise, and
issues related to time discretization.

Unfortunately, the time diseretization can have dire consequences for the
stationary distribution of the algorithm. In particular, it is quite common
to find that the algorithm is not even recurrent, no matter how fine the time
discretization § (Roberts and Tweedie, 1995). To counter this, it is advisable
to use a correcting Metropolis—Hastings rejection step. Therefore, given
X, the Langevin—Hastings algorithm proceeds by generating a proposal X’
from Np (X +8pu(X,}, 81,), and accepting this proposal (setting X5 = X*)
with probability the minimum of 1 and

:(X:) exp {—%[#(X') + p(X)IT[2(X! — X)) + 6{u(X) — #(X:)}]} )

This correction preserves the stationarity of w(.), but the algorithm pro-
duced is very often non-geometric (Roberts and Tweedie, 1995).

Recent work by Hwang et al. (1993} has demonstrated that, for Gaussian
target densities, the Langevin scheme described above can be improved
upon by a non-reversible diffusion process.

The Langevin—Hastings algorithm can be considered as an alternative
to the random-walk Metropolis algorithm, where the proposal distribution
is adjusted by considering a local property (the gradient of log #(.}). This
adjustment tends to propese points in the uphill direction from X,. Thus
the chain is nudged in the direction of modes. If the local properties of x(.)
are erratic however, this nudge can be misleading, and could for example
result in wildly overshooting modes. Therefore, care has to taken when
using this method, to check that the target density is sufficiently smooth,
and has no zeros in the interior of the state-space. Alternatively, algorithms
with truncated proposals of the form

Ni(X¢ 4 min{b, 6u(X)}, 51¢)

for large fixed b, retain most of the problem specific advantages of the
Langevin—Hastings algorithm, without the potential inherent instability of
the algorithm.

Extensions of this approach include the use of jump-diffusions, perhaps
allowing the Markov chain to jump between different-dimensional subspaces
of the parameter space, whilst following a diffusion sample path within each
subspace. See Phillips and Smith (1995: this volume) and Grenander and
Miller (1994) for applications.
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6.6 Discussion

Qur discussion to this point has been focused mainly on improving mix-
ing. We have said little about reducing Monte-Carlo standard errors. Per-
fect mixing is achieved by independent sampling from =(.}, but a suit-
able choice of proposal can reduce variances below those of independent
sampling (Peskun, 1973). To reduce Monte-Carlo standard etrors in single-
component Metropolis—Hastings samplers, Besag and Green (1993) suggest
using proposal distributions which incorporate an antithetic effect, to en-
courage X;, to flip from one side of its full conditional density to the
other. Importance reweighting of samples generated from a distribution
with heavier tails than x(.} can also reduce Monte-Carlo standard errors
(Geweke, 1989). The performance of these strategies may be sensitive to
the functionals g{(.) of interest, but a well mixing sampler will generally
deliver small Monte-Carlo standard errors for all functionals of interest.
Small Monte-Carlo standard errors may be achieved most easily at the ex-
pense of rapid mixing; zero variances are guaranteed with a proposal which
sets X,41 = X; with probability 1.0! Thus we regard rapid mixing as a
higher ideal than variance reduction.

In this chapter we have reviewed a variety of strategies for reducing run
times. None are guaranteed to achieve reductions, as all are justified to
some extent heuristically. However, an appreciation of the source of the
problem in a given application may suggest which strategy might improve
the MCMC. We recommend first trying some reparameterizations, or equiv-
alently some carefully tailored Metropolis—Hastings proposal densities. If
these do not help, one of the techniques of Section 6.4 might. If still no pro-
gess has been made, there is enormous scope for experimentation within
the frameworks outlined in Sections 6.3 and 6.5.

The possibilites do not end there. Markov chain mixing can be improved
by mizing strategies within a single chain (Tierney, 1994), i.e. using different
strategies at different iterations of the chain (note two different uses of the
word ‘mixing’ here). For example, different reparameterizations and aux-
iliary variables might be used at different iterations. As another example,
the blocking scheme (which defines the components in a single-component
sampler) can be altered as the simulation proceeds; this is the essence of
multigrid methods (see Goodman and Sokal, 1989, for an extensive review).
When mixing strategies, it is important to ensure that the choice of strat-
egy at iteration ¢t does not depend on X, to avoid disturbing the stationary
distribution of the chain.

MCMC methodology has had a profound effect on liberating statistical
modelling, and application of sophisticated models has been made feasible
through specially developed software, in particular BUGS (Spiegelhalter et
al., 1995a). Having adjusted to the new freedom, many practitioners are
now working at the operational limits of existing MCMC methodology,
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the limits essentially being met in the form of exasperatingly slow mixing.
Thus there is an urgent need to develop methods for improving mixing
for ever greater levels of model generality. Without very general and ro-
bust methods, reliable general-purpose software will not be attainable, and
without such software, much that MCMC has to offer will be inaccessible
to the greater corpus of applied statisticians.

A remarkable feature of the general framework of MCMC is the scope
it affords for ingenuity and creativity in developing rapidly mixing chains
for classes of problem. The techniques reviewed in this chapter give some
indication of the possibilities. Undoubtedly there will be many exciting new
developments in the future.
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7.1 Introduction

When implementing MCMC, it is important to determine how long the sim-
ulation should be vun, and to discard a number of initial ‘burn-1n’ iterations
(see Gilks et al., 1995: this volume). Saving all simulaticns from a MCMC
run can consume a large amount of storage, especially when consecutive
iterations are highly correlated, necessitating a long run. Therefore it is
sometimes convenient to save only every k'* iteration (¥ > 1). This is
sometimes referred to as thinning the chain. While neither burn-in nor
thinning are mandatory practices, they both reduce the amount of data
saved from a MCMC run.

In this chapter, we outline a way of determining in advance the number
of iterations needed for a given level of precision in a MCMC algorithm.
The method is introduced in Section 7.2, and in Section 7.3 we describe the
gibbsit software which implements it and is available free of charge from
StatLib. In Section 7.4, we show how the output from this method can also
be used to diagnose lack of convergence or slow convergence due to bad
starting values, high posterior correlations, or ‘stickiness’ (slow mixing) of
the chain. In Section 7.5, we describe how the methods can be combined
with ideas of Miiller (1991) and Gelman et al. (1995) to yield an automatic
generic Metropolis algorithm.

For simplicity, the discussion is in the context of a single long chain.
However, as discussed in Section 7.6, the same basic ideas can also be used
to determine the number of iterations and diagnose slow convergence when
multiple sequences are used, as advocated by Gelman and Rubin {1992b):
see also Gelman (1995: this volurme).




