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ABSTRACT1

The steady upward trend in the use of model selection and Bayesian methods in ecological2

research has made it clear that both approaches to inference are important for modern3

analysis of models and data. However, in teaching Bayesian methods and in working with4

our research colleagues, we have noticed a general dissatisfaction with the available5

literature on Bayesian model selection and multimodel inference. Students and researchers6

new to Bayesian methods quickly find that the published advice on model selection is often7

preferential in its treatment of options for analysis, frequently advocating one particular8

method above others. The recent appearance of many articles and textbooks on Bayesian9

modeling has provided welcome background on relevant approaches to model selection in10

the Bayesian framework, but most of these are either very narrowly focused in scope or11

inaccessible to ecologists. Moreover, the methodological details of Bayesian model selection12

1

Mevin Hooten
Hooten, M.B. and N.T. Hobbs.  (In Press).  A guide to Bayesian model selection for ecologists.  Ecological Monographs.

Mevin Hooten

Mevin Hooten



approaches are spread thinly throughout the literature, appearing in journals from many13

di↵erent fields. Our aim with this guide is to condense the large body of literature on14

Bayesian approaches to model selection and multimodel inference and present it specifically15

for quantitative ecologists as neutrally as possible. We also bring to light a few important16

and fundamental concepts relating directly to model selection that seem to have gone17

unnoticed in the ecological literature. Throughout, we provide only a minimal discussion of18

philosophy, preferring instead to examine the breadth of approaches as well as their19

practical advantages and disadvantages. This guide serves as a reference for ecologists20

using Bayesian methods, so that they can better understand their options and can make an21

informed choice that is best aligned with their goals for inference.22
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1 INTRODUCTION26

Model selection and Bayesian statistics have become increasingly important tools in the27

field of ecology (Johnson and Omland, 2004; Clark, 2005; Cressie et al., 2009; Hobbs,28

2009). Despite an upward trend in the use of model selection and Bayesian methods in29

ecological research, the intersection of these two frameworks for inference has been minimal30

in the literature (Figure 1). The guidance provided about model selection in the Bayesian31
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statistical literature is unbalanced and lacks cohesion. The theory and protocol for32

implementing a variety of Bayesian model selection methods seem much less tangible than33

the information criterion approaches for maximum likelihood we have grown accustomed to34

in ecology. Thus, we are at a critical juncture in our field. Do we use newer statistical35

technology while potentially foregoing model selection because it is too complicated, or do36

we use more familiar statistical methods at the potential risk of letting our choice of37

selection procedure dictate what scientific questions we can answer with our model(s)? An38

awareness of available model comparison approaches in the Bayesian framework can help39

the ecologist choose and apply the method that is most suited to their goals for inference.40

[Figure 1 Here]41

1.1 Preliminary Assumptions and Notation42

Our primary focus is on providing a comprehensive description of available methods for43

Bayesian model selection and multimodel inference that is accessible to ecologists. For a44

discussion of the philosophical arguments pertaining to model selection and multimodel45

inference we refer the interested reader to several excellent sources, including Gelman and46

Shalizi (2012) and Ver Hoef and Boveng (In Review), who discuss when and why one47

should use model selection methods. In this exposition, we assume the reader is familiar48

with the philosophical underpinnings and has already decided that they 1.) seek Bayesian49

statistical inference, 2.) would like to compare models for the purpose of improving that50

inference, and 3.) have already verified the model assumptions for their particular data set.51

This last item is critical because if the model assumptions are not met, the resulting52

statistical inference (including predictions and prediction uncertainty) rests on a house of53
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cards. Reliable inference requires checking the assumptions of our models. For further54

details on model checking, including the evaluation of goodness-of-fit and posterior55

predictive p-values, see Gelman et al. (2014 a).56

We also assume the reader has broad familiarity with statistical methods including57

least squares and maximum likelihood, as well as a basic understanding of Bayesian model58

building and algorithms for implementation (e.g., Markov chain Monte Carlo). Gotelli and59

Ellison (2012) and Bolker (2008) provide excellent background on contemporary ecological60

statistics, and from a Bayesian perspective see Clark (2007), Royle and Dorazio (2008),61

Link and Barker (2010), and Hobbs and Hooten (In Review).62

We make frequent use of matrix notation and linear algebra (to avoid excessive63

summation notation) throughout this guide, but readers unfamiliar with these concepts64

will be able to glean the big-picture concepts and connections from our descriptions. In65

particular, we use a common Bayesian square bracket notation ‘[a|b]’ (courtesy of Gelfand66

and Smith, 1990) to represent probability distributions, in this case, the distribution of67

variable ‘a’ given variable ‘b.’ We also make occasional use of the probability notation68

‘P (c)’ to denote the probability of item ‘c.’ For matrix notation, we use a standard form69

where matrices and vectors are bold, with matrices uppercase (e.g., X) and vectors70

lowercase (e.g., x). Matrix and vector transpose is denoted by the “prime” symbol (e.g.,71

x0). We use ✓ generically to denote a set of model parameters, and y to denote a data set,72

typically composed of response variables. Finally, we have defined several commonly used73

terms in the model selection and Bayesian literature in Table 1 to aid those readers less74

familiar with the subject.75

4



1.2 Overview of Topics76

In this guide, we present a wealth of available perspectives on Bayesian multimodel77

inference and model selection. It may come as a surprise that there are many options for78

model selection and multimodel inference, each with its own strengths and weaknesses. It79

is our view that ecologists need the ability to distinguish among methods more than they80

need a strict set of rules to follow in how to proceed with model selection. We use the term81

“guide” here (in the same sense as a field guide for birds) because we have made an e↵ort82

to be thorough and to remain una�liated in our description of these methods. Our guide is83

intended to be used as a conceptual aid; ecologists can use it to learn about the variety of84

options available and can decide how each fits in with their own research goals. For85

illustration, we implement several specific methods (all computer code is available in the86

supplemental material). However, as space does not allow us to provide specific examples87

of computational algorithms for every approach, we have made an e↵ort to provide the88

reader with numerous references they can consult to implement these methods in the89

statistical software of their choice.90

This paper is organized as follows. We begin by highlighting a few of most important91

and sometimes lesser known take home messages concerning model selection. This prelude92

serves as an overview containing big picture connections between the methods we describe93

subsequently. We then introduce a specific Bayesian ecological model as a case example.94

We refer to this example throughout to illustrate di↵erences among alternative approaches.95

In Section 2, we describe Bayesian model averaging, for use when the goal of the researcher96

is to make inferences from more than one model. In Section 3, we treat out-of-sample97

validation, the gold standard for model selection based on predictive ability. We then turn98
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to a topic in Section 4 that applies broadly across Bayesian and non-Bayesian statistics,99

the process of regularization, which we feel is essential to understanding the subsequent100

material (Section 5) on information criteria. Section 6 covers model-based methods for101

model selection. In the penultimate Section, we provide specific guidance on matching102

alternative methods to inferential goals. As a visual aid to the flow of the manuscript, we103

show section topics and sub-topics in Figure 2, providing an overview for the relationships104

among ideas and methods that we describe throughout the paper.105

[Figure 2 Here]106

1.3 Highlights107

While preparing this guide, we experienced several epiphanies ourselves that had not108

occurred to us previously. We discovered that most of these findings have existed in the109

literature for quite some time (a decade, at least), but had not been brought together in a110

way that supports a solid understanding and intuition about model selection. Among the111

most important of our own epiphanies were:112

• There is no general consensus among statisticians on the topic of model selection.113

• Multimodel inference can be thought of from many di↵erent perspectives, including114

model averaging. Thus, we use the phrase “model selection” somewhat generically115

(including model comparison and multimodel inference) because many of the116

methods we describe inherently consider multiple models (sometimes infinitely117

many), but aren’t considered to be model averaging in the conventional sense.118

• Much of the statistical community relies heavily on out-of-sample model comparison119
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approaches, yet in ecology we primarily favor information criterion approaches that120

avoid the use of out-of-sample data for model evaluation. Despite the potential121

advantages for model selection, out-of-sample methods have been largely ignored by122

ecologists because they 1.) may require additional data beyond what was already123

collected in the study and 2.) historically were very computationally intensive to124

implement.125

• Cross-validation is a hybrid approach containing both out-of-sample and126

within-sample aspects. From a Bayesian perspective, cross-validation for model127

selection is considered to be an empirical Bayesian method and can be incredibly128

helpful for model selection.129

• Neither AIC nor BIC are appropriate for Bayesian model averaging in all situations.130

Both AIC and BIC were designed to be used with maximum likelihood estimates and131

make fairly strong assumptions about a priori model probabilities. Whereas AIC132

excels at finding good predictive models, BIC was developed mainly for model133

averaging purposes and is good for small sets of well-justified models.134

• DIC and AIC often yield quite similar results for model selection with certain classes135

of models, however, DIC is not ideal for all classes of models (e.g., mixture models).136

No theoretical justification exists in the literature for the use of DIC in model137

averaging. Furthermore, DIC is not a fully Bayesian model comparison criterion.138

• A truly Bayesian information criterion seems to have just been discovered (i.e.,139

WAIC), but in actuality went unnoticed for more than a decade. WAIC resolves many140

of the issues with DIC, but also seems to have a critical weakness for some models.141
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• Regularization is an umbrella concept that spans nearly all topics in model selection.142

When statistical optimization problems are written as regularization expressions, it143

becomes clear that AIC, BIC, DIC, WAIC, posterior predictive loss, ridge regression,144

and Lasso all fall under the same umbrella. Moreover, regularization itself has an145

inherently Bayesian justification. It explicitly constrains model parameters in the146

same way a Bayesian prior does. Thus, model selection is similar to using a strong147

prior, at least in spirit.148

• The Bayesian framework allows one to actually build parametric mechanisms into149

models that perform model selection (e.g., stochastic search variable selection and150

reversible jump MCMC). We refer to these as model-based model selection151

approaches. They can be viewed as a combination of model selection and multimodel152

inference.153

1.4 An Exemplar: The Hierarchical Bayesian Occupancy Model154

Mixture models, especially zero-inflated models, comprise an important class of statistical155

tools in contemporary ecological research. In particular, occupancy and capture-recapture156

models are very commonly used in the field of wildlife ecology (Royle and Dorazio, 2008).157

We consider the hierarchical occupancy model as a prototypical Bayesian ecological model.158

The Bayesian occupancy model presents challenges for traditional model comparison159

methods, thus, we introduce the model here and refer back to it later to demonstrate160

several approaches for model selection and multimodel inference.161

In essence, the occupancy model is simply a binary regression model with binary162

measurement error. In its application, the occupancy model can be used to learn about the163
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true presence or absence of a species and the niche-related features of the sites while164

accounting for imperfect detection (MacKenzie et al., 2006). The basic occupancy model,165

presented for ecologists, was described by MacKenzie et al. (2002) and included166

implementation details from a maximum likelihood perspective. More recently, occupancy167

models have been extended to model temporal dynamics (e.g., MacKenzie et al., 2003),168

spatial autocorrelation (e.g., Johnson et al., 2013), and community dependence (e.g.,169

Dorazio et al., 2010).170

Hierarchically, a simple occupancy model with homogeneous detection probability171

and heterogeneous occupancy probabilities can be written as a zero-inflated binomial data172

model (with detection probability p) that depends on a latent Bernoulli process (zi,173

presence or absence) that varies among sites (i = 1, . . . , n) according to probability  i. The174

response data, yi, are a sum of the binary detection history for each site over a set of visits175

or occasions (Ji); that is, yi =
PJi

j=1

yij, where yij are binary detection observations for site176

i on survey occasion j. On each occasion, the species is detected (i.e., yij = 1) with177

probability p if it is truly present, otherwise it is recorded as not detected (i.e., yij = 0).178

For simplicity, we have used a specification of the occupancy model that assumes a179

homogeneous detection probability p and conditional independence for detection on each180

site visit j = 1, . . . , Ji. These assumptions can be relaxed by allowing for variation in181

detection as well as occupancy probability.182

The logit link, log( i/(1�  i)), is most commonly used function relating occupancy183

probability  i to a set of site-level covariates xi, however there can be computational184

advantages to using other link functions such as the probit (Hooten et al., 2003; Dorazio185

and Rodriguez, 2012; Johnson et al., 2013). The probit link function allows us to186
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reparameterize the model using a set of auxiliary variables vi that describe a continuous187

latent process representing occupancy probability (Albert and Chib, 1990). The probit188

occupancy model is specified hierarchically as189

yi ⇠

8
>>><

>>>:

0 if zi = 0

Binom(Ji, p) if zi = 1

, (1)190

zi ⇠

8
>>><

>>>:

0 if vi  0

1 if vi > 0

, (2)191

vi ⇠ N(�
0

+ x0
i�, 1) , (3)192

p ⇠ Beta(1, 1) , (4)193

�

0

⇠ N(µ
0

, �

2

0

) , (5)194

� ⇠ N(µ, �2

�I) , (6)195

196

where the probit link function itself (i.e., �, the standard normal cumulative distribution197

function) only comes into play when we condition zi on the regression coe�cients �
0

and �198

directly; then we obtain zi ⇠ Bernoulli(�(�
0

+ x0
i�)). The advantages of this probit199

occupancy model are primarily computational. The implicit probit link function allows us200

to create a fully Gibbs MCMC algorithm that requires no Metropolis-Hastings updates or201

tuning (Dorazio and Rodriguez, 2012; Johnson et al., 2013). We use the probit occupancy202

model presented in (1)–(6) as a basis for demonstrating the model selection procedures203

that follow, making modifications to it as needed.204
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2 MODEL AVERAGING205

From here forward, assume that we are dealing with a set of models M ={M
1

,. . ., Ml,. . .,206

ML} that are built using expert scientific judgement and are not obviously inappropriate in207

terms of assumptions. Model averaging allows us to combine the strengths of several208

models for improved inference. It has been argued (e.g., Kass and Raftery, 1995; Link and209

Barker, 2006) that Bayesian model averaging (BMA) is the proper way to obtain210

multimodel inference under the Bayesian statistical paradigm because it provides a valid211

probability-based mechanism for considering multiple models in the presence of process212

and parameter uncertainty. Hoeting et al. (1999) provided an excellent overview of BMA,213

complete with implementation details for selected model classes.214

An important and often overlooked aspect of model averaging is that BMA was not215

designed as a method for model selection, but rather as a method for combining posterior216

distributions. Whereas many of the methods in the following Sections are based heavily on217

finding models that excel at out-of-sample predictive performance (e.g., AIC and DIC),218

BMA is intended for within-sample model combination. Thus, in what follows, we provide219

some insight about how BMA fits into the larger suite of model selection methods and refer220

the interested reader to the literature cited herein for details.221

At the heart of BMA is the average posterior distribution of a quantity of interest222

(g ⌘ g(✓, ỹ), typically a function of either an unknown parameter or set of data or both)223

[g|y] =
LX

l=1

[g|y,Ml]P (Ml|y) , (7)224

where [g|y,Ml] is the posterior distribution of g under individual model Ml and P (Ml|y) is225
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the posterior probability of model Ml. The posterior model probability P (Ml|y) is the226

workhorse of the BMA procedure, providing the weight of evidence in the average (7) for227

one model over others. Thus, we have a natural and proper Bayesian framework for228

multimodel inference as long as we can find the required quantities in (7). Furthermore,229

BMA performed on a set of models M yields better inference about g than any one of the230

models alone (Madigan and Raftery, 1994), thus we have a compelling reason to use it.231

2.1 The Utility of the Marginal Data Distribution232

Recall the classical expression for Bayes rule assuming a single model233

[✓|y] = [y|✓][✓]
[y]

, (8)234

where [✓] is the prior distribution for the parameters. The denominator [y], which we235

typically avoid finding analytically, corresponds to the aforementioned marginal data236

distribution for the given model; it will be large for the same set of data if the model237

represents them well and small if it doesn’t. The marginal data distribution [y] is a natural238

model discrimination measure by itself and is fundamental in computing the posterior239

model probabilities P (Ml|y). To show this, we generalize the notation to include240

information concerning the individual model each [y] is associated with. Therefore, let241

[y|Ml] be the marginal data distribution for model l. Then, the posterior model probability242

can be written as243

P (Ml|y) =
[y|Ml]P (Ml)PL
j=1

[y|Mj]P (Mj)
, (9)244
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where P (Ml) is the assumed prior model probability which is commonly set to 1/L. The245

use of equal prior model probabilities explicitly assumes that there may be no reason to246

prefer one model over another. The alternative is to set the P (Ml) such that they represent247

an a priori understanding of di↵erences among model importance as long as the sum of248

prior model probabilities over all models in the set equals 1. To obtain the necessary249

marginal data distribution for model l we need to integrate over the parameters in the joint250

distribution of the data y, the model Ml, and the parameters ✓ so that251

[y|Ml] =

Z
[y|✓,Ml][✓]d✓ . (10)252

Note that this (10) is the same expression typically appearing in the denominator of Bayes253

rule (8).254

2.2 Bayes Factors255

Assuming that we can find the posterior distribution for the quantity of interest [g|y,Ml]256

for all models in M, we need only compute the posterior model weights to find the257

averaged posterior distribution (7). As it happens, solving the integral in the marginal data258

distribution (10) is often non-trivial, which is why most Bayesian studies use MCMC to259

avoid calculating it directly. The sum in the denominator of the posterior model260

probability (9) can also become intractable as the number of models L grows. Thus,261

despite its attractiveness and rigor, the challenge with BMA is in its implementation.262

Consider the ratio of posterior probabilities for two models, say Ml and Ml0 . Using a263
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bit of algebra it is easy to show that the ratio (i.e., the posterior odds) is264

P (Ml|y)
P (Ml0 |y)

=
[y|Ml]P (Ml)PL
j=1

[y|Mj]P (Mj)

. [y|Ml0 ]P (Ml0)PL
j=1

[y|Mj]P (Mj)
265

=
[y|Ml]

[y|Ml0 ]

P (Ml)

P (Ml0)
266

= Bl,l0
P (Ml)

P (Ml0)
(11)267

268

which, after the data y have been observed, can be written as a constant multiplier of the269

ratio of prior model probabilities (i.e., the prior odds). The multiplier Bl,l0 in (11) is known270

as the Bayes factor and is only a function of the marginal data distributions from each271

model (Kass and Raftery, 1995). Thus, the posterior evidence in favor of one model over272

another is found by updating the prior evidence with the data. Similar to the various rules273

of thumb for comparing models using information criteria, there have been several274

suggested rules of thumb in the literature for Bayes factors (e.g., Bl,l0 > 10 implies strong275

evidence in favor of model Ml over model Ml0 according to Je↵reys (1961)).276

The utility of the marginal data distribution for model averaging becomes clear277

because the posterior probability of any model Ml,278

P (Ml|y) =
Bl,l0P (Ml)PL
j=1

Bj,l0P (Mj)
, (12)279

is obtained by dividing the numerator and denominator in the posterior model probability280

(9) by [y|Ml0 ] (Link and Barker, 2006). Thus, if we have the marginal data distributions281

[y|Ml] for all models being considered, then we have the Bayes factors Bl,l0 , and if we have282

the Bayes factors we can compute the exact Bayesian model weights for performing model283
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averaging. Various methods exist for calculating the necessary quantities in Bayesian284

model averaging (e.g., Congdon, 2006), some of which we will describe in what follows285

(Sections 4.1.4 and 5.2). Finally, we note that one must be cautious in Bayesian model286

averaging when improper priors (i.e., prior distributions that do not integrate to 1) are287

used for parameters, as the Bayes factors are undefined in those settings (Spiegelhalter and288

Smith, 1982).289

2.3 Willow Tit Occupancy: BMA290

Royle and Dorazio (2008) describe a data set involving occupancy sampling of Swiss291

breeding birds as part of the Swiss Survey of Common Breeding Birds (collected by the292

Swiss Monitoring Haufige Brutvogel, and originally provided by Hans Schmid and Marc293

Kery). Thanks to Royle and Dorazio (2008), these data have become a standard textbook294

example used to demonstrate Bayesian occupancy models and can be found at the URL:295

http://www.mbr-pwrc.usgs.gov/pubanalysis/roylebook/. We use a subset of data296

consisting of the first 200 quadrats throughout Switzerland where surveys were conducted297

for up to three sampling occasions. We focus on the same species considered by Royle and298

Dorazio (2008), the willow tit (Parus montanus), a relatively common passerine in Europe299

that resembles the chickadee of North America in appearance. Royle and Dorazio (2008)300

analyzed a binary form of the data at each site and occasion (i.e., detected / non-detected)301

along with covariate information on elevation and forest cover (which we standardize to302

have mean zero and standard deviation equal to one). Further details concerning data303

collection methods for this study are described by Kery and Schmidt (2004).304

Existing life history information concerning the environmental niche of the willow tit305
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suggests that forest cover and elevation are important features. To demonstrate Bayesian306

model averaging (as well as the methods that follow) applied to the occupancy model, we307

constructed a set of 4 distinct candidate models to learn about the niche preferences of this308

species. Each occupancy model contains a homogeneous detection probability and an309

occupancy probability that 1.) is homogeneous, containing only an intercept (i.e., �
0

; the310

null model, M
1

), 2.) contains an intercept and elevation as a covariate (M
2

), 3.) contains311

an intercept and forest as a covariate (M
3

), and 4.) contains an intercept and both312

elevation and forest as covariates (M
4

).313

Assuming that we seek to use within-sample data to combine models, we can utilize314

Bayesian model averaging to obtain improved inference concerning the niche preferences of315

willow tit in Switzerland. Using the computational approaches described in Section 5 (i.e.,316

reversible-jump MCMC), we calculated the posterior model probabilities for the four317

models described above (Table 2). Assuming equal prior probabilities for this example (i.e.,318

Ml = 1/4 for l = 1, . . . , 4), we find that the two models containing the elevation covariate319

dominate the model averaged inference with posterior model probabilities of320

P (M
2

|y) = 0.52 and P (M
4

|y) = 0.48. Given our equal prior model probabilities, the Bayes321

factor for model M
2

over M
4

is computed as P (M
2

|y)/P (M
4

|y) = 1.08.322

[Table 2 Here]323

We demonstrate the di↵erences between posterior means for coe�cients among all324

models considered in Table 3 as well as the model averaged posterior means. Notice that325

the BMA posterior mean for the elevation coe�cient falls between the values resulting from326

the two models containing that covariate (i.e., M
2

and M

4

), while the BMA posterior mean327

for the forest coe�cient shrinks toward zero. This shrinkage of �
1

is caused by the very328

16



small posterior model probability for M
2

(i.e., the model with only forest as a covariate),329

thus down weighting the estimate resulting from that model because it carries little weight330

in the Bayesian model average.331

[Table 3 Here]332

Following the line of reasoning provided by Madigan and Raftery (1994) it is common333

to consider BMA for only the two models containing the elevation covariate because the334

others have negligible posterior model probabilities. Thus, if one desired BMA inference335

based on the Occam’s window principle (i.e., considering only models carrying substantial336

weight in the averaging), one would rerun the analysis using only the two top models in337

this scenario. We return to Bayesian model averaging in Section 5, describing various338

approaches for computation.339

3 MODEL VALIDATION340

In this Section, assume again that we are considering a set of models M. But now suppose341

we are interested in evaluating each model’s performance relative to some predefined342

characteristic. Predictive ability is by far the most commonly sought model characteristic343

in the literature on model selection and thus we highlight it here. Alternatively, other344

methods have been developed for selection based on estimation inference (i.e., inference345

that seeks to improve our understanding of model parameters rather than predictions;346

Bondell and Reich, 2013).347
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3.1 Out-of-Sample Validation348

If we are interested in prediction as our main characteristic of model utility, then it is349

sensible to evaluate the model in terms of real predictive ability; that is, we seek a model350

whose predictions are close to out-of-sample data (with closeness measured using a score351

function). Out-of-sample data are observations that are not used to fit the model but that352

we can use to compare with model predictions. In the machine learning literature,353

out-of-sample data are often referred to as “validation” data, whereas within-sample data354

are commonly referred to as “training” data (Hastie et al., 2009).355

The essential idea in out-of-sample validation is that two data sets are collected; one356

to fit (or train) the model (y) and one to validate the model (y
oos

). A large out-of-sample357

data set will provide the best information about the predictive performance of a model, but358

is obviously more intensive to collect. Thus, some trade-o↵ between within-sample and359

out-of-sample data set size is necessary. For large single data sets such as those derived360

from web searches or financial data it is common to split the data set into two pieces, one361

for training and another for validation. If the original data set is large enough, the362

resulting decrease in inferential power due to splitting it up is negligible. In historical363

ecological studies it was less common to have such large data sets, at least in terms of364

response variables. However, with remote sensing and newer automated data collection365

methods such as global positioning system (GPS) telemetry devices, large ecological data366

sets are more common than ever. Thus, out-of-sample validation methods are becoming367

more realistic for ecological analyses.368

Out-of-sample validation relies on the ability to compute a similarity statistic or369

scoring rule to obtain a measure of closeness between our out-of-sample data y
oos

and the370
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predictions ŷ
oos

(e.g., Bernardo 1979; Czado et al., 2009; Gneiting and Raftery, 2007;371

Gneiting, 2011). One of the most commonly used scoring rules is the mean squared372

prediction error (MSPE)373

MSPE =
n
oosX

i=1

(yi,oos � ŷi,oos)2

n

oos

, (13)374

or its square root (RMSPE). The prediction, ŷi,oos in MSPE, is obtained without using the375

out-of-sample observation yi,oos. The out-of-sample validation procedure can be applied376

independently for each model in a discrete set of models M and the predictive scores (e.g.,377

RMSPEl for model Ml) can be compared to assess which model is best overall at prediction378

or how the models rank in terms of predictive ability.379

The MSPE is a popular scoring rule because it has important properties when used380

with certain models. In general, Bernardo and Smith (1994) recommend logarithmic381

scoring rules that are both “local” and “proper.” In essence, these scoring rule382

characteristics guarantee that the predictive score adheres to the chosen model and data383

(Vehtari and Ojanen, 2012; Gelman et al., 2014 b). We describe a more general approach384

for scoring models based on out-of-sample data in what follows.385

The practice of evaluating models based only on point estimates of parameters or386

predictions does not naturally incorporate our uncertainty pertaining to those quantities.387

One of the primary advantages of Bayesian inference is the ability to account for various388

sources of uncertainty, thus we now describe a method for model validation that389

appropriately accommodates uncertainty. In doing so, it is critical to recall how prediction390

works from the Bayesian perspective. In general, data that have not been observed are391

considered to be random quantities, thus we treat them like all other random quantities in392

the Bayesian setting and seek their posterior distribution. The posterior distribution for393
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predictions is called the “posterior predictive distribution” and can be found using the394

integral395

[y
oos

|y] =
Z

[y
oos

|y,✓][✓|y]d✓ . (14)396

One option for the point prediction itself (ŷ
oos

) could be the posterior predictive mean,397

which technically requires another integral. That is,398

ŷ
oos

= E(y
oos

|y) =
Z Z

y
oos

[y
oos

|y,✓][✓|y]d✓dy
oos

, (15)399

which can be easily approximated as long as the out of sample data y
oos

can be sampled400

from the distribution [y
oos

|y,✓] within an MCMC algorithm. If this condition is met, one401

can use composition sampling (Tanner, 1996) and Monte Carlo integration to approximate402

the point prediction by403

ŷ
oos

⇡
PT

t=1

y(t)
oos

T

, (16)404

where ŷ(t)
oos

is the t

th MCMC sample (out of T total MCMC samples) of the predicted405

out-of-sample data. That is, we draw y(t)
oos

as a sample from [y
oos

|y,✓(t)] at every MCMC406

iteration t for t = 1, . . . , T and then average them.407

The procedure we have just described provides a way to obtain Bayesian point408

predictions, but it does not directly accommodate uncertainty pertaining to a score409

function. As it turns out, the log predictive density log[y
oos

|y] is a local and proper scoring410

function that is appropriate for Bayesian model validation (Gelman et al., 2014 b). In the411

situation where we have actual out-of-sample data y
oos

, then we could just compute412

log

 PT
t=1

[y
oos

|y,✓(t)]

T

!
, (17)413
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using MCMC samples ✓(t), as a Monte Carlo integral representation of the score function414

log[y
oos

|y] = log

Z
[y

oos

|y,✓][✓|y]d✓ . (18)415

This score can then be used to rank all models in the set M and find the one that yields416

the best predictions. Out-of-sample validation is almost as e�cient as simply fitting the417

individual models because it only requires the additional calculation of [y
oos

|y,✓(t)] on each418

MCMC iteration which is a low-order operation. Thus, for large ecological data sets, the419

out-of-sample validation approach is a very reasonable way to find good predictive models.420

However, as the out-of-sample size reduces, this validation procedure becomes less stable421

and thus more sensitive to the set of out-of-sample data.422

3.2 Cross-Validation423

The concept of cross-validation was developed as a way to increase the stability of424

validation based on out-of-sample data for smaller sample sizes. Cross-validation is similar425

to out-of-sample validation in that we exclude a subset of the data (yk) from the fitting426

procedure so that the model is unaware of it, and then compute the score based on the427

excluded data. The problem with choosing a single subset of the data to leave out is that428

you can only assess predictive ability for those measurements. Thus, it is common to leave429

out all of the data, but only in small subsets sequentially.430

K-fold cross-validation involves grouping the data evenly (or approximately even) into431

K groups and then using each set of left out data yk to compare with the model432

predictions based on the remaining data (y�k). We then iterate through all groups of data433
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yk for k = 1, . . . , K and compute component scores which are summed to yield the full434

cross-validation score for the whole data set435

KX

k=1

log

 PT
t=1

[yk|y�k,✓
(t)]

T

!
. (19)436

In the case where K = n (n is the sample size), the procedure is often referred to as437

leave-one-out cross-validation. Leave-one-out cross-validation may be preferable when the438

sample size is small and there are few observations to use as training data, though the439

resulting estimate of prediction error becomes less stable as K ! n.440

In general, the major disadvantage of K-fold cross-validation for Bayesian models is441

that we are required to refit each statistical model K times to obtain the complete set of442

out-of-sample predictions. Acquiring K ⇥ L individual model fits may be reasonable for443

simple models, but for more complicated models that take longer to fit, a K-fold increase444

in required computing time may not be reasonable. However, despite these challenges,445

when true predictive ability is the main criterion of interest, cross-validation is still very446

appealing for model comparison. In fact, it underlies several parsimony-based model447

comparison methods.448

3.3 Conditional Predictive Ordinates449

To improve computational tractability for large data and model sets, one could consider450

the posterior predictive distribution for within-sample data. That is, instead of451

cross-validation, simply compute the aforementioned predictive score based on the452

predictive distributions of the data [yi|y] for i = 1, . . . , n. The problem with this approach453
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is that the predictive performance of the model will be overestimated because the data are454

used twice (i.e., once for model fitting and another time for model validation). The455

overestimation of predictive performance is referred to as “optimism” in the statistics456

literature and we return to this concept in Section 4.457

As a potential remedy, consider the leave-one-out predictive distribution for each458

observation in a data set459

[yi|y�i] =

Z
[yi|✓][✓|y�i]d✓ . (20)460

This quantity (20) is referred to as the conditional predictive ordinate (CPOi; Geisser,461

1993) and represents the probability (or density) of the observation yi when the model is fit462

without that observation. Thus, large CPOi values correspond to very likely observations463

under the current model, whereas small CPOi indicates outliers and/or high-leverage464

observations (Pettit 1990). In principle, the computation of CPO would require a true465

cross-validation involving an n-fold iterative model fitting scheme. Fortunately, CPO can466

be approximated easily within an MCMC algorithm for model fitting as the harmonic467

mean of the predictive distributions evaluated at the MCMC values for the parameters ✓,468

CPOi ⇡
T

PT
t=1

[yi|✓(t)]�1

, (21)469

where t = 1, . . . , T represent the MCMC iterations. A summary statistic of these individual470

CPO values, such as �
P

i log(CPOi), then provides an overall measure of predictive471

performance. Notice the similarity in expressions for the sum of the logged CPO values472

and the log predictive score (19) described in the previous Section. In terms of473

appropriateness for model selection, the CPO involves a harmonic mean, which yields a474
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numerically unstable estimator in practice, but software can often be constructed to flag475

problematic cases (Held et al., 2010).476

3.4 Willow Tit Occupancy: Model Validation477

Suppose that we are now interested in comparing the 4 occupancy models we introduced in478

Section 2 in terms of their predictive ability. We do not have an auxiliary source of479

out-of-sample data to use for model validation, but we can employ Bayesian480

cross-validation and also compute the �
P

i log(CPOi) statistic based on (21) to compare481

the information about predictive ability using each of these methods.482

We used 10-fold Bayesian cross-validation (i.e., K = 10) due to the moderate sample483

size and computed the scoring function discussed in (19) as484

�2
10X

k=1

log

 PT
t=1

Binom(yk|Jk, p
(t)z(t)k )

T

!
, (22)485

where, p(t) and z(t)k are MCMC samples arising from model fits not including observations486

yk and the negative two is multiplied merely for convenience (so that small scores are better487

and to compare with other model selection criteria later). Thus, the inner sum in (22) is488

over the MCMC iterations from a single fold of the validation procedure and the outer sum489

is over the K folds. We obtained 160,000 MCMC iterations to fit each model (in each fold),490

discarding the first 16,000 as burn-in. To illustrate the computational gains achieved using491

contemporary parallel programming methods we performed the cross-validation using both492

non-parallel and parallel algorithms. The non-parallel algorithm (i.e., a single loop over the493

K folds) required approximately 1 hour, whereas the parallel algorithm required over an494
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order of magnitude less computing time at approximately 5.7 minutes. Similarly, it495

required 1.4 minutes to compute the CPO statistics in parallel (but 5.7 minutes in496

sequence). All computation was performed on a desktop workstation with two 2.93 GHz497

6-Core processors and 32 GB of RAM; we note that new laptops have individual processors498

that are substantially faster, but parallel computing is still more e�cient on the desktop we499

used with its many cores. All MCMC algorithms were coded natively in R (R Core Team,500

2013) and the R package ‘snowfall’ (Knaus, 2013) was used for parallel computing.501

In Table 4 we can see that the Bayesian cross-validation score generally agrees with502

CPO in that the two models with elevation as a covariate (i.e., M
2

and M

4

) out-perform503

the null model (M
1

) and model with only an intercept and forest as a covariate (M
3

; note504

also that lower scores are better). The null model performs the worst based on the505

cross-validation score, while the two models with elevation are nearly equivalent in terms of506

prediction. CPO indicates that the null model may be slightly better at prediction than507

the model with only forest as a covariate (i.e., M
3

), however, given that cross-validation508

evaluates predictive performance based on out-of-sample data, we might be skeptical of509

these CPO results for the worst performing models. This potential discrepancy between510

cross-validation and CPO is part of the sacrifice we make when computation time is limited.511

4 STATISTICAL REGULARIZATION AND512

INFORMATION CRITERIA513

The assessment of a set of models in terms of their predictive ability has been a central514

theme in the development of information criteria. However, information criteria involve515

25



specific approaches to model selection that fall under the much broader umbrella of516

statistical regularization. This concept of regularization, though used on a daily basis in517

ecology, does not appear to be widely recognized. However, regularization reveals518

numerous theoretical and practical connections among model selection and multimodel519

inference paradigms. Specifically, regularization links Bayesian and non-Bayesian520

approaches to model selection and here we describe how this linkage occurs. We begin by521

presenting the basic regularization concept, showing how it has been used traditionally in522

the non-Bayesian context (Section 4.1). We then describe how regularization is inherently523

Bayesian (Section 4.2) and highlight a few explicitly Bayesian approaches for doing it (e.g.,524

the Bayesian Lasso in Section 4.2.2).525

The term “regularization” refers to the use of an external regulator that constrains526

the results of an optimization problem (note that the term “regulator” is borrowed here527

from physics but is not commonly used in statistics, though it is perhaps more intuitive).528

In statistical terminology, the optimization problem could be a likelihood that needs529

maximizing or a posterior distribution that needs exploring (perhaps via MCMC). In the530

broader decision theoretic context, we might refer to a negative log-likelihood more531

generically as a loss function; that is, a function that expresses the “loss” incurred by532

inadequately estimating parameters of interest. In certain cases, the loss function may have533

too much freedom to be useful for inference and thus an external constraint can help make534

it useful.535

In placing this concept of regularization in a formal statistical framework for decision536
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making, or parameter estimation, consider the generic expression537

L(y,✓) + r(✓,�) , (23)538

where L(y,✓) represents the loss, a function of both knowns (y) and unknowns (✓) and,539

though it is related, should not to be confused with a likelihood (which we label [y|✓]).540

The function r(✓,�) in (23) represents the regulator or constraint on the unknowns ✓. The541

regulator function r may also depend on some other variables � that may or may not be542

related to the loss function or its components. There are other ways to express the loss and543

regulator relationship, but the expression in (23) is perhaps the most common. Statistical544

inference can now be obtained by minimizing the joint function (23) with respect to ✓, and545

perhaps �, if not already known. The primary advantage of regularization is that it can546

yield improved inference, often reducing the variance of estimates and increasing the547

accuracy of predictions. Though not often discussed in the ecological literature, this548

concept of regularization is quite common in many areas of statistics and machine learning549

(Hastie et al., 2009). As we will see in the next sections, regularization also underlies the550

dominant model selection approaches used in ecology and has direct ties with Bayesian551

statistics.552

4.1 Traditional Regulator: The Penalty553

To make the concept of regularization more concrete, we place it in the context of classical554

non-Bayesian regression modeling. That is, consider the linear model555

yi ⇠ N(�
0

+ x0
i�, �

2) , (24)556
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for i = 1, . . . , n, where the “unknowns” are the regression coe�cients �
0

and �. For now,557

assume the error variance �2 is known, but note that it need not be in general. If our goal558

is to find estimates of �
0

and �, then the loss function for this optimization problem is559

proportional to the negative log-likelihood L(y, �
0

,�) =
Pn

i=1

(yi � �

0

� x0
i�)

2. Now560

consider the regulator function �
1

Pp
j=1

|�j|�2 , called the “penalty” in the statistical561

literature, such that the optimization problem from (23) becomes562

nX

i=1

(yi � �

0

� x0
i�)

2 + �

1

pX

j=1

|�j|�2 , (25)563

where p corresponds to the dimension of � (i.e., the number of covariates in the model), �
1

564

is often referred to as the penalization or bandwidth parameter (in the statistics literature,565

� is often used instead of �
2

; we avoid the � notation here to reduce any confusion with the566

leading eigenvalue of a Leslie matrix in demographic modeling), and the exponent �
2

is the567

chosen degree of the “norm.” Note that the penalty is commonly written using norm568

notation, that is, ||�||�
2

⌘
Pp

j=1

|�j|�2 (referred to as the L�
2

norm for a specific value of569

�

2

). The parameters �
1

and �
2

control the amount and type of regularization that occurs in570

the estimation problem. Although the parameters �
1

and �
2

are sometimes chosen only571

implicitly, based on adherence to a particular philosophical underpinning, there seems to572

be greater variety in the rationale and practical choices for �
1

than for �
2

. We discuss573

commonly used choices for �
2

next.574
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4.1.1 Ridge Regression575

So-called “ridge regression” is a direct application of the above optimization problem (25)576

where the parameter �
2

= 2 is used in the penalty term. In this case, we seek to minimize577

nX

i=1

(yi � �

0

� x0
i�)

2 + �

1

pX

j=1

�

2

j (26)578

with respect to the regression coe�cients �
0

and � given a certain value for the penalty579

parameter �
1

. If �
1

= 0 then the negative log-likelihood is not penalized and the resulting580

estimated coe�cients will be the maximum likelihood estimates (MLEs). However, as �
1

581

increases, it will “shrink” the estimated coe�cients � toward zero when (26) is minimized582

as a trade-o↵ between maximizing the likelihood and meeting the constraint. This is why583

regularization methods in the maximum likelihood setting are commonly referred to as584

“penalized” or “shrinkage” methods. The shrinkage of � can be incredibly useful in585

parameter estimation and prediction.586

In parameter estimation, shrinkage induces an increasing bias in �̂ with increasing �
1

587

but simultaneously reduces the variance of �̂. Thus, in ridge regression, we accept a small588

amount of bias in our estimation of � in return for a potentially large reduction in589

variance. The reduction in variance of �̂ also decreases prediction error, providing590

improved prediction accuracy. More complex models provide an excellent fit to591

within-sample data but are poor predictors of out-of-sample data. Shrinking model592

parameters toward zero reduces e↵ective model complexity thereby improving our ability593

to predict out-of-sample data.594

These features of ridge regression are undoubtedly desirable, but may overshadow one595
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of the most useful aspects of the regularization: alleviation of the e↵ect of multicollinearity596

in the covariates (e.g., Graham, 2003). When columns of our “design matrix” X are597

correlated with each other, the associated coe�cients � have to compete for the overall598

e↵ect on the response variables y. This competition causes the coe�cient estimates �̂ to599

o↵set each other, forcing some to be very large (positive) and some very small (negative).600

In cases where significant multicollinearity exists, the penalty term in the optimization601

problem will shrink these exaggerated parameter estimates back to reasonable values.602

Thus, in ridge regression, we can use the “full” model including all the variables in X at603

once, regardless of how much they are correlated with each other. The alternative approach604

is to construct a finite model set where no single model contains any two covariates that605

are correlated beyond a certain threshold (e.g., correlation coe�cient ⇢ = 0.6, as advocated606

by Burnham and Anderson, 2002). This latter approach is a type of discrete regularization,607

rather than a continuous one such as ridge regression.608

There are a few practical considerations in the proper application of regularization609

methods for regression models. First, notice that we have separated the intercept �
0

from610

the rest of the regression coe�cients � in (25). We isolate �
0

because we do not wish to611

shrink the general mean of the regression model to zero, rather, only the coe�cients that612

interact with covariates. Second, it is advisable to standardize the covariates in X prior to613

analysis (i.e., subtract the mean and divide by the standard deviation). This614

standardization of covariates allows us to use a single penalty parameter �
1

rather than one615

for each coe�cient �j so that they do not need to be shrunk di↵erentially. The third616

consideration is the choice of �
1

, which we discuss in the next section.617
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4.1.2 Lasso: Least Absolute Shrinkage and Selection Operator618

Continuing with the linear regression example (25) used in the previous section, now619

consider a di↵erent regulator function where we set �
2

= 1 such that620

nX

i=1

(yi � �

0

� x0
i�)

2 + �

1

pX

j=1

|�j| . (27)621

This new penalty term (�
1

Pp
j=1

|�j|) is commonly referred as the “Lasso” or L
1

penalty622

and induces a markedly di↵erent constraint on the optimization problem. The acronym623

‘Lasso’ stands for Least Absolute Shrinkage and Selection Operator (Tibshirani, 1996)624

because the use of an L

1

norm penalty implies a sum of absolute coe�cient values. While625

the L

2

penalty in ridge regression shrinks � toward zero nonlinearly (with increasing �
1

),626

the L
1

Lasso penalty shrinks the coe�cients linearly in such a way that they eventually can627

equal zero exactly in the optimization. Thus, Lasso drops covariates from the model by628

setting their coe�cients to zero. This absolute variable selection concept seems quite629

familiar to many ecologists who learned about model selection from a traditional630

perspective. This heuristic familiarity has made the Lasso approach very popular631

(Dahlgren, 2010).632

To summarize, we have now seen that both �
1

and �
2

in (25) play important roles in633

statistical regularization. Given that �
1

controls the amount of shrinkage induced, it acts634

as a type of scale parameter, while �
2

controls the form of the shrinkage and could be635

thought of as a shape parameter. For now, we suspect that the choice of �
2

is more a result636

of personal preference based on desired inference, but what about �
1

? How should we637

choose the amount of shrinkage?638
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Heuristically, we seek inference concerning model parameters that is based on a639

balance between model fit and predictive ability. Thus, we could treat �
1

as we do any640

other model parameter and estimate it simultaneously with the others. The problems with641

this approach are manifold, but relate to the same basic concept: within-sample data versus642

out-of-sample data. Even if there is enough information in the data to actually estimate an643

“extra” model parameter, the fact that within-sample data are being used to learn about644

�

1

limits its utility as a regulator. Recall from our discussion of cross-validation, that there645

are trade-o↵s in using the same set of data to both fit and validate (i.e., select) models.646

The primary trade-o↵ is that predictive performance can only truly be assessed using647

out-of-sample data. Thus, it seems most reasonable to estimate model parameters based on648

within-sample data and choose regulator parameters based on out-of-sample data.649

A strategy employed in many machine learning studies is to optimize the regularized650

loss function (23) given the within-sample data y for the first term and use an iterative651

cross-validation approach to choose �
1

based on predictive ability of out-of-sample data. In652

practice, a strategy for the regression model would involve first optimizing (25) using653

�

1

= 0 assigning a cross-validation score, and then incrementally increasing �
1

over a range654

of values yielding a set of predictive scores. Given a su�ciently fine range of values for �
1

,655

we would then choose the regularized model yielding the best predictive score. In the case656

of ridge regression, our inference would consist of a full set of coe�cient estimates �̂ that657

are properly shrunk to provide the best predictions of out-of-sample data. For Lasso, we658

would obtain a subset of non-zero coe�cient estimates that have been shrunk according to659

the L

1

penalty, and the remaining coe�cients would be zero (i.e., no longer in the final660

model). In either case, we will obtain a justifiably parsimonious model that is better at661
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prediction than the unpenalized full model. Another advantage is that we did not have to662

do prior variable elimination based on highly collinear covariate pairs.663

[Figure 3 Here]664

Despite the many advantages to classical regularization, there are also several665

disadvantages. Aside from the somewhat ad hoc and subjective feel of the procedure, these666

methods are based on optimization and they yield point estimates for the model667

parameters of interest, but learning about the uncertainty of �̂ is not necessarily trivial or668

even possible in some cases. Finally, because we may want to rely on out-of-sample data to669

choose appropriate regulator parameters (�), this can dramatically increase the670

computational requirements of cross-validation-based regularization.671

4.1.3 Akaike’s Information Criterion672

Continuing in a non-Bayesian context, we now explain how information criteria fit into the673

regularization concept. Statistical regularization is appealing for the reasons discussed in674

the previous section, but for many ecologists, the increased computational burden and need675

to select regulator parameters can be daunting. Enter the information criterion approach676

to statistical regularization. The general idea behind information criteria is that we choose677

a scoring function a priori that will be used to “score” each of the models based on the678

balance of fit using the within-sample data and parsimony (or overall predictive ability;679

Gneiting, 2011). Not surprisingly, most commonly used information criteria take the same680

form as the previously introduced regularization expression (23). For example, in the linear681

regression class of models, Akaike’s Information Criterion (AIC) takes the form of (25)682

with regulator parameters �
1

= 2 and �
2

= 0 such that the penalty is 2
Pp

j=1

|�j|0 = 2p.683
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The L

0

norm used in AIC implies that the shrinkage is only based on the number of684

parameters rather than the parameter values themselves. This implication is useful because685

each model in the model set can be fit independently and then post hoc scored using AIC686

(lower AIC implying better predictive ability of the model). However, we must be careful687

to avoid inducing obvious bias in the estimates by choosing a model set such that no single688

model contains correlated covariates because the penalty cannot provide feedback to the689

estimation of the parameters themselves.690

AIC provides the same regularization as leave-one-out cross-validation under certain691

conditions (Stone, 1977). We find this a very appealing result on first glance because it692

could dramatically reduce the computational burden in finding a good predictive model.693

However, upon closer inspection, we find that the result only holds in linear Gaussian694

settings (i.e., regression models with additive normal errors) and under the assumption695

that the “true” model is in the model set being considered. This latter assumption (i.e.,696

truth in the model set) seems to conflict with one of the main advantages of AIC extolled697

by proponents. Still, empirically, AIC seems to perform well in situations where it can be698

used (Hastie et al., 2009). For Bayesians, AIC (being a function of maximum likelihood699

estimates) does not appear to have a clear Bayesian interpretation, at least outside of a few700

contrived situations (as we discuss later in Section 4.2).701

The use of an information criterion like AIC requires a compromise: We trade the702

continuous aspects of model selection using more general regulators (e.g., ridge regression,703

Lasso) for the reduction in computational burden achieved by avoiding cross-validation.704
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4.1.4 Bayesian Information Criterion705

The so-called Bayesian Information Criterion (BIC; Schwarz, 1978) arises from a di↵erent706

motivation than does AIC and many other regularization methods. AIC is an information707

criterion that seeks to provide a measure of predictive ability, whereas BIC is distinctly708

concerned with multimodel inference (Link and Barker, 2006; Gelman et al., 2014 b).709

Recall the marginal data distribution [y|Ml] for model Ml from Section 2 on Bayesian710

model averaging (10). The marginal data distribution is critical for computing Bayes711

factors and model probabilities in the Bayesian paradigm. In a maximum likelihood712

setting, if we consider the loss function to be �2 log[y|✓̂], as is assumed with AIC, then we713

can approximate the marginal data distribution using a Laplace approximation (Ripley,714

1996) such that for model Ml715

BIC = �2 log[y|✓̂,Ml] + log(n)p716

⇡ �2 log[y|Ml] , (28)717

718

where log(n) is the natural logarithm of the sample size (or dimension of y) and p is the719

number of “free” parameters, as before. Note that, for the linear regression model (24),720

this definition of BIC still retains the general regularization form of (25), but with721

regulator parameters �
1

= log(n) and �
2

= 0.722

The utility of BIC in multimodel inference arises when we exponentiate negative723

one-half times the BIC (28); normalizing this quantity over all models in the model set M724

provides an approximation to the Bayesian model weights (9) described previously.725

Unfortunately, this approximation only holds when equal prior model weights (i.e.,726
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P (Ml) = 1/L for l = 1, . . . , L) are assumed. Furthermore, because of its reliance on727

maximum likelihood parameter estimates, BIC does not appear to be inherently Bayesian728

(despite its name). Finally, BIC can only be used to approximate posterior model729

probabilities when the Bayes factors are well defined, which is not the case if improper730

priors are used in the models.731

From a classical perspective, there is no clear choice, nor consensus, among732

statisticians, between AIC and BIC for model selection purposes (Hastie et al., 2009). Each733

form of automatic regulator has advantages and disadvantages. For example, BIC can be734

shown to be a consistent model selector (i.e., the oracle property). That is, when the735

“true” model is in the model set and the data set is su�ciently large, BIC will select the736

true model, while AIC will select models that are too large in general. On the other hand,737

for smaller sample sizes, BIC may indicate models that are too parsimonious because738

log(n) > 2 implies more shrinkage from BIC than AIC. Furthermore, BIC is motivated739

from a model averaging rather than prediction perspective, and thus it may be more740

justified for approximating Bayesian model weights than for model selection.741

4.2 Bayesian Regulator: The Prior742

The previous section describes regularization from a classical perspective, where we743

penalize a statistical optimization problem in such a way that it yields a better predictive744

model. As we hinted at earlier, the fact that the classical regularization approach seems to745

“work” is encouraging, but its lack of formality brings up a set of new questions (e.g.,746

What type of regulator function to use? How much shrinkage is too much?). Furthermore,747

on the surface, the classical regularization methods do not appear to be able to748

36



accommodate uncertainty about the parameters or regulator function. For ecologists using749

Bayesian models, what is the analog to regularization in the Bayesian setting?750

4.2.1 Natural Bayesian Shrinkage751

The analog to regularization in the Bayesian setting is simply the Bayesian model itself!752

To see this, consider the linear regression example (24) used in the previous section, but753

now, we specify priors for the unknown model parameters � such that the model itself is754

specified as755

yi ⇠ N(�
0

+ x0
i�, �

2)756

� ⇠ N(µ, �2

�I) , (29)757

758

where, for illustrative purposes, we assume the intercept �
0

and variance parameter �2 are759

fixed and known for now. The posterior distribution for � is then easily shown to be760

[�|y] / [y|�][�]761

/
nY

i=1

N(yi|�0 + x0
i�, �

2)
pY
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If we let µj = 0 for all j = 1, . . . , p, and reparameterize the ratio of variances such that767

�

1

= �

2

/�

2

� in the last expression of (30), then we arrive at the exact same regularization768

expression used in ridge regression (26) in the inner parentheses of our posterior769

distribution for � (30). Thus, by reducing our prior variance for the regression coe�cients,770

we increase the e↵ective regulator parameter �
1

and induce the same sort of shrinkage on �771

as in ridge regression, but in a formal Bayesian probability framework. In fact, one could772

say that we are always doing a form of regularization in Bayesian statistics because the773

prior acts as the regulator. Given that the Bayesian posterior provides a rigorous774

framework for regularization, it could be argued that other classical forms of regularization775

are inherently Bayesian, or at least Bayesian in spirit.776

Regardless of the interpretation of the regulator, as a non-Bayesian penalty or as a777

Bayesian prior, we can enjoy the same benefits of regularization from either perspective.778

However, the Bayesian perspective makes it clear that we are constraining the model779

parameters with “prior” information such that it assists us in finding a better predictive780

model. We are often taught that the Bayesian prior should either be chosen objectively as781

to minimize the influence on the posterior, or retrospectively, to best represent existing782

prior knowledge about the parameters. However, the only rule for specifying prior783

information in a Bayesian model is to not use the within-sample data to choose the prior.784

The reason for this rule is that it maintains the acyclicity in the Bayesian “graph.”785

Bayesian models are often referred to as directed acyclic graphs because of their786

conditional specifications such that the data depend on the parameters and the parameters787

depend on either other parameters or fixed quantities. The acyclic nature of the Bayesian788

graph guarantees that we can use valid probability statements to learn about the unknown789
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quantities. Interestingly, this rule of “don’t use the data twice” is commonly broken, and790

the model is referred to as empirical Bayesian in that setting. Empirical Bayesian methods791

seem to perform well, as does classical regularization, but have much weaker theoretical792

foundations than fully Bayesian methods. It seems clear that to fit a rigorous Bayesian793

model we should not use the within-sample data in the likelihood and the prior, but there794

is no such rule about the use of out-of-sample data to inform the prior. Thus, we could795

think of the three ways to specify valid priors as 1.) objectively, 2.) retrospectively, and 3.)796

prospectively. The term “prospective” in this sense implies the use of future data, perhaps797

collected at the same time as the within-sample data but not used until after (rather than798

before) the likelihood is specified. This third approach to specifying priors opens up the799

door for Bayesian cross-validation.800

For example, the Bayesian cross-validation procedure for regularization of the801

regression model might proceed as follows: Specify the model as in (29), fit it for each of802

the K sets of hold-out data using a vague prior for � with mean zero and obtain a803

predictive score as described in Section 3.2. Choose an incrementally smaller prior variance804

�

2

� and repeat the model fitting and cross-validation scoring process. Continue this805

procedure, using smaller and smaller prior variances until an optimal predictive model is806

identified (typically via a small score function). Finally, fit the optimal predictive Bayesian807

regression model using the full data set to obtain desired inference.808

The problem arises in the last step of this cross-validation procedure. Once we use809

the prior (i.e., penalty or regulator) that has been informed by an aggregate of hold-out810

data, we technically cannot put all of the hold-out data back into the model to fit one last811

time for final inference in a fully Bayesian paradigm. In this case, the options are: 1.) use812
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the data twice in this way and accept that the procedure is empirical Bayesian, or 2.) use813

two completely separate datasets, one for training (y) and another for validating (y
oos

). Of814

course, the second option is not always preferable when analyzing data that have already815

been collected, but in larger data sets or when setting up new studies, collecting two816

independent datasets for two di↵erent purposes allows for fully rigorous Bayesian inference817

and model selection.818

4.2.2 Bayesian Lasso819

The previous section illustrates how the standard Bayesian regression model with a820

Gaussian prior on the coe�cients provides a natural mechanism to perform statistical821

regularization similar to ridge regression, but how can we manipulate the regulator822

function? The answer is simple in the regression case: We only need to find a prior with823

the same form as the desired regulator function. For example, to construct a Bayesian824

regularization that has a penalty similar to the Lasso penalty, we need only find a prior825

containing an L

1

norm on the parameters. In this case, the Laplace distribution contains826

the L

1

norm that will impose a Lasso penalty as a prior. That is, consider the same827

regression data model, but with a new prior for � such that828

yi ⇠ N(�
0

+ x0
i�, �

2)829

�j ⇠ Laplace(µ = 0, �2

�) / exp

0

@� |�j|q
�

2

�

1

A
, (31)830

831

for j = 1, . . . , p where �j are independent a priori. Park and Casella (2008) propose a832

similar prior for �, as well as more standard priors for �
0

and �2 and dub it “The Bayesian833
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Lasso.” In fact, they go a step further and carefully specify a prior for a transformation of834

the regulator parameter that enables them to construct a fully conjugate MCMC algorithm835

for fitting the model. Unlike in a Metropolis-Hastings MCMC algorithm, the resulting836

Gibbs sampler requires no tuning of any parameters (Kyung et al. 2010). Thus, it is nearly837

as computationally e�cient to fit the Bayesian Lasso regression model as it is the standard838

Bayesian regression model. Of course, Bayesian cross-validation could also be used in this839

scenario and would likely yield better out-of-sample predictive performance, but would also840

require substantially more computational e↵ort.841

Finally, after seeing the connection between Bayesian priors and regulator functions,842

one might wonder what sort of prior yields an AIC penalty? Following the same approach843

described in the Bayesian Lasso (31), it appears that the implicit AIC prior for each844

coe�cient is [�j] / exp(�|�j|0), such that the joint prior distribution for � is845

[�] / exp(�p).846

4.3 Willow Tit Occupancy: Bayesian Regularization847

In applying Bayesian regularization to the willow tit occupancy model, we first remind the848

reader that the model already contains a natural regularization mechanism: the prior for849

�. Recall the process component of the hierarchical occupancy model from (3)850

vi ⇠ N(�
0

+ x0
i�, 1) , (32)851

and prior from (6)852

� ⇠ N(µ�, �
2I) . (33)853

41



Notice that if we standarize the covariates to have mean zero and variance one then we can854

reasonably set the prior mean µ� = 0. In this case, the full-conditional distribution for �855

becomes856

[�|·] / exp

 
�1

2

 
nX

i=1

(vi � �

0

� x0
i�)

2 +
1

�

2

�

pX

j=1

�

2

j

!!
(34)857

as was demonstrated for the regression model (30). Thus, this full-conditional distribution858

for � has the same form as the general regularization expression (25) and the859

hyperparameter �2

� serves as the regulator or shrinkage parameter, where �
1

= 1/�2

�. In860

other words, the smaller we make the prior variance, the stronger the penalty in the861

regularization. The strategy is to explore the space of �2

� for an optimal value that provides862

the best predictive model according to the score function of choice. To find the optimal863

penalty, we can explore the space of �2

� using a grid search (i.e., try a range of n� total864

values for �2

�) and compare scores based on cross-validation. This cross-validation approach865

requires K ⇥ n� separate model fits, resulting in a potentially unreasonable amount of866

required computational time. For example, a 10-fold cross-validation, at 1.4 minutes per867

model fit and n� = 24 dimensional grid search would require 5.6 hours to implement.868

However, using 24 processors in parallel, the required time could be reduced to under an869

hour on a high-performance desktop workstation. The three easy ways to reduce870

computation time are to 1.) use more processors (e.g., a high-performance computing871

facility), 2.) decrease the number of folds in the cross-validation (e.g., an n-fold872

cross-validation for the above example would require almost 5 days in sequence, but only a873

few hours in parallel) and 3.) use a lower resolution grid search. The latter will require874

fewer model fits on the same machine, but will reduce the accuracy of the optimization.875

We wouldn’t expect Bayesian regularization to dramatically increase predictive876
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ability for the simple willow tit occupancy model because the two covariates (elevation and877

forest) are relatively uncorrelated (i.e., correlation⇡ 0.12) and the sample size (n = 200) is878

large relative to the number of unknown parameters. However, to demonstrate the879

regularization approach, we use the full model for the willow tit data with one intercept880

and two regression coe�cients associated with the occupancy probability (M
4

). We then881

perform a grid search over 24 values for �2

�, implying a prior that ranges from precise882

(�2

� = 0.01) to vague (�2

� = 2.25).883

We used the log posterior predictive score for 10-fold cross-validation introduced884

earlier (22). The complete 10-fold cross-validation at each value of �2

�, with model fits885

based on 160,000 MCMC iterations (discarding 16,000 as burn-in), took approximately 24886

minutes with parallel computing.887

We found that the optimal prior variance for prediction occurs at �2

� = 1.02; this is888

less than half of the variance we would typically use in a vague prior scenario for the889

occupancy model. In Figure 3 we see the posterior means for � taper toward zero as �2

�890

decreases. At the optimal level of regularization, the predictive score was 478.4, yielding a891

model that predicts as well as M
2

(the elevation only model) but uses both covariates.892

Notice also that the cross-validation score function increases more sharply away from the893

optimum as �2

� decreases toward zero. This e↵ect indicates that the null model (i.e.,894

occurring at �2

� = 0) performs substantially worse than the full model (i.e., occurring at895

�

2

� = 2.25), a result similar to that found in the former cross-validation of the discrete896

model set (Table 4).897

[Figure 3 Here]898
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4.4 Deviance Information Criterion899

We have seen that a natural framework for regularization in the Bayesian context already900

exists and can be used in conjunction with out-of-sample data to help select an appropriate901

penalty. However, the classical information criteria were developed, at least in part, to902

alleviate the need for cross-validation and seem to perform quite well in many settings. Is903

there a Bayesian equivalent?904

Spiegelhalter et al. (2002) proposed the Deviance Information Criterion (DIC), which905

has a similar form as other information criteria, in that it contains a loss function plus a906

penalty or regulator function. The loss function is chosen to be the deviance907

D(✓) = �2 log[y|✓] , (35)908

as in most other information criteria, but in order to be similar to AIC or BIC the penalty909

needs to incorporate the number of free parameters as a measure of model complexity.910

Recall that, even in the simplest Bayesian models, most parameters are constrained in911

some way by their priors. Furthermore, in hierarchical Bayesian models, we may have912

numerous latent state variables that are technically unknown but are also highly913

constrained by both the likelihood and prior. Thus, one crucial issue in the development of914

a truly Bayesian criterion is the specification of an “e↵ective” number of parameters, say915

pD. A further complication is that maximum likelihood point estimates are used to916

compute AIC and BIC, but this concept of maximum likelihood is only meaningful under917

certain situations in the Bayesian context. Thus, we can use a Bayesian point estimate, the918
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posterior mean, in lieu of the MLE in DIC:919

DIC = �2 log[y|E(✓|y)] + 2pD920

= D̂ + 2pD , (36)921

922

where, the deviance evaluated at the posterior mean for ✓ is commonly written as D̂.923

To arrive at a measure of model complexity, Spiegelhalter et al. (2002) consider the924

di↵erence in the deviance calculated two di↵erent ways: 1.) posterior mean deviance and925

2.) deviance computed at the posterior mean of the parameters. That is, the e↵ective926

number of parameters was originally defined as927

pD = D̄ � D̂ , (37)928

such that the posterior mean deviance is929

D̄ = E✓|y(�2 log[y|✓])930

=

Z
�2 log[y|✓][✓|y]d✓ . (38)931

932

In the case of linear regression, with vague priors on the regression coe�cients, the e↵ective933

number of parameters pD approaches the number of coe�cients p. Thus, the popularity of934

DIC has been a result of its similarity to AIC, its simplicity, and its ease of calculation935

using MCMC samples. There are only two quantities that need to be computed for DIC:936

The deviance evaluated at the posterior mean of the parameter set D̂, which is as trivial as937

the deviance calculation in AIC, and the posterior mean deviance, which can be embedded938
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into an MCMC algorithm with one or two lines of code.939

For many Bayesian models (which we describe in the next Section), DIC can be used940

for ranking models and finding those that should predict better than others, just as AIC941

would. DIC addresses the issue of model complexity and in many cases yields results quite942

similar to AIC. A common question is whether DIC can be used for Bayesian model943

averaging? That is, if one follows the AIC-based guidance of Burnham and Anderson944

(2002), and calculates wj = e

��DICj/2
/

P
l e

��DICl/2, where �DICj represents the di↵erence945

of DIC for model j and the minimum DIC across all models in the model set, do these946

weights wj approximate posterior model probabilities? Despite the fact that this approach947

is used occasionally, the answer has not been justified in the literature. Link and Barker948

(2006) make a strong case for the use of BIC to approximate posterior model probabilities949

and perform a small set of empirical comparisons between AIC, BIC, and DIC model950

weighting schemes, but the theoretical foundation for Bayesian model averaging using DIC951

is much weaker.952

4.4.1 Modified DIC953

Despite its convenience, DIC has several limitations, notable among them are the potential954

for poorly estimating model complexity (pD), inappropriateness with mixture models, and955

the lack of a direct connection with predictive ability. We elaborate on some of these these956

issues with conventional DIC before discussing some attractive alternatives.957

There have been many alternative specifications for the e↵ective number of958

parameters pD (37), which is sometimes referred to as model complexity, or degrees of959

freedom, in the statistical literature. For example, Plummer (2002) suggests that a more960
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appropriate measure of model complexity can be computed by averaging961

log

 
[ỹ(1,k)|✓(1,k)]

[ỹ(2,k)|✓(2,k)]

!
(39)962

over all MCMC samples (i.e., k = 1, . . . , K), where ỹ(1,k) and ỹ(2,k) are two independent963

posterior predictive realizations of the data arising from two di↵erent chains (for ✓(1,k) and964

✓(2,k)) based on separate model fits. This version of model complexity (39) arises as an965

estimate of the expected Kullback-Leibler divergence between predictive distributions at966

two values for ✓ (Plummer, 2002). Unfortunately, Plummer (2008) later indicates that the967

average of (39) may only be an appropriate penalty when the sample size is very large (i.e.,968

n ! 1). Plummer (2008) also recommends an alternative estimator for model complexity969

with better properties, but its calculation requires n separate model fits, which puts it on970

par with cross-validation, thus reducing the appeal of DIC in terms of computational971

e�ciency. Overall, it appears that DIC (36) is most appropriate as a model selection972

criterion in linear models with independent data (conditional on ✓) where the pD is much973

smaller than n. Thus, DIC is good for comparing Bayesian versions of the same classes of974

models that AIC is good for comparing.975

Several others have suggested that DIC is not appropriate for model selection with976

mixture models or missing data models (e.g., Spiegelhalter et al. 2002; Celeux et al. 2006;977

Plummer 2008). Zero-inflated models comprise the largest and most heavily used class of978

models in wildlife ecology (i.e., capture-recapture and occupancy models) and are a form of979

mixture model (Martin et al. 2005). The original version of DIC is thus not suitable for980

comparing zero-inflated models. Celeux et al. (2006) provide several suggestions that could981

be used as an alternative to the standard DIC for mixture models, but ultimately they do982
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not recommend any of them as a gold standard. However, one of these modified versions of983

DIC was also discussed earlier by Richardson (2002) and lacked a theoretical justification984

until recently (Watanabe, 2010). Celeux et al. (2006) numbered this information criterion985

DIC
3

, and we discuss it next.986

4.5 Watanabe-Akaike Information Criterion987

Aside from the aforementioned caveats, DIC is a useful information criterion in the988

parametric Bayesian modeling context when prediction is of primary importance. However,989

DIC does not best represent the actual Bayesian predictive procedure. To arrive at990

predictions, the Bayesian approach is to find and summarize the posterior predictive991

distribution (14). In computing DIC (36) the posterior predictive distribution is not992

needed. This seems to be a mismatch between the type of inference desired and the tool993

used to obtain it.994

Along the same lines of reasoning we used in the previous Section on out-of-sample995

validation, for Bayesian model comparison based on predictive ability, we should seek a996

statistic that considers the log posterior predictive distribution for new data ỹ997

log[ỹ|y] = log

Z
[ỹ|✓][✓|y]d✓ . (40)998

The quantity in (40) is stochastic because ỹ is assumed to be unknown (but not so in true999

out-of-sample validation scenarios; hence the change in notation from y
oos

to ỹ), therefore1000

a common technique in the development of most information criteria is to then consider1001
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the mean of (40) over ỹ1002

E

˜y(log[ỹ|y]) =
Z

log

Z
[ỹ|✓][✓|y]d✓[ỹ]dỹ , (41)1003

which is impossible to compute directly because the true distribution of the new data [ỹ] is1004

unknown. Thus, in finding an estimator of mean log posterior predictive score, Richardson1005

(2002), Celeux et al. (2006), and Watanabe (2010) propose the log point-wise predictive1006

score1007

log
nY

i=1

[yi|y] =
nX

i=1

log

Z
[yi|✓][✓|y]d✓ , (42)1008

where Monte Carlo integration can be used to compute the integral (Gelman et al. 20141009

b). There are two issues with the score in (42): 1.) the product representation of the1010

posterior predictive distribution implies that the data are independent (conditioned on ✓)1011

and 2.) it relies completely on the observed data y rather than the new data ỹ. The first1012

issue suggests that the score should not be used with models containing dependence in the1013

data (e.g., spatial and time series models). The latter issue implies that (42) will be1014

optimistic in its predictive score for a given model because the within-sample data are1015

being used twice. As in DIC, the amount of optimism with this score (42) can be expressed1016

as the e↵ective number of parameters pD (Watanabe, 2010). Thinking of the e↵ective1017

number of parameters pD in this way is not intuitive because most ecologists have been1018

trained to view the penalty in AIC as p, the actual number of parameters. In fact, p in1019

that sense is really a measure of model complexity that arises naturally in the derivation of1020

many information criteria. Thus, it is helpful to think of pD as a measure of model1021

complexity rather than strictly a count of the model parameters.1022
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Gelman et al. (2014 b) present two possible estimates for pD,1023

pD,1 = 2
nX

i=1

�
log E✓|y[yi|✓]� E✓|y(log[yi|✓])

�
, (43)1024

and1025

pD,2 =
nX

i=1

var✓|y(log[yi|✓]) , (44)1026

but prefers pD,2 for its relationship with leave-one-out cross-validation. As with DIC, we1027

can use Monte Carlo integration to approximate pD,2 by computing the sum of the MCMC1028

sample variances of log[yi|✓(k)] (sample variance computed over k = 1, . . . , K MCMC1029

samples) over the observations yi for i = 1, . . . , n.1030

The Watanabe-Akaike Information Criterion can then be defined as �2 times the log1031

point-wise predictive score plus the estimated optimism1032

WAIC = �2
nX

i=1

log

Z
[yi|✓][✓|y]d✓ + 2pD,2 , (45)1033

with both elements in the sum approximated using MCMC samples at no extra1034

computational cost beyond that required for calculating DIC (Watanabe, 2013). The1035

addition of the estimated optimism in (45) serves as a bias correction in estimating1036

posterior predictive accuracy similar to that of AIC and DIC, even though we have not1037

mentioned it until now. The term “optimism,” which is often used in the statistical1038

literature, is merely another word for regulator or penalty.1039

This new criterion enjoys many benefits. Among them are the fact that WAIC is1040

based on the posterior predictive distribution and is fully Bayesian, but yields the same1041
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results as DIC in linear Gaussian models with uniform priors. Furthermore, unlike DIC,1042

WAIC is valid in both hierarchical and mixture models (Watanabe, 2013). Also, unlike1043

DIC, the e↵ective number of parameters calculated using pD,2 in (44) will always be1044

positive. In pD,2, a parameter gets counted as a 1 if all of the learning we gain about it1045

comes from the likelihood. Conversely, a parameter counts as a zero in the calculation of1046

pD,2 if the learning comes entirely from the prior. To figure out the correct proportion of1047

each parameter to count, WAIC needs to use the data (like in DIC) to compute the1048

optimism pD,2. This is essential in the Bayesian context where we regularly use hierarchical1049

structures with strong interdependencies and informative priors.1050

Overall, WAIC seems very appealing, however, the main disadvantage is substantial1051

depending on the area of application: its calculation relies on an independence assumption1052

of the data given the parameters. This assumption is regularly violated in spatial models1053

where dependence among the data is one of the key features being modeled. Ando and1054

Tsay (2010) provide a way to relax the independence assumption, but the resulting1055

criterion requires numerous model fits which eliminates one of the key practical benefits of1056

WAIC (Gelman et al., 2014 b).1057

4.6 Posterior Predictive Loss1058

In a similar spirit as that motivating WAIC, and in contrast with CPO, another approach1059

to prediction-based model choice was presented by Laud and Ibrahim (1995) and later1060

justified by Gelfand and Ghosh (1998). This approach, referred to as “posterior predictive1061

loss,” considers prediction from a decision theoretic perspective. Understanding this1062

approach requires a familiarity with statistical decision theory, which we describe briefly1063
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here, referring the interested reader to more comprehensive references (e.g., Berger, 2006;1064

Vehtari and Ojanen, 2012) for further details.1065

Statistical decision theory provides a rigorous framework for the decision making1066

process in the presence of data and uncertainty (Berger, 2006). The phrase “decision1067

making process” is quite general, encompassing decisions like choices of alternatives for1068

management, but also including a justification for parameter estimation and prediction. In1069

fact, behind every statistical estimator lies a set of implicit or explicit decision theoretic1070

assumptions. A formal decision theory exists in both the classical and Bayesian realms,1071

though Berger (2006) makes a compelling case for the completeness of the Bayesian1072

decision theory.1073

In essence, a Bayesian decision theory involves three main concepts: 1) a loss1074

function, 2) an “action” or decision, and 3) a posterior risk function. The loss function is a1075

mathematical expression of the loss incurred if a certain decision is made and the posterior1076

risk function is the loss averaged over the posterior distribution for the unknown quantities1077

of interest. Thus, risk is a version of loss that has accounted for our uncertainty about the1078

study system. The statistical literature refers to the decision minimizing the posterior risk1079

as a “Bayes rule” (Lehmann and Casella, 1998).1080

For example, suppose we are interested in estimating a parameter ✓ given data y. In1081

the case of parameter estimation, the “decision” is actually just a point estimator of ✓. A1082

point estimate ✓̂ that minimizes our risk seems desirable, thus the Bayes rule for point1083

estimation is called a Bayes estimator. To find this Bayes estimator, we simply define a1084

function L(y, ✓) that suitably represents the loss we incur for poorly estimating ✓ and1085

minimize its average with respect to the posterior distribution. The value for ✓ that1086
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minimizes the posterior risk ✓̂ is the resulting Bayes estimator.1087

As it turns out, the Bayes estimator for squared error loss (i.e., L(y, ✓) = (✓ � ✓̂)2) is1088

the posterior mean of ✓, a result that we often use for inference without putting much1089

thought into the rationale for why we use it. Di↵erent loss functions result in di↵erent1090

estimators. For example, the absolute loss (i.e., L(y, ✓) = |✓ � ✓̂|) results in the posterior1091

median as the Bayes estimator and zero-one loss (i.e., L(y, ✓) = 0 or L(y, ✓) = 1 if ✓ = ✓̂ or1092

✓ 6= ✓̂, respectively) results in the posterior mode being the Bayes estimator.1093

Returning to the topic of model selection, Gelfand and Ghosh (1998) recommended a1094

decision theoretic approach based on prediction rather than parameter estimation. In1095

doing so, they proposed a loss function in terms of hypothetical replicates of the data ỹi1096

(i.e., unobserved new data) that is a sum of two components1097

L(ỹi, ŷi) + wL(yi, ŷi) , (46)1098

where ŷi represents a predictive realization for the unobserved new data point ỹi, and yi1099

represents the observed within-sample data point. In the proposed loss function (46), the w1100

is constrained to be non-negative and expresses the relative weight given to loss for the1101

within-sample versus new data at the same prediction ŷi.1102

Gelfand and Ghosh (1998) derived a posterior predictive risk by averaging their1103

proposed loss function (46) over the posterior predictive distribution of ỹi|y. The resulting1104

risk is then minimized with respect to the prediction ŷi and summed over all observations1105
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i = 1, . . . , n to yield the model selection criterion1106

Dw =
nX

i=1

minŷi

Z
(L(ỹi, ŷi) + wL(yi, ŷi))[ỹi|y]dỹi , (47)1107

where we would seek to find a model with the smallest Dw out of a proposed set of models1108

given a chosen loss function L(·) and weight w. In practice, it can be di�cult to compute1109

the necessary integrals in (47), thus a squared error loss function is commonly used,1110

yielding the criterion1111

Dw,sel =
w

w + 1

nX

i=1

(yi � E(ỹi|y))2 +
nX

i=1

Var(ỹi|y) . (48)1112

Further, it is often assumed that the weight is very large (w ! 1) thus resulting in a1113

D1,sel criterion1114

D1,sel =
nX

i=1

(yi � E(ỹi|y))2 +
nX

i=1

Var(ỹi|y) . (49)1115

Note the similarity of D1,sel to the WAIC (45) and DIC (36, for large n) in that they both1116

contain two terms in a sum, the first being a goodness-of-fit measure and the second acting1117

as a penalty or regulator. In this case, we can see that the penalty
Pn

i=1

Var(ỹi|y) will1118

increase in overfitted models where the prediction variance becomes larger with an1119

increasing number of parameters.1120

For more general loss functions, such as deviance, Dw takes on a similar two1121

component form, but the penalty is only guaranteed to be positive under certain1122

constraints on the loss (i.e., convexity in y) and the criterion may not be suitable for1123

mixture models. Despite this caveat, Dw does appear to be appropriate for many classes of1124

hierarchical models because it depends directly on the posterior predictive distribution1125
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rather than the likelihood and posterior mean of the parameters alone. Also, unlike WAIC,1126

the general form of posterior predictive loss approach appears to be suitable for correlated1127

data models (e.g., spatial and temporal models).1128

Even though the posterior predictive loss approach does not technically fall into the1129

same category as the rest of the information criteria, the form of the general loss function1130

proposed by Gelfand and Ghosh (1998) is similar enough to the regularization expression1131

(23), and equivalent to DIC and WAIC in certain settings, that we chose to describe it here1132

rather than place it in its own section.1133

4.7 Willow Tit Occupancy: Information Criteria1134

In a continued assessment of predictive performance for the occupancy model set using the1135

willow tit data, we calculated WAIC, DIC, and D1,sel for each of the 4 models previously1136

considered (Table 5). To calculate WAIC for the occupancy model in this example, we used1137

MCMC samples to approximate the e↵ective number of parameters1138

pD,2 ⇡
nX

i=1

PT
t=1

⇣
log([yi|Ji, p(t)z(t)i ])�

PT
t=1

log([yi|Ji, p(t)z(t)i ])/T
⌘
2

T

, (50)1139

based on (44), where [yi|Ji, p(t)z(t)i ] is the binomial probability mass function and the first1140

term in WAIC (45) is approximated as1141

�2
nX

i=1

log

PT
t=1

[yi|Ji, p(t)z(t)i ]

T

. (51)1142
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Recall that this expression (51) has the same form as the cross-validation score (22), but is1143

based only on within-sample data.1144

For DIC, we used the traditional method for calculating the e↵ective number of1145

parameters (37) and approximated D̄ and D̂ by1146

D̄ ⇡
PT

t=1

�2 log[y|J, p(t)z(t)]
T

(52)1147

D̂ ⇡ �2 log[y|J, p̂ẑ] (53)1148

1149

where p̂ and ẑ are the posterior means for detection probability and true latent occupancy1150

status across all sites, and [y|J, p(t)z(t)] =
Qn

i=1

[yi|Ji, p(t)z(t)i ] is the likelihood based on the1151

conditionally independent data for the willow tit occupancy model.1152

For the posterior predictive loss method, we calculated D1,sel as in (49) based on the1153

expectation and variance approximations1154

E(ỹi|y) ⇡
PT

t=1

ỹ

(t)
i

T

(54)1155

Var(ỹi|y) ⇡
PT

t=1

(ỹ(t)i �
PT

t=1

ỹ

(t)
i /T )2

T

(55)1156

1157

where ỹ

(t)
i ⇠ [yi|Ji, p(t)z(t)i ] is drawn on each MCMC iteration (for t = 1, . . . , T ) as a1158

posterior predictive realization.1159

Of the three criteria considered in this example, recent statistical literature suggests1160

that only WAIC is truly appropriate for the occupancy model (Gelman et al., 2014 b).1161

However, given that DIC is commonly used to compare Bayesian occupancy models, we1162

provide a comparison here. Furthermore, the criterion based on posterior predictive loss1163
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(D1,sel) is not ideal for the occupancy model setting because the squared error loss1164

function (49) may not be best representative for the zero-inflated binomial data model. A1165

di↵erent loss function could be chosen, but then a derivation would be required to find a1166

computable approximation based on MCMC samples. Still, we felt that a comparison of1167

the methods could illuminate potential empirical di↵erences between the approaches. If1168

this were a real application rather than a pedagogical example, we would have only1169

computed WAIC for this model and data set. In terms of computational time, it only1170

required 6.1 minutes to fit the models sequentially and obtain these metrics (using 160,0001171

MCMC iterations for each model fit with a burn-in period of 16,000 iterations).1172

All of these approaches (i.e., WAIC, DIC, and D1,sel) provide similar information in1173

ranking the willow tit occupancy models by predictive ability based on within-sample data1174

(Table 5). WAIC, DIC, and D1,sel all suggest model M
3

, the model containing only the1175

forest covariate, as the worst predictive model, with the null model next (M
1

), and a1176

virtual tie among the two models containing the elevation covariate (i.e., M
2

and M

4

). This1177

latter result is in agreement with the earlier cross-validation and CPO model comparison.1178

5 MODEL-BASED MODEL SELECTION1179

To a certain extent, the regularization methods discussed in Section 5 (especially the fully1180

Bayesian Lasso described in Section 5.2.2) are model-based approaches to model selection.1181

They are model-based because they contain a formal mechanism that trades o↵ model fit1182

for model parsimony. In Section 5.2.1, we saw that the Bayesian model itself provides a1183

natural model reduction mechanism via the prior. In contrast to this form of continuous1184
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shrinkage induced by a strong prior on the parameters, other methods have been developed1185

in a similar spirit that explicitly augment the overall model structure with selection1186

components whose job it is to switch on and o↵ various e↵ects in the full model (O’Hara1187

and Sillanpaa, 2009). The basic idea then is to build a model that contains all of the1188

potential model components and then let the model decide which of them are helpful and1189

which are not.1190

5.1 Indicator Variable Selection1191

For instructive purposes, consider again the basic linear regression model from (24)1192

yi ⇠ N(�
0

+ x0
i�, �

2) ,1193

where, the parameter vector � = (�
1

, . . . , �j, . . . , �p)0 contains the individual coe�cients1194

corresponding to the p predictor variables of interest. A modification of the original1195

regression model has been proposed such that �j = zj · ✓j for j = 1, . . . , p, where each1196

original parameter is written as a product of a binary indicator variable zj and a regression1197

coe�cient ✓j (e.g., George and McCulloch, 1993; Carlin and Chib, 1995; Kuo and Mallick,1198

1998). In general, a prior would be specified for each (zj, ✓j) pair and the full Bayesian1199

model could then be fit, yielding inference not only about the coe�cients �j, but also the1200

selection indicators zj. In this setting, if the posterior mean for a particular zj is large (i.e.,1201

closer to one than zero) it would indicate that the j

th covariate is important in the model;1202

conversely, when the posterior mean of zj is close to zero it e↵ectively removes the jth e↵ect1203

from the model thereby inducing a certain parsimony.1204
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In implementing an indicator variable selection model, one would be tempted to use1205

independent priors for zj and ✓j; for example, we might specify1206

zj ⇠ Bern(�)1207

✓j ⇠ N(0, ⌧ 2j ) ,1208

1209

for all j = 1, . . . , p, assuming the covariates are standardized. However, an independent1210

prior specification can cause computational problems if the prior for ✓j is too vague (i.e.,1211

the prior variance, ⌧ 2j , is large) because when zj = 0 in an MCMC algorithm, ✓j will be1212

sampled from its prior and the subsequent sampling of future zj = 1 will rarely occur since1213

the ✓j is likely to be far from the majority of posterior mass. Thus, to alleviate these1214

computational problems, others (e.g., George and McCulloch, 1993; Carlin and Chib, 1995)1215

have suggested joint priors for zj and ✓j that include explicit dependence between the1216

indicators and coe�cients.1217

In Gibbs variable selection, Carlin and Chib (1995) and Dellaportas et al. (1997)1218

suggest decomposing the joint prior distribution [zj, ✓j] = [✓j|zj][zj]. In this joint prior1219

specification, the Bernoulli prior for zj is retained, but the prior for ✓j conditional on zj is1220

written as1221

✓j|zj ⇠ zjN(0, ⌧
2) + (1� zj)N(µtune

, �

2

tune

) , (56)1222

which has the form of a mixture distribution and is often referred to as a “slab and spike”1223

prior (Miller, 2002). The Gibbs variable selection procedure then involves choosing the1224

tuning parameters µ
tune

and �2

tune

such that N(µ
tune

, �

2

tune

) is near the posterior so that the1225

MCMC algorithm exhibits better mixing. Surprisingly, the seemingly informative prior1226
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(56) does not actually influence the posterior for �j, but rather only influences the behavior1227

of the MCMC algorithm (Carlin and Chib, 1995).1228

In a similar model-based approach called “stochastic search variable selection,”1229

George and McCulloch (1993) proposed a joint prior for zj and ✓j. However, unlike in the1230

Gibbs variable selection, this alternative prior does influence the posterior and can be1231

written as1232

✓j|zj ⇠ zjN(0, c⌧
2) + (1� zj)N(0, ⌧

2) . (57)1233

In stochastic search variable selection, both c and ⌧ 2 are tuned such that ⌧ 2 is quite small,1234

providing an e↵ective spike at zero while c⌧

2 is larger, creating a slab around zero. The1235

slab then provides the prior for ✓j when the variable �j is in the model (i.e., when zj = 1).1236

Both Gibbs and stochastic search variable selection methods require tuning to ensure1237

well-mixed MCMC algorithms, but both can be useful for model-based model selection.1238

5.2 Reversible-Jump MCMC1239

A related model-based approach to model selection is referred to as reversible-jump1240

Markov chain Monte Carlo (RJMCMC; Green, 1995). Normally, we reserve the names of1241

computational approaches for algorithms only, not statistical models; however, in this case,1242

the method really describes a model, but we retain the label RJMCMC for convention. In1243

describing the RJMCMC approach, first recall the model set {M
1

, . . . ,Ml, . . . ,ML}1244

described earlier in Section 2.1. Now suppose that each of the models contain their own1245

corresponding parameters ✓l. Note that the lengths, say pl, of these parameter vectors ✓l1246

may vary. In RJMCMC, we treat the model index l as a random quantity to be modeled1247
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along with the set of all possible parameters ✓. Or alternatively, we treat the number of1248

parameters pl as a random quantity and specify a model for it. Under certain assumptions,1249

the posterior distribution of interest then is1250

[✓, l|y] / [y|✓l, l][✓l|l][l] , (58)1251

where [✓l|l] is the prior distribution for the parameters in model Ml and [l] is the prior1252

distribution for model Ml itself. The beauty of this specification is that it places1253

multimodel inference directly in a fully Bayesian context.1254

The use of MCMC to implement this model (58) involves the usual steps: specify1255

initial values for unknowns and then cycle through the unknowns, updating each one1256

sequentially. The complication arises when sampling the model index l, and hence its1257

associated parameters ✓l, because the model dimension changes depending on which model1258

is sampled. Thus, care must be taken to account for the potentially di↵erent model1259

dimension when accepting a Metropolis-Hastings proposal for the parameters in an MCMC1260

algorithm. The term “reversible” derives from the fact that certain properties of the1261

Metropolis-Hastings update must be retained to arrive at a valid posterior distribution1262

(Green, 1995; Godsill, 2001). Specifically, if we leave one model space with a particular1263

dimension for another of a di↵erent dimension, we need to ensure that we can revert back1264

to the former dimension later in the Markov chain. Thus, a modified version of the1265

Metropolis-Hastings ratio can be constructed for certain models that corrects for the1266

transdimensional nature of the algorithm.1267

RJMCMC approaches have become a popular option for computing Bayes factors and1268
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Bayesian model probabilities (e.g., Johnson and Hoeting, 2011). When prior model1269

probabilities are assumed to be equal, the Bayes factor (Bl,l0) can be computed simply by1270

calculating the quotient of summed number of visits to each model (Ml and Ml0) in the1271

RJMCMC algorithm (Hastie and Green, 2012).1272

Due to its model-based form, RJMCMC is an appealing method for Bayesian1273

multimodel inference but can be tricky or impossible to implement for complicated models.1274

To that end, Barker and Link (2013) described a method that provides RJMCMC results1275

using a post hoc approach that only requires one to fit the L individual models and then1276

post-process the resulting MCMC samples using a second MCMC algorithm in the form of1277

a Gibbs sampler. We describe this approach and apply it to the willow tit data next.1278

In the big picture, Godsill (2001) and O’Hara and Sillanpaa (2009) show that the1279

RJMCMC and indicator variable selection approaches are related. The key di↵erence is1280

that the auxiliary variables zj are e↵ectively moving the model between dimensions by1281

switching on and o↵ model components. In doing so, Gibbs and stochastic search variable1282

selection side-step the transdimensional complication altogether.1283

5.3 Willow Tit Occupancy: RJMCMC1284

We presented results pertaining to Bayesian model averaging earlier in Section 2. To1285

compute those Bayesian model averaging quantities we use the RJMCMC approach1286

described by Barker and Link (2013) which we briefly summarize here. One advantage of1287

the Barker and Link (2013) approach is that the individual models can be fit separately1288

and then recombined subsequently with a secondary MCMC algorithm to obtain posterior1289

model probabilities. After the initial set of 4 occupancy models were fit individually1290
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(requiring only 5.7 minutes in sequence), the following secondary algorithm was1291

constructed to iteratively sample the model and associated parameters.1292

1. Set MCMC iteration index to k = 1.1293

2. Choose initial model M (k)
l . In our case we used M

(1)

l = M

4

, the full model.1294

3. Select p(k)l , �(k)
0,l , and �(k)

l from the former MCMC output for model M (k)
l .1295

4. If there are remaining parameters from the full model not obtained in step 3 (i.e., for1296

models M
1

, M
2

, and M

3

) then sample those from a known distribution (the form of1297

which is arbitrary according to Barker and Link, 2013). We used a standard normal1298

distribution to sample remaining parameters, N(0, 1).1299

5. Order the parameter values from steps 3 and 4 and combine to form ✓. For example,1300

if M (k)
l = M

2

, then ✓ ⌘ (p(k)l , �

(k)
0,l , �

(k)
1,l , u

(k)
2

)0, where u

(k)
2

⇠ N(0, 1).1301

6. Compute the full-conditional model probability1302

P (Ml|·) =
[y|✓,Ml][✓|Ml]P (Ml)P

4

l0=1

[y|✓,Ml0 ][✓|Ml0 ]P (Ml0)
(59)1303

for each model l = 1, . . . , 4.1304

7. Sample M

(k+1)

l from a categorical distribution with probabilities P (M
1

|·), P (M
2

|·),1305

P (M
3

|·), and P (M
4

|·).1306

8. Increment the model index k = k + 1 and go to step 3.1307

A few of the terms in step 6 of the Barker and Link (2013) algorithm need further1308

clarification with respect to the specific model set under consideration. The likelihood term1309

for our willow tit occupancy model simplifies to [y|✓,Ml] ⌘ [y|p(k)l , �

(k)
0,l ,�

(k)
l ] which can be1310
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found by integrating z and v out of the hierarchical model such that1311

[y|pl, �0,l,�l] =
nY

i=1

�
 ip

yi(1� p)Ji�yi
I{yi>0}

�
+
�
1�  i +  i(1� p)Ji

�
I{yi=0} , (60)1312

where we have omitted the MCMC indexing for clarity. In the integrated likelihood (60),1313

 i = x0
l,i�l and I{...} is an indicator variable that is one when the condition in the subscript1314

is true and zero otherwise. The prior term can be factored into terms relevant for the1315

current model being considered and terms for the remaining parameters:1316

[✓|Ml] ⌘ [p(k)l ][�(k)
0,l ][�

(k)
l ][u(k)]. The last term, [u(k)], is simply a product of independent1317

standard normal distributions in our occupancy model.1318

This secondary MCMC algorithm required only seconds to run, as compared with the1319

original model fits which required minutes. Furthermore, we found the secondary MCMC1320

algorithm suggested by Barker and Link (2013) easier to program than the inline1321

RJMCMC algorithm because we didn’t have to modify the actually model fitting code.1322

Obtaining the posterior model probabilities from the secondary MCMC algorithm output1323

simply requires calculating the number of times each model M (k)
l is sampled out of the1324

total number of MCMC iterations (e.g., P (M
2

|y) = 83200/160000 = 0.52).1325

Several other alternatives exist for implementing RJMCMC and obtaining required1326

BMA quantities. Notable among them are techniques for regression models that exploit1327

orthogonality properties in the design matrix allowing for a simplification in the model1328

sampler (Clyde et al., 1996). More recently, a form of data augmentation has been1329

proposed to generalize these methods for cases where the design matrix is non-orthogonal1330

(Ghosh and Clyde, 2011). Overall, the suite of new approaches for model-based model1331
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selection is rapidly expanding and is making Bayesian model averaging more accessible1332

than ever for ecologists. Still, fully automated software for performing BMA for a huge1333

class of potential models is lacking due to the complexity of rigorously calculating the1334

required quantities. As with many of the cutting-edge statistical methods, ecologists who1335

wish to use them are acquiring the necessary statistical and computational skills to1336

implement them on their own.1337

6 GUIDANCE1338

Thus far we have provided a fairly comprehensive review of methods for Bayesian model1339

selection and multimodel inference, along with the advantages and disadvantages of each.1340

One can use this document as a reference in deciding what type of model selection is1341

appropriate depending on the desired statistical inference in a particular project. Assuming1342

that the researcher desires some form of model selection or multimodel inference, and that1343

they plan to use Bayesian methods, we provide the following set of questions and answers1344

to help guide the researcher in finding an appropriate set of tools:1345

1. Is the researcher planning a new study? If so, he or she may want to consider1346

collecting two sets of data, one for training, and another for validation. When1347

prediction is of utmost importance, there is no substitute for out-of-sample data in1348

model selection. It may be time for a paradigm shift in the way we design ecological1349

studies. If predictive model selection is desired, we need to collect data that1350

facilitates inference on both parameters and models.1351

2. Is the researcher using a historical data set?1352
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(a) If the data set is large and computation time is not an overriding issue, the1353

researcher may want to consider K-fold cross-validation for a set of candidate1354

models or Bayesian regularization. Most Bayesian cross-validation1355

implementations will require K separate fits of the model, thus increasing the1356

computational time significantly. However, parallel computing is now possible1357

on the desktop computer thanks to several user friendly software packages. So,1358

cross-validation may not be as impractical as one might initially think.1359

(b) If the data set is small, n-fold cross-validation over a set of candidate models or1360

Bayesian regularization may be more appropriate. The caveat is that1361

leave-one-out cross-validation is not as stable as K-fold for K < n. Small data1362

sets are always going to present problems for statistical inference and there is1363

not much one can do to alleviate these issues, regardless of statistical paradigm.1364

3. Is the researcher wanting to do prediction-based model selection with a simple1365

Bayesian model when computational time is limited? If so, they might want to1366

consider using DIC. As a prediction-based information criterion, DIC performs1367

similar to AIC in choosing parsimonious models. The caveat is that, like AIC, DIC1368

will also choose larger models than necessary when the sample size is large. The1369

biggest caution about DIC arises when the posterior mean of the parameters does not1370

describe the central tendency of the posterior distribution well. Thus, DIC is not1371

appropriate when there exist multiple modes in the posterior. Furthermore, DIC is1372

best as a selection criterion when the number of e↵ective parameters is much smaller1373

than the sample size, which may not be the case in hierarchical models where the1374

number of latent variables scales with sample size.1375
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4. Does the researcher want to do prediction-based model selection with a hierarchical1376

Bayesian model when computational time is limited? If so, Gelman et al. (2014 b)1377

recommend using WAIC to select models. Unlike DIC, WAIC does not rely on1378

posterior means of parameters, instead it uses the posterior predictive distribution1379

and is the “most Bayesian” of all the information criteria. However, despite all the1380

benefits of WAIC, it still only depends on within-sample data and its1381

computationally friendly form requires an independence assumption at the data level,1382

which is not appropriate for time series or spatial models. In these cases, posterior1383

predictive loss provides an alternative.1384

5. Does the researcher desire model averaged inference on parameters or predictions?1385

Bayes factors are the appropriate tool for doing Bayesian model averaging, but they1386

often can only be approximated. Bayes factors can be approximated using BIC, but1387

only under certain circumstances, and since BIC is not actually Bayesian, it has1388

limited utility in a fully Bayesian setting. Hoeting et al. (1999) provided a good1389

summary of methods for approximating model weights that have a formal1390

justification. Note that, aside from BIC, none of the other information criteria have a1391

solid foundation for Bayesian model averaging (e.g., AIC, DIC, WAIC). Bayes factors1392

are not recommended in cases where models include improper priors (Spiegelhalter1393

and Smith, 1982).1394

6. Does the researcher want a fully integrated model fitting and selection procedure? If1395

so, a model-based approach like indicator or Gibbs variable selection, stochastic1396

search variable selection, or RJMCMC may be warranted. Furthermore, connections1397

exist between many model-based approaches and BMA under certain conditions.1398
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These model-based methods perform best with some tuning of the algorithms, but1399

when tuned, they perform quite well and seem to be more computationally e�cient1400

than cross-validation. As with information criteria, model-based model selection1401

methods depend only on within-sample data and thus have the same set of caveats.1402

Also, RJMCMC can be quite di�cult to implement for certain models, but there are1403

newer approaches that can be used to provide the same inference based on individual1404

model fits (e.g., Barker and Link, 2013).1405

7 CONCLUSION1406

Ecologists are fascinated with model selection, and many have customized their research1407

questions around likelihood methods for model selection and multimodel inference as1408

illustrated by the recent forum on p-values and model selection in Ecology (2014, volume1409

95). Bayesian methods are becoming more common in ecological studies, but due to a1410

fracturing of the literature pertaining to Bayesian model selection, it appears that many1411

studies simply rely on conventional methods without much thought. Many Bayesian1412

ecologists are aware of issues with certain Bayesian model selection approaches (e.g.,1413

Bolker, 2009), but are unaware of alternatives and how these alternatives may relate to1414

each other. We have compiled and summarized the large body of literature on Bayesian1415

model selection and multimodel inference methods in this guide so that ecologists can be1416

better informed about their options.1417

What stands out to us is that, despite the seeming consensus among ecologists and1418

wildlife biologists in how to perform model selection and multimodel inference, it is far1419
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from settled among statisticians; particularly in the Bayesian realm of inference. What also1420

stands out is that nearly all model selection and multimodel inference methods are focused1421

on improving predictive capabilities of models by balancing model fit and model1422

parsimony. Prediction is often most important to the machine learning community (e.g.,1423

classification and regression trees, boosting and bagging algorithms) and related methods1424

rely almost exclusively on out-of-sample data for model validation to improve prediction,1425

but in the ecological and biological sciences, our scope seems to be limited to1426

within-sample data. With an increasing ability to collect more data through, for example,1427

better telemetry devices, remote sensing, citizen science e↵orts, and operations like NEON1428

(National Ecological Observatory Network), ecologists are finally finding themselves with1429

more data to answer scientific questions. Thus, model selection methods that rely on a1430

separate set of validation data are now more accessible than ever for ecologists.1431

Cross-validation is an incredibly useful tool for model selection when only a single1432

data set is available, a tool that is often overlooked or ignored on the grounds that it may1433

be computationally infeasible. However, the current era of computing is seeing the most1434

improvement in processor quantity and no longer in processor speed (Sutter, 2005). The1435

one thing that computers are getting better at is parallel processing, and that happens to1436

strongly favor the notion of model selection via cross-validation. A bit of extra e↵ort spent1437

on bookkeeping aspects of programming can make true prediction-based model selection1438

feasible through the parallelization of a cross-validation procedure. Using the occupancy1439

model as an example, we demonstrated that parallel programming requires relatively little1440

extra e↵ort to implement but can improve computational e�ciency dramatically (e.g., from1441

hours to minutes, sometimes seconds).1442
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When it seems that fitting a single model is the computational bottleneck, we need to1443

remember that there are several entire subfields within statistics and computer science1444

devoted to finding more e�cient ways to specify and fit models. Automated MCMC1445

software has been a boon for science, allowing ecologists to easily specify and fit1446

complicated Bayesian models (e.g., Kery, 2010), but a common complaint is that these1447

software packages are slow. Fortunately, a wave of new automatic Bayesian software is1448

becoming available (e.g., INLA, STAN, LibBi) that has shown dramatic increases in speed,1449

but improvements can also be gained just by creating our own MCMC algorithms. This1450

gives us the flexibility to use model reparameterizations and newer computational tricks1451

such as variational Bayes (e.g., Omerod and Wand, 2010) and statistical emulators (e.g.,1452

Hooten et al., 2011) to speed up the model fitting process, which in turn aids in1453

out-of-sample model selection.1454

Finally, as a closing thought, we feel that it is the right time for ecologists to become1455

more open-minded about the use of strong priors. It is somewhat ironic that many popular1456

non-Bayesian statistical methods (e.g., model selection, penalized likelihood, Lasso) depend1457

on the implicit use of strong priors while at the same time Bayesians are warned against1458

them. Bayesian priors provide a formal mechanism for placing constraints on models and,1459

when used correctly, such constraints can be incredibly helpful (e.g., Moreno and Lele,1460

2010). Furthermore, seemingly vague priors can have a dubious e↵ect on inference (Seaman1461

et al., 2012) in models commonly used in ecological analyses. Yet, stronger priors can help1462

with model selection, multicollinearity, and algorithm stability, not to mention formally1463

incorporating existing scientific information into new analyses (e.g., Garrard et al., 2012).1464
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SUPPLEMENTAL MATERIAL

• Supplement: ZIP file containing data and R code (Ecological Archives).
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Table 2: Willow Tit Occupancy: Prior and posterior model probabilities.

Model Covariates P (Ml) P (Ml|y)

M

1

NULL 0.25 0.00

M

2

ELEV 0.25 0.52

M

3

FOR 0.25 0.00

M

4

ELEV + FOR 0.25 0.48
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Table 3: Willow tit occupancy posterior means for p, �
0

, and � across all models and using

BMA.

Parameter M

1

M

2

M

3

M

4

BMA

p (detection prob.) 0.26 0.26 0.26 0.26 0.26

�

0

(intercept) 0.17 0.38 0.89 0.29 0.32

�

1

(elevation) 0.00 1.95 0.00 1.80 1.85

�

2

(forest) 0.00 0.00 1.79 0.39 0.18
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Table 4: Willow tit occupancy results for cross-validation and CPO.

Model Covariates C-V Score �
P

i log(CPOi)

M

1

NULL 552.4 240.2

M

2

ELEV 478.4 220.0

M

3

FOR 526.9 246.2

M

4

ELEV + FOR 478.8 220.4
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Table 5: Willow tit occupancy results for WAIC, DIC, and D1,sel (posterior predictive loss).

Model Covariates WAIC DIC D1,sel

M

1

NULL 481.7 462.2 288.0

M

2

ELEV 440.2 432.2 270.8

M

3

FOR 492.4 483.8 305.2

M

4

ELEV + FOR 440.7 432.9 271.2
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FIGURE LEGEND

Figure 1 The results of a Web of Science search in number of articles per search string for each

of the past 25 years (http://thomsonreuters.com/web-of-science/).

Figure 2 Overview of topics treated in this guide. These topics are grouped by their linkages

to the main model selection and multimodel inference themes. Boxes represent over-

arching concepts, rounded boxes represent certain approaches that fall under those

concepts, and ovals correspond to specific tools (gray indicates tools that are not

clearly Bayesian). Arrows indicate specific types of approaches and tools that fall

under the broader concepts, whereas dashed lines represent links among items if cer-

tain assumptions hold (e.g., BIC can be used for model averaging if parameters can

easily be counted, priors are vague, and posterior modes are used as point estimates

for parameters).

Figure 3 Willow Tit Occupancy: Bayesian Regularization. a.) Shrinkage trajectories for the

posterior mean of � (y-axis) plotted against prior variance for � (x-axis). Parameter

estimates yielding the best predictive model based on the two covariates occur at the

vertical gray line. Note that the correlation between elevation and forest is 0.12. b.)

The cross-validation score (y-axis) presented in (22) plotted against prior variance for

� (x-axis). The optimal score (i.e., smallest; score= 478.5) for prediction occurs at the

vertical gray line (i.e., minimum score occurs at �2

� = 1.02).
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