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Summary

• Cavitation of xylem elements diminishes the water transport capacity of plants,
and quantifying xylem vulnerability to cavitation is important to understanding plant
function. Current approaches to analyzing hydraulic conductivity (K) data to infer
vulnerability to cavitation suffer from problems such as the use of potentially unre-
alistic vulnerability curves, difficulty interpreting parameters in these curves, a statis-
tical framework that ignores sampling design, and an overly simplistic view of
uncertainty.
• This study illustrates how two common curves (exponential-sigmoid and Weibull)
can be reparameterized in terms of meaningful parameters: maximum conductivity
(ksat), water potential (–P) at which percentage loss of conductivity (PLC) = X% (PX),
and the slope of the PLC curve at PX (SX), a ‘sensitivity’ index.
• We provide a hierarchical Bayesian method for fitting the reparameterized curves
to KH data. We illustrate the method using data for roots and stems of two popula-
tions of Juniperus scopulorum and test for differences in ksat, PX, and SX between
different groups.
• Two important results emerge from this study. First, the Weibull model is preferred
because it produces biologically realistic estimates of PLC near P = 0 MPa. Second,
stochastic embolisms contribute an important source of uncertainty that should be
included in such analyses.
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Introduction

Xylem cavitation is one of the primary processes causing
reduced water transport capacity in vascular plants (Sperry,
2000), negatively affecting plant carbon balance (Boyer,
1976; Cowan, 1982). When a water-filled conduit is under
tension during drought stress, the tension may induce an
embolism event whereby the conduit becomes air-filled
(Zimmermann, 1983; Tyree & Sperry, 1989) and can no
longer function in water transport (Zimmermann, 1983).
Hence, cavitation reduces hydraulic conductivity (Sperry,
2000) and can lead to stomatal closure (Sperry & Pockman,
1993), reduced gas exchange (Sperry et al., 1998), and
plant mortality (Tyree & Sperry, 1988; Martínez-Vilalta &
Piñol, 2002).

A ‘vulnerability curve’ describes the vulnerability of a plant
to xylem cavitation in terms of the percentage loss of hydraulic
conductivity (PLC) as a function of xylem water potential
(–P) (Tyree & Sperry, 1988). Vulnerability curves provide
insight into drought tolerance (Linton et al., 1998; Kolb &
Sperry, 1999) and generally capture the range of water
potentials experienced in the field (Brodribb & Hill, 1999;
Hacke et al., 2000; Pockman & Sperry, 2000). Advances in
experimental methodology have yielded a variety of methods
for measuring hydraulic conductivity under a range of water
potentials (Sperry et al., 2003), ranging from fairly simple and
easy-to-implement approaches (Sperry & Sullivan, 1992) to
sophisticated techniques that require specialized equipment
(Sperry & Saliendra, 1994; Pockman et al., 1995). Novel
approaches continue to emerge for measuring vulnerability to
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cavitation of small xylem areas (Mayr & Cochard, 2003),
sapwood sections (Kikuta et al., 2003), and whole leaves
(Brodribb & Holbrook, 2003). Additionally, faster methods
are being developed for measuring hydraulic conductivity in
tandem with the centrifuge method (Li et al., 2008). On the
other hand, statistical methods for analyzing data obtained via
these methods are comparatively underdeveloped.

A common procedure for generating a vulnerability curve
begins in the laboratory by making several measurements
of hydraulic conductivity on a stem or root segment that is
subjected progressively to more negative xylem pressures
(Sperry & Sullivan, 1992; Sperry & Saliendra, 1994; Pockman
et al., 1995). Then, PLC is calculated by comparing hydraulic
conductivity measured at each water potential to a potential
maximum value that is typically obtained after flushing
the segment to remove native emboli (Sperry et al., 1988).
However, even at low (positive) pressures, flushing can cause
a decrease in conductivity in some angiosperms (Wang et al.,
1992; Macinnis-Ng et al., 2004) and conifers (Sperry &
Tyree, 1990). Additionally, if the flushing pressure is too low
or the time period is too short, dissolution of emboli may be
incomplete. Consequently, if all emboli are not removed, then
maximum hydraulic conductivity will be underestimated,
biasing the resulting vulnerability curve such that PLC at
different water potentials will also be underestimated. These
issues call for a statistical approach that explicitly accounts for
uncertainty in maximum hydraulic conductivity.

Several biologically meaningful parameters have been
derived from the theoretical PLC curve. These parameters
depict one of two drought-tolerance characteristics: (i)
susceptibility to cavitation at a particular P; and (ii) sensitivity
of cavitation to changes in P. The water potential that results
in PLC = 50% (−P50) is the most commonly used parameter
for comparing susceptibility (Tyree & Ewers, 1991). A number
of similar parameters have been explored, including the mean
cavitation pressure (Sperry & Saliendra, 1994), the air-entry
potential (Sparks & Black, 1999; Domec & Gartner, 2001),
the ‘full embolism’ potential (Domec & Gartner, 2001), and
P75 and P100 (Hacke & Sperry, 2001). Sensitivity (S) is an
important cavitation index and is represented by the slope of
the PLC curve at a particular P. A plant with a shallow slope
experiences gradual loss of conductivity over a wide range
of P values, while one with a steep slope undergoes rapid
cavitation over a small range of P values (Sperry, 1995),
potentially indicating that the conduit anatomy consists of
cells with similar air-seeding vulnerability. Although sensitivity
indices have been derived (Pammenter & Vander Willigen,
1998), they are seldom used for comparison. Moreover, while
these parameters are indispensable for quantifying and com-
paring drought-tolerance traits, the estimation procedures
that have been applied have not estimated these parameters
directly and have employed post-hoc calculations of the
parameters that do not provide accurate estimates of their
uncertainty.

Different functional forms have been employed to describe
a vulnerability curve, including the exponential-sigmoid
(Pammenter & Vander Willigen, 1998), the Weibull
(Rawlings & Cure, 1985; Neufeld et al., 1992), the Gompertz
(Mencuccini & Comstock, 1997), and polynomial functions
(Pockman & Sperry, 2000; Jacobsen et al., 2007). All of these
models have been utilized to estimate susceptibility parameters
(e.g. P50). Pammenter & Vander Willigen (1998) put forth
the exponential-sigmoid as an attractive model because it is
the only one whose parameters inherently reflect both P50 and
S. However, the purportedly ‘linearized’ form that they give is,
in fact, nonlinear with respect to the parameters (see section
1.2 in Seber & Wild, 1989), typically requiring linear approx-
imations to infer P50 and S. In this paper, we describe a
Bayesian approach to fitting nonlinear vulnerability curves to
hydraulic conductivity data that does not require linear
approximations to infer P50 and S. In doing so, we focus on
two commonly applied models (i.e. exponential-sigmoid and
Weibull) and show that both models can be reparameterized
in terms of susceptibility (PX) and sensitivity (SX) parameters.
Although the reparameterized models are highly nonlinear,
Bayesian statistical methods for fitting these models can be
implemented in readily available software packages.

Current methods for analyzing data on vulnerability to
cavitation are insufficient for capturing the error structure.
Most sampling schemes result in several conductivity meas-
urements for an individual segment, and a common approach
is to fit separate curves to PLC data for each segment or for a
collection of segments (e.g. multiple stems excised from one
tree). The point estimates of, for example, P50 for each fitted
curve are treated as ‘data’ and an analysis of variance
(ANOVA) of these point estimates may be performed with
subsequent inference about differences between treatment
groups. The observed significance levels (P-values) are very
likely overly optimistic because of the failure to account for
variability of the segment-level estimates of PX. Frequently,
the sampling design suggests a hierarchical structure composed
of random and fixed effects (e.g. multiple measurements on a
segment, several segments from a tree, many trees within
a species, etc.), yet explicit modeling of this dependence structure
is absent from previous studies. Such issues are not unique to
vulnerability curve analyses, and more rigorous methods have
been advocated for physiological response functions in general
(Potvin et al., 1990; Peek et al., 2002; Ogle & Barber, 2008).

A primary objective of this study is to provide a statistically
rigorous method for analyzing hydraulic conductivity data,
comparing different vulnerability curve models, and making
subsequent inferences about xylem vulnerability to cavitation.
The contributions of the methodology detailed in this study
include: incorporation of hierarchical error structures dictated
by the experimental or sampling design; explicit representation
of process error introduced by stochastic embolism events;
quantification of uncertainty in parameter estimates, including
maximum hydraulic conductivity; a hierarchical Bayesian
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modeling framework that accommodates such uncertainty;
and reparameterized exponential-sigmoid and Weibull models
that explicitly contain meaningful drought-tolerance
parameters. We illustrate our methodology using hydraulic
conductivity data collected for roots and stems of Juniperus
scopulorum Sarg. (Rocky Mountain juniper). These statistical
methods give parameter estimates that are appropriate to
the data and sampling design, thereby aligning the analysis
approaches with well-developed laboratory methods.

Description of modeling approach

Vulnerability models reparameterized

Current approaches fit vulnerability curves to PLC data as a
function of xylem water potential, a negative-valued tension
that is usually expressed as a positive-valued pressure (P). The
PLC values are calculated as PLC = [(Kmax – K)/Kmax] × 100%,
where K is measured hydraulic conductivity (or specific
conductivity) and Kmax is the measured value that represents
the potential maximum K. K values obtained after flushing
the segment to remove native emboli are typically used for
Kmax (Sperry et al., 1988). Most studies assume that observed
Kmax is equal to ksat, the ‘true’ hydraulic conductivity at P = 0
(or the ‘saturated’ hydraulic conductivity). Because we cannot
measure PLC or ksat exactly, and Kmax is rarely equal to ksat, we
choose to fit conductivity (not PLC) curves to measured K
values. For clarity, we use upper-case K when referring to

observations and lower-case k for the ‘expected’ hydraulic
conductivity that is described by a particular vulnerability
curve. The relationship between expected percentage loss of
conductivity (plc) and hydraulic conductivity (k) is given by: 

Eqn 1

Thus, a model for k yields an explicit model for plc and vice
versa.

In this study, we re-evaluate two vulnerability curve
models: the exponential-sigmoid (Pammenter & Vander
Willigen, 1998) and the Weibull (Rawlings & Cure, 1985;
Neufeld et al., 1992). The equations for these vulnerability
models are summarized in Table 1. Pammenter & Vander
Willigen (1998) promote the exponential-sigmoid model
because the parameters have biological meaning. However, we
show that both models can be reparameterized in terms of PX
and SX, where X is an arbitrary percentage loss that is specified
in the model-fitting procedure. This parameterization allows
one to choose specific values of X that are of interest and to
directly compare parameter estimates and model fits between
different vulnerability models. There are several steps involved
in reparameterizing the models (Supporting Information,
Methods S1), yielding equations for plc and k as functions of
PX, SX, and ksat. We give the reparameterized k functions
(Table 1); the reparameterized plc functions are derived using
Eqn 1 and are given in Methods S1.

Table 1 Original and reparameterized vulnerability curves for hydraulic conductivity

Original hydraulic conductivity equationsa

Exponential-igmoid  (Eqn 1.1)

Weibull  (Eqn 1.2)

Reparameterized hydraulic conductivity equationsa,b

Exponential-igmoid  (Eqn 1.3)

Weibull  (Eqn 1.4)

 

aP is (positive-valued) xylem water potential (i.e. P = −Ψ). Equations for k are only provided, and the plc equations are easily derived from Eqn 1.
bThe reparameterized models have three parameters that share the same meaning across models: ksat, saturated hydraulic conductivity, or k at 
P = 0 MPa; PX, pressure at X% loss of conductivity; and SX, the slope of the plc curve at P = PX.
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The exponential-sigmoid model (Pammenter & Vander
Willigen, 1998) is probably the most popular vulnerability
curve and has been fitted to PLC data for a variety of woody
species (Piñol & Sala, 2000; Martínez-Vilalta et al., 2002;
Choat et al., 2003; McElrone et al., 2004; Maherali et al.,
2006; Cochard et al., 2008; Willson et al., 2008). The
reparameterized k function for the exponential-sigmoid is
given by Eqn 1.3 (in Table 1) and is also described in Methods
S1. If we assume that hydraulic conductivity at P = 0 MPa is
given by k(P = 0) = ksat, then according to Eqn 1, plc(P = 0)
must equal 0%. However, a potential problem of using the
exponential-sigmoid model is that plc(P = 0) ≠ 0% and
k(P = 0) ≠ ksat. Moreover, plc and k are undefined for X = 0%
and X = 100%. Notice that, for the exponential-sigmoid, if
X = 50% then the original parameters are given by a = – (S50)/
25 and b = P50 (Methods S1).

The Weibull function is also a commonly employed
vulnerability model (Neufeld et al., 1992; Sperry & Saliendra,
1994; Kavanagh et al., 1999; Kolb & Sperry, 1999; Stiller &
Sperry, 2002; Li et al., 2008), and it has the longest history
of use with respect to PLC analysis. Like the exponential-
sigmoid model, the reparameterized k (Eqn 1.4, Table 1) is
not defined for X = 100%, but is defined for X = 0%. An
attractive feature of the Weibull model is that it does, in fact,
satisfy plc(P = 0) = 0% and k(P = 0) = ksat.

The reparameterized equations for k (and plc) for the
exponential-sigmoid and Weibull models are highly nonlinear,
both with respect to the independent variable P, and, more
importantly, with respect to the parameters PX, SX, and ksat.
The original models are also nonlinear functions of P and
their associated parameters. Thus, statistical methods that
can accommodate this nonlinearity are required for fitting
the reparameterized models to hydraulic conductivity
data. Furthermore, each study may lead to a different way
of specifying the statistical model depending on experimental
design and sampling methods. The statistical model should be
appropriately defined to capture the stochastic nature of the

data and cavitation process, to explicitly account for multiple
sources of uncertainty, and to incorporate the expected,
nonlinear conductivity curve. We first present the field study
and sampling design for our J. scopulorum dataset, then we
construct the statistical model.

Field study and conductivity data

Samples were collected from two J. scopulorum populations
near the northern (Washington Park, Fidalgo Island, Skagit
Co., WA, USA) and southern (Tonto National Forest,
Gila Co., near Payson, AZ, USA) extremes of the species’
distribution. We note, however, that since the collection of
these samples, the Fidalgo population has been reclassified
as a new, closely related species, J. maritima (Adams, 2007).
For the purpose of this study, however, we will refer to both
populations as J. scopulorum. Table 2 provides summaries
of the study site locations, including climate and soil
characteristics. To increase our chances of obtaining samples
with relatively few native emboli, we obtained samples in
the morning and during relatively wet periods of the growing
season (May 2002, Fidalgo; September 2003, Payson). One
branch and one root segment were collected from each of six
mature J. scopulorum trees per site. Thus, a total of 12 trees
were sampled (six trees × two sites), yielding 12 branch
segments (one per tree) and 12 root segments (one per tree).
Branches 0.5–0.7 m in length were clipped from the bottom
third of the canopy, and roots 0.3–0.4 m in length were
excavated from 15 to 30 cm soil depth.

Field preparation of samples and laboratory measurements
of hydraulic conductivity followed the methods described in
Willson et al. (2008). Briefly, the centrifugal force method
(Pockman et al., 1995; Alder et al., 1997) was used to subject
segments to progressively more negative water potentials. The
eight pressures applied to the Fidalgo segments were 1, 2, 3,
4, 5.5, 7, 8.5, and 10 MPa; and the seven applied to the
Payson segments were 2, 4, 5.5, 7, 8.5, 10, and 12 MPa. All

Table 2 Geographic, climate, and soil data for the two study sites from which Juniperus scopulorum (Rocky Mountain juniper) populations were 
sampled

Tonto NF Fidalgo Island

Latitude 34°13′N 48°22′N
Longitude 111°15′W 122°31′W
Elevation (m) 1410 15
Mean annual precipitation (mm) 560.6 663.4
Mean June-September precipitation (mm) 192.3 118.4
Mean annual maximum temperature (°C) 22.9 14.8
Mean July maximum temperature (°C) 33.8 22.2
Soil type Typic Haplustalf, loamy-skeletal, mixed, mesic Lithic Haploxeroll, rock outcrop complex
Soil depth ‘deep’ ‘shallow’

Climate data were obtained for the nearest weather stations (Payson, AZ, for Tonto NF and Anacortes, WA, for Fidalgo Island). Mean 
precipitation and temperature indices are for 1971–2000. Soil information was obtained from the USDA Natural Resources Conservation Service 
Soil Survey Report of Skagit County Area, Washington (1989) for Fidalgo Island, and from the USDA Forest Service, Southwestern Region, 
Terrestrial Ecosystems Survey Report for Tonto National Forest Northern Portion (1985).
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segments were initially flushed with water to remove native
embolisms. Although it is common practice to assume that
the water potential following flushing is equal to 0 MPa,
we recognize that there is uncertainty associated with this
assumption and treat the post-flushing water potential as
unknown. Following each water potential treatment, hydraulic
conductivity (KH; kg m MPa−1 s−1) was measured on each
segment as described in Sperry et al. (1988) and Willson
et al. (2008). To account for the effect of different cross-
sectional sapwood areas (A), we determined A for each
segment and calculated specific conductivity ;
kg m−1 MPa−1 s−1). Both KH and KS varied by several orders of
magnitude between segments; thus, for the statistical analysis,
we found it convenient to work, instead, with relative
conductivity (K ). We computed K for each segment by
dividing each of the segment’s seven or eight KH values by the
KH value measured directly following flushing, and all K
values associated with flushing were equal to one. Importantly,
the use of K instead of KH or KS does not compromise the
interpretation of the PX and SX parameters.

In short, we can view the sampling design in this study
as analogous to a split-plot experimental design (Steel et al.,
1997; Kutner et al., 2004) with repeated measures. Trees are
‘whole-plot’ units and segments are ‘split-plot’ units, with site
being the whole-plot ‘treatment’ and organ type (root or
branch) being the split-plot treatment. The repeated aspect
arises from each segment being measured for conductivity at
each of several water potential values.

Hierarchical statistical model

We present a hierarchical Bayesian (HB) model (Ogle &
Barber, 2008) that accommodates: (i) the unknown water
potentials associated with flushing; (ii) the split-plot sampling
design; and (iii) the nonlinear ‘process’ models that describe
vulnerability to cavitation. Although many aspects of the
statistical model could be implemented in a classical nonlinear,
mixed-effects modeling framework, the HB approach (Wikle,
2003; Clark, 2005) has proved particularly useful for dealing
with complicated models such as the ones presented herein.
The HB model is composed of three stages: the data model (or
likelihood) (stage 1), the process model (stage 2), and the
parameter (or prior) model (stage 3) (Wikle, 2003; Clark,
2005; Ogle & Barber, 2008). Together, these stages give the
joint posterior distribution of unknown parameters such as
variance terms, the initial (flushing) water potentials, and PX,
SX, and ksat values associated with the segment, tree, site, and
organ type levels. Moreover, it is straightforward to estimate
differences in, for example, P50 between sites and organ types
based on the posterior distribution of P50. We describe each
HB stage in the context of the J. scopulorum dataset.

Stage 1: the data model We assume that observed relative
conductivity (K) can be described by a normal distribution

with a mean given by the ‘true’ (or latent) relative conductivity
(µ). For measurement m made on segment i of organ type t
and from tree j in site s, the associated likelihood component
for K is given by: 

Eqn 2

Here, the variance σK
2 represents observation error variability,

and we assume that, conditional on the latent value (µ), the
observation errors are independent.

Denote P{m,i,j,t,s} as the pressure, or positive-valued water
potential, associated with each observed relative conductivity
value in Eqn 2. We observed P for m > 1, but we do not have
data on P for m = 1 as this represents the water potential after
flushing. We assume that the segment-level unobserved
flushing pressures are equal to a latent pressure that depends
on organ type such that P{1,i,j,t,s} = Po{t}. Thus, Po is an unknown
parameter that we estimate.

Stage 2: the process model Stage 2 specifies the process
model for µ, and it incorporates a deterministic process mean
model and stochastic process error. The process mean is
defined by the expected vulnerability curve, and the process
error describes discrepancies between the mean and latent
relative conductivity: 

 
Eqn 3

The process mean k(PX, SX, ksat | Po, P) is given by the
reparameterized exponential-sigmoid or Weibull curve in
Eqns 1.3 or 1.4, respectively (Table 1). The conditional notation
in Eqn 3 indicates that k is a function of the stochastically
specified parameters PX, SX, and ksat, the stochastic initial
Po, and the fixed covariate P (the applied positive-valued
pressure). Complex error structure is more commonly specified
in the process error than observation error, and we explore two
alternative formulations for the process errors, ε{m,i,j,t,s}.

The simplest model assumes no process error so that all
ε{m,i,j,t,s} terms are zero, and µ is exactly equal to k(PX, SX,
ksat | Po, P). The second model considers the stochastic nature
of embolism. At xylem water potentials that cause intermediate
amounts of cavitation, and in the absence of freezing
stress, conduits of different sizes are assumed to cavitate with
some probability that depends on the water potential, but this
probability is expected to be independent of conduit size. At
intermediate values of water stress, the size and number of
conduits that do cavitate are a stochastic function of xylem
water potential and the current state of filled and embolized
conduits; this uncertainty in the cavitation process is revealed
as a relatively wide range of probable conductivities compared
with the extremes. That is, at extreme water stresses, we may

( /K K AS H=

K {m,i,j,t,s} {m,i,j,t,s} KNormal∼ μ σ, 2( )

μ{m,i,j,t,s} X{i,j,t,s} X{i,j,t,s} sat{i,j,t,s} o{t}= k P S k P, , | ,PP{m 1,i,j,t,s}

{m,i,j,t,s}

≠( )
+ ε
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expect nearly complete cavitation of all conduits (high P) or
nearly no cavitation of conduits (P ≅ 0). In either case, we
expect a relatively small potential range of conductivity values.
Hence, we assume that the process error is a function of the
expected plc such that: 

Eqn 4

and

Eqn 5

The process error is zero when all conduits are water-filled
and functional (plc = 0%) or when all conduits have cavitated
(plc = 100%), and all uncertainty in the conductivity data
is attributed to observation error in this case. A maximum
variance of  occurs when plc = 50%. Note that
plc in Eqn 5 is given by Eqn 1 with k as in Eqns 1.3 or 1.4
(Table 1).

Stage 3: the parameter model The primary quantities of
interest are the conductivity process parameters (PX, SX, ksat),
and we assume that each segment has its own set of parameters.
We model each hierarchically such that our model for each
parameter is exactly analogous to that of a split-plot design
whereby we account for segment effects nested within a tree
effect, along with the effects for organ type, site, and their
interaction. The sampling design determines how we model
each parameter, and the parameter model can be modified to
accommodated different designs or hierarchical structures.
For our study, at the segment level, we have: 

Eqn 6

where the variances , , and  describe between-
segment variability. Negative values of PX, SX, and ksat are
biologically unrealistic, and thus the normal distributions in
Eqn 6 are truncated at zero to ensure positive values for these
parameters.

We use standard effects coding to model the means in Eqn
6, decomposing PX, SX , and ksat into an organ type effect (α),
a site effect (β), an organ type × site interaction effect (αβ),
and a random tree effect (δ). The models for PX, SX, and ksat
are given by:

Eqn 7

and

Eqn 8

where the parameters , , and  are variance com-
ponents describing variability among trees after accounting
for site. Although random effects are usually centered about
zero, as with split-plot effects or whole-plot effects in a typical
split-plot model, we choose the term ‘tree effect’ for δ,
although it is centered on the sum of an overall effect (µ) plus
a site effect (β). This is consistent with how we specify the
model in WinBUGS (see section on Model implementation,
below). Thus, the Eqns 6–8 are equivalent to the typical split-
plot specification for each parameter. Also of interest is the
expected value (mean) for a particular segment’s process
parameter Y, which we denote as Ÿ and is given by:

Eqn 9

where Y is PX, SX, or ksat in Eqn 6, and Ÿ{t,s} is ÞX{t,s}, ŠX{t,s},
or Ksat{t,s}, which can also be thought of as the fixed-effects cell
means for the four combinations of organ type (t) and site (s).
It is straightforward to compute contrasts of interest.
For example, if one is interested in making inferences
about the difference in PX between stems (t = 1) and
roots (t = 2) at Fidalgo (s = 1), this is computed as

. One
could also compute an effect size as, for example, ÞX{1,1}/
ÞX{2,1}. Importantly, the HB method gives the posterior
distributions for such contrasts and effects sizes, but we focus
on contrasts in this study.

Finally, we assigned relatively noninformative or diffuse
prior distributions to all remaining parameters, including all
fixed effects, the organ type initial pressures, and all variance
terms. We used diffuse normal distributions with mean
zero and large variances (set to 2000) for the µ, α, β, and αβ
parameters, and we implemented ‘sum-to-zero’ constraints
for the α, β, and αβ parameters as is typically implied by
this (factor) effects coding approach (Kutner et al., 2004).
We used semi-informative priors for the initial pressures by
assigning a uniform distribution between 0 and 2 MPa to Po
because we expect the initial (positive-valued) water potential
to be between zero and the first pressure applied via the
centrifuge method (c. 2 MPa). Following Gelman (2006), we
specified uniform, U(0, A), priors for all standard deviations
(i.e. σK, ηP, and the υ and τ values), where a value of A was
chosen separately for each parameter.

Model implementation

The product of a Bayesian analysis is a joint posterior
distribution of the unknown parameters given the data
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(Gelman et al., 2004). Usually Markov chain Monte Carlo
(MCMC) algorithms (Robert & Casella, 1999) are imple-
mented to sample from the joint posterior, and from these
samples one can calculate measures of centrality (e.g. mean,
median, mode), spread (e.g. credible intervals, which are
similar to confidence intervals), and correlations between
parameters. We implemented the HB models in WinBUGS
(Lunn et al., 2000). We ran at least three parallel MCMC
chains, evaluated the chains for convergence, and thinned
chains when appropriate to reduce within-chain autocorrela-
tion, thereby producing a sample of 4000 nearly independent
draws from the posterior. In all cases, we set X = 50% and
estimated P50 and S50; however, it is easy to modify the
WinBUGS code to obtain posterior distributions of PX and SX
for different values of X. We illustrate this by computing
posterior statistics for X = 25, 75, 90, and 99% for the
Weibull model with process errors as given by Eqns 4 and 5.

Results

Model behavior and model comparison

We evaluated four different models defined by combinations
of two process means (exponential sigmoid vs Weibull) and
two process error assumptions (no process error vs stochastic
process error). The MCMC chains for all parameters
associated with both Weibull models exhibited good mixing
(i.e. explored the posterior parameter space well with relatively
little within-chain autocorrelation). While the chains for most
parameters were well behaved in the exponential-sigmoid
models, those related to the ksat parameters were less well
behaved, potentially because the exponential-sigmoid function
is not anchored at k = ksat when P = 0 MPa. In contrast, ksat is
exactly the expected maximum relative conductivity (at
P = 0) in the Weibull models, and thus measurements near
P = 0 help to constrain the value of ksat in this model wherein
chains were better behaved. We first compare the performance
of the four different models before presenting estimates for ksat
and important drought-tolerance parameters.

We used the deviance information criterion (DIC) described
by Spiegelhalter et al. (2002) to compare the models. DIC

has two components: one describes model goodness-of-fit and
the other penalizes for the number of ‘effective’ parameters. A
difference in DIC values of five or more units indicates strong
support for the model with the lowest DIC (Spiegelhalter
et al., 2002). The Weibull model with process error had the
smallest DIC (−566.8), the exponential-sigmoid without
process error had the largest DIC (−536.7), and the other
two models had similar DIC values (c. −555), indicating
exceptionally strong support for the Weibull model with process
error. The models differed little in their effective number of
parameters, which ranged from 49 (exponential-sigmoid
without process error) to 53 (Weibull with process error), and
thus differences in DIC are primarily the result of differences
in model goodness-of-fit. If we only consider the Weibull
models, the posterior mean for the observation standard
deviation, σK, was 0.0550 for the model without process
error; the model with process error yielded posterior means
for the observation and process standard deviations, σK and
ηP, of 0.0362 and 0.0570, respectively. Thus, the variability
attributed to stochastic embolisms can be almost two times
greater than the variability introduced by the observation (or
measurement) process. Overall, the DIC values and estimates
of the different variance components suggest that the Weibull
model is superior to the exponential-sigmoid model, and the
incorporation of stochastic process errors greatly improves
model fit. The latter point is particularly important because
other approaches do not consider such process errors, but this
study indicates that the nonconstant variability introduced by
stochastic embolisms is an important source of uncertainty.

These results are further supported by evaluations of model
goodness-of-fit that compare observed vs predicted relative
conductivity. We define the predicted values as the posterior
mean for each ‘replicated’ relative conductivity observation,
Krep{m,i,j,t,s}, associated each observed value, K{m,i,j,t,s} (Gelman
et al., 2004). That is, Krep values were generated from the same
sampling distribution in Eqn 2, yielding the posterior predictive
distribution for each Krep. All four models generally resulted
in similar patterns of observed vs predicted, wherein the
points fell around the 1:1 line with R2 values exceeding 0.97
(see Fig. 1 for the two models that included process error).
Although the observed vs predicted plots look fairly similar

Fig. 1 Observed vs predicted relative 
conductivity for the exponential-sigmoid 
(Exp-sig) model with process error (a) and 
the Weibull model with process error (b). 
Each point is the pair of observed relative 
conductivity (K) and the associated posterior 
mean for the replicated relative conductivity 
(Krep). The diagonal lines are the least-squares 
regression fits (equation and R2 provided), 
which are indistinguishable from the 1:1 line. 
The upper and lower curved lines represent 
the 95% prediction interval. Similar results 
were obtained for the models that did not 
incorporate process error.
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between the exponential-sigmoid and Weibull models, one
obvious difference is that the exponential-sigmoid has a
difficult time fitting observed values of K = 1.0, whereas these
values are ‘pulled’ more towards the 1:1 line by the Weibull
model (Fig. 1). It is also fairly clear that the variability in the
observed values tends to be smaller near the extremes (i.e. near
K = 0 and K = 1), indicating that the stochastic process error
model in Eqn 5 is necessary to describe this nonconstant
variance accurately.

Despite similar observed vs predicted plots (Fig. 1), a
comparison of the predicted vulnerability curves given by the
exponential-sigmoid and the Weibull models clearly indicates
that the Weibull model is more biologically consistent.
Regardless of the process error model, the Weibull model gives
plc(P = 0) = 0% exactly (see Fig. 2b for the Weibull model
with process error). Conversely, the exponential-sigmoid
predicts relatively high percentage loss of conductivity (plc)
at P = 0 MPa (Fig. 2a). For example, the posterior mean and
95% central credible interval (CI) for plc(P = 0) for roots
from the Payson site are 18.0% and [7.2%, 32.0%] for the
exponential-sigmoid model with process error (Fig. 2a). The
nonzero plc-intercept for the exponential-sigmoid model is a
direct artifact of its functional form such that for X = 50%,

Thus, based on this model, plc curves for plants or organ
types that are highly vulnerable to cavitation will necessarily
have a high plc-intercept regardless of whether or not this is
biologically realistic.

In summary, these results yield two important suggestions
for the analysis of data on vulnerability to cavitation. First, the
nonconstant variance associated with stochastic embolisms
is an important source of uncertainty that should be included

in such analyses. Second, the Weibull model is superior to
the exponential-sigmoid model and is thus the preferred
‘expected process’ model for such analyses.

Parameter estimates for J. scopulorum

Given the preceding discussion, from this point forward, we
focus on models that incorporate stochastic process errors.
The exponential-sigmoid model resulted in less realistic
and less accurate estimates for the segment-level ksat (Eqn 6)
estimates compared with the Weibull model. For the
exponential-sigmoid model, the posterior means for the
segment-level ksat values ranged from 1.00 to 1.19, and the 95%
CI widths ranged from 0.06 to 0.32, whereas, for the Wiebull
model, the posterior means and 95% CI widths ranged
from 0.97 to 1.01 and 0.07 to 0.09, respectively. The high
uncertainty in these segment-level values associated with the
exponential-sigmoid vs Weibull model is also reflected in the
cell means estimates for Ksat (Fig. 3), Eqn 9. Both exponential-
sigmoid models yielded higher-than-expected values for Ksat
(i.e. typically greater than 1), whereas both Weibull models
yielded values that were generally centered around one with
high precision (narrow CIs) (e.g. Fig. 3). It is worth comparing
the Ksat estimates (Fig. 3) with the predicted plc curves
(Fig. 2). The plc curve for stems from Payson given by the
exponential-sigmoid goes through approx. 0% at P = 0 MPa
(Fig. 2a), and is thus is a biologically realistic curve, and the
Ksat estimate corresponding to this curve is also realistic (near
1.0) and well estimated (narrow CI) (Fig. 3). The other three
plc curves given by the exponential-sigmoid have relatively
high values for plc(P = 0), accompanied by high values for Ksat
that are also highly uncertain. Thus, the exponential-sigmoid
has difficulties producing both realistic vulnerability curves
and estimates of maximum hydraulic conductivity.

Fig. 2 Predicted ‘expected’ curves for percentage loss of hydraulic conductivity (plc) based on parameter estimates obtained from the 
exponential-sigmoid model with process error (a) and the Weibull model with process error (b). The plc curves were obtained by the following 
procedure. Posterior means for the cell means for P50 and S50 (see Fig. 4) were plugged into the equations for expected relative conductivity (k) 
(i.e. Eqn 1.3 for the exponential-sigmoid and Eqn 1.4 for the Weibull model; Table 1), and the equations were evaluated for different values of 
P. Then plc was computed according to Eqn 1. The four plc curves in each panel represent the predicted plc curves for roots from Juniperus 
scopulorum (Rocky Mountain juniper) from Fidalgo (R, F), roots from Payson (R, P), stems from Fidalgo (S, F), and stems from Payson (S, P).
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Comparing parameter estimates between the models, three
of the four Ksat estimates were significantly different between
the two models. The Ksat value for stems from Payson was the
only one that was similar between the models (Fig. 3). While
the exponential-sigmoid generally produced Ksat estimates

that were significantly greater than 1 (Fig. 3), the Ksat estimates
provided by the Weibull model did not differ from 1 (Fig. 3).
Since the Weibull model yields biologically realistic vulner-
ability curves, this suggests that for this species (J. scopulorum),
conductivity measurements following flushing closely
approximate maximum conductivity. Unlike Ksat, the important
parameters describing drought-tolerance characteristics – the
pressure resulting in X = 50% loss of hydraulic conductivity,
Þ50, and the sensitivity of plc to changes in pressure at P = Þ50,
Š50 – did not differ significantly between the two models, in
terms of both their posterior means and the estimates of
uncertainty (i.e. CI widths). However, given that the Weibull
is preferred over the exponential-sigmoid, we focus on the
Weibull model with stochastic process errors from this
point forward.

The posterior estimates for drought-tolerance parameters
for J. scopulorum are shown in Fig. 4 for the Weibull model
with process error. At the Fidalgo site, stems and roots do not
differ significantly in their susceptibility to cavitation, such
that the posterior means for Þ50 are 7.6 MPa for stems and
6.3 MPa for roots (Fig. 4a), and the 95% CI for the contrast
ÞX{1,1} − ÞX{2,1} contained zero: [–3.62, 1.16]. Conversely, at
the Payson site, roots are significantly more vulnerable to
cavitation than stems, such that the posterior means for the
Þ50 of roots and shoots were 4.9 and 9.0 MPa, respectively,
(Fig. 4a), and the 95% CI for the associated contrast did
not contain zero: [–6.48, –1.68]. Based on the estimates for
Þ50, susceptibility to cavitation does not differ between
J. scopulorum growing at the northern (Fidalgo) and southern
(Payson) sites (Fig. 4a). For example, the site and site × organ
type interaction effects did not differ from zero; that is, the
95% CIs for  and  (Eqn 7) were [–1.03, 1.04] and
[–1.54, 0.12], respectively.

Sensitivity to changes in water potential at the 50% loss
point also did not differ between stems and roots at
Fidalgo (Fig. 4b); for example, the 95% CI for the contrast

Fig. 3 Posterior means and 95% credible intervals (CIs) for the cell 
means for saturated (or maximum) relative hydraulic conductivity, 
ksat, Eqn 9, based on the Weibull (circles) and exponential-sigmoid 
(triangles) models with process error. For comparisons between 
models within a site and organ type, ksat values are significantly 
different between models if the posterior mean given by one model 
is not contained in the other model’s 95% CI, as indicated by an *. 
Individual ksat values are considered different from 1.0 if their 95% 
CIs do not contain 1.0; ksat values that differ from 1.0 are indicated 
by ** next the corresponding model’s symbol.

Fig. 4 Posterior means and 95% credible 
intervals (CIs) for the cell means for P50 and 
S50 obtained from the Weibull model with 
process error. Estimates are given for each 
organ type (t) and site (s) for the (positive-
valued) water potential that results in 50% 
loss of hydraulic conductivity (i.e. P50{t,s} as 
defined in Eqn 9) (a), and for the sensitivity of 
percentage loss of hydraulic conductivity at 
P = P50{t,s} (i.e. Š50{t,s} as defined in Eqn 9) (b).

αPX
αβPX
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ŠX{1,1} − ŠX{2,1} contained zero: [–0.96, 4.91]. Although the
marginal means for Š50 in Fig. 4b suggest that J. scopulorum
stems from Payson were more sensitive (higher Š50) to changes
in water potentials than roots (Fig. 4b), the 95% CI for the
associated contrast contained zero: [–5.6, 0.31], indicating
that Š50 also does not differ significantly between stems and
roots in this site. Although Š50 did not differ between roots in
the two different sites, there is evidence that stems from
Payson trees are more sensitive to changes in xylem water
potential than stems from Fidalgo (Fig. 4b), and the 95% CI
for the contrast ŠX{2,1} − ŠX{2,2} did not contain zero: [–7.91,
–0.81]. Moreover, although the site effect for the sensitivity
parameter, , did not differ from zero (i.e. the 95% CI was
[–2.45, 0.41]), there was a significant site × organ type inter-
action such that the 95% CI for  was [–2.18, –0.09].
Overall, stems from Fidalgo were least sensitive to changes
in water potential, whereas stems from Payson were most
sensitive to changes in water potential despite having the largest
Þ50 value (i.e. least susceptible to drought-induced cavitation)
(see Fig. 4b).

Discussion

Analysis of hydraulic conductivity data

Significant advancements have been made with respect to
experimental methods for measuring vulnerability to
cavitation (Brodribb & Holbrook, 2003; Kikuta et al., 2003;
Mayr & Cochard, 2003; Sperry et al., 2003; Li et al., 2008),
but statistical methods for analyzing such data have lagged
behind. This study aligns the statistical and experimental
methodologies. First, we demonstrated that two common
vulnerability curves can be reparameterized in terms of
meaningful drought-tolerance parameters. Then we illustrated
how these nonlinear models can be fitted to data on (relative)
hydraulic conductivity using hierarchical Bayesian statistical
methods that: (i) accommodate the sampling design (such as
the split-plot design in this study); (ii) explicitly incorporate
different sources of variability (such as process error introduced
by stochastic embolism events); and (iii) explicitly estimate
uncertainty associate with important drought-tolerance
parameters via the posterior distribution. We believe that our
explicit accounting of important sources of variability results
in more realistic characterizations of the uncertainty in our
predictions of xylem vulnerability to cavitation.

One goal of this study is to thoroughly evaluate the usefulness
of the most commonly used vulnerability curves. A primary
reason for the popularity of the exponential-sigmoid model is
that its (original) parameters are equal to, or proportional to,
drought-tolerance parameters (Pammenter & Vander Willigen,
1998; Domec & Gartner, 2001). Now that we have shown
that both models can be reparameterized in terms of PX, SX,
and ksat, there is no clear justification for choosing the
exponential-sigmoid over the Weibull curve. In fact, we

encountered several problems when fitting the exponential-
sigmoid to conductivity data for J. scopulorum. For example,
some of the MCMC parameter chains did not mix well, the
ksat parameters were estimated with relatively low precision
and were generally greater than 1, and predicted plc exceeded
zero at water potentials of approx. 0 MPa. The problem that
plc > 0 at P = 0 MPa for the exponential-sigmoid is a direct
property of the model and is not unique to this study. In
fact, several previous studies also give estimated exponential-
sigmoid curves with plc intercepts that are greater than zero
(Pammenter & Vander Willigen, 1998; Martínez-Vilalta
et al., 2002; Oliveras et al., 2003) and some appear unreasonably
high (Choat et al., 2003). Hence, we recommend the Weibull
model over the exponential-sigmoid model because the
MCMC chains were well behaved and it provides more
biologically realistic vulnerability curves that are anchored at
0% loss at 0 MPa.

We also note that the hierarchical Bayesian approach
described herein is preferred to other methods such as max-
imum likelihood (ML). For example, to test for treatment
effects (e.g. via contrasts) and to construct confidence intervals
for parameters based on ML results requires a series of
asymptotic normality approximations (Seber & Wild, 1989;
Pinheiro & Bates, 2000). Given that parameters may not be
adequately described by a normal distribution and that exper-
imental studies can only measure a finite number of subjects,
such approximations have the potential to misrepresent the
degree of uncertainty in the data and parameter estimates
(Seber & Wild, 1989). Conversely, the Bayesian analysis does
not rely on such approximations and is not constrained to
normal distributions. The posterior distributions can take any
form, and thus the Bayesian parameter estimates and intervals
may more accurately portray uncertainty (Gelman et al.,
2004). Bayesian and ML interval estimates may be similar,
however, if the posterior distributions for the parameters are
approximately normal, which was generally the case in this
study for most parameters. Although, the posteriors for Po{t}
could not be described by normal densities, which is to be
expected since these parameters are expected to be close to a
lower bound of 0 MPa.

Inferences about vulnerability to cavitation

Another major advantage of the methods described here is
that it is easy to compute estimates for other parameters of
interest, such as PY and SY (Y ≠ X ). For example, PY and SY
can be written as functions of PX and SX, and for the
Weibull model PY is: 

Eqn 10
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where V is defined in Table 1, Eqn 1.4 (Methods S1 gives
solutions SY). Estimates of PY and SY are easily obtained by
Bayesian methods. In practice, one would set X = 50% (or
any arbitrary value between 0 and 100%) and fit the Weibull
model in WinBUGS, which would produce a list of values for
P50 and S50 (i.e. samples from the posterior). By applying Eqn
10 to the P50 and S50 posterior samples obtained from the
MCMC simulation, one can obtain a posterior sample of PY
(and SY). We illustrate this in Fig. 5 where we use the posterior
samples of P50 and S50 to estimate posterior distributions of
P25, P75, P90, and P99 for J. scopulorum. Alternatively, one
could re-run the Bayesian model for each Y, but this is not
necessary, and each run could take several hours to converge.

A comparison of roots and stems from the two geographically
distinct populations of J. scopulorum shows that differences
in plc are greatest at high (less negative) water potentials,
and these differences begin to fade as P or plc increases (e.g.
compare differences in P25 between organ types and sites vs
differences in P50, P75, P90, and P99, Fig. 5). If P25 (or some
other PY for Y  ‘small’) is used as an index of the onset of
cavitation, then cavitation in stems from Payson is delayed,
with respect to the xylem water potential required to induced
25% loss, compared with stems from Fidalgo and roots

from both locations. Since presumably higher water potentials
are most frequently experienced in the field, and they must
be experienced before more negative potentials develop,
differences in plc within this range (e.g. < −5 MPa) may be
particularly important to a plant’s overall drought response.
Thus, in addition to the standard use of P50, the onset of
cavitation (e.g. P25, P10) and/or the air-entry potential (Ψe or
P12) (Sparks & Black, 1999; Domec & Gartner, 2001) are key
parameters that should be considered more frequently. If
we also consider the other ‘extreme’ by evaluating cavitation
under very negative water potentials, then this analysis
suggests that J. scopulorum has the potential to maintain water
transport capacity at water potentials of −10 to −16 MPa, the
point at which almost 90% loss of hydraulic conductivity
occurs (Fig. 5).

The drier, hotter climate in central Arizona as compared
to the maritime climate of western Washington led us to
hypothesize that differential vulnerability to cavitation may
exist between the two J. scopulorum populations, and we
anticipated that Payson trees would be more resistant than
Fidalgo trees. This hypothesis, however, was not strongly
supported by our data and analyses. Based on the PX estimates,
stems from Payson were slightly more resistant than roots and
stems from Fidalgo at water potentials above c. −10 MPa (or
P < 10), but roots from Payson were least drought-tolerant
(Figs 4a, 5). Cavitation sensitivity (based on S50) did not differ
between sites for roots, but did differ for stems (Fig. 4b). In
general, however, site-to-site variation in PX and SX was
relatively small (Figs 4, 5), and lack of such intraspecific
variation has also been shown for stems from other conifer
species growing in disparate locations (Maherali & DeLucia,
2000; Martínez-Vilalta & Piñol, 2002). Greater differences
were found between roots and stems within a site than
between sites. At Payson, stems were significantly more resistant
to cavitation than roots (Figs 4a, 5). This was expected, given
that water potentials decrease from the soil to the leaves,
emboli may be easier to repair in the roots as a result of positive
root pressures (Tyree & Sperry, 1989), and the there is ample
evidence that roots are more susceptible to cavitation than
stems in several conifer species (Sperry & Ikeda, 1997; Linton
et al., 1998; Kavanagh et al., 1999; Oliveras et al., 2003;
McElrone et al., 2004).

An accurate estimate of maximum hydraulic (or specific)
conductivity may also be desired because of its potential
to regulate maximum photosynthetic capacity (Brodribb &
Feild, 2000). Unlike previous analyses, our modeling frame-
work recognizes that: (i) the xylem water potential associated
with hydraulic conductivity measured after flushing is
unknown; and (ii) saturated hydraulic conductivity is
measured with error. The modeling framework herein
acknowledges these two sources of uncertainty by estimating
the initial water potential (Po) and by fitting a vulnerability
curve to conductivity data, not computed PLC values. For
example, based on the Weibull model with process error, the

Fig. 5 Posterior distributions for the (positive-valued) water 
potentials that result in X = 25, 50, 75, 90, and 99% loss of hydraulic 
conductivity: P25, P50, P75, P90, and P99 for stems from Juniperus 
scopulorum (Rocky Mountain juniper) from Fidalgo (a), roots from 
Fidalgo (b), stems from Payson (c), and roots from Payson (d). 
The PX estimates are based on the Weibull model with process error, 
and P25, P75, P90, and P99 were calculated from the posterior samples 
for P50 and Š50 using Eqn 10.
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posterior means and 95% CIs for Po for J. scopulorum stems
and roots were 0.342 [0.013, 0.975] MPa and 0.065 [0.002,
0.233] MPa, respectively. These results indicate that the ‘true’
initial pressure is near zero, but not exactly equal to zero, as the
posterior distribution was skewed towards ‘larger’ values.

Moreover, given the posterior estimates for the Ksat cell
means (Fig. 3), we can compute estimates of the maximum
specific conductivity (KSsat). For example, the Ksat posterior
mean and 95% CI for stems from Payson were 0.99 and
[0.96, 1.01] (Fig. 3), and the average measured initial KS
for these segments was 0.067 kg m−1 MPa−1 s−1. Thus, the
posterior mean and 95% CI for the predicted KSsat are
0.067 × 0.99 = 0.066 and [0.064, 0.067] kg m−1 MPa−1 s−1.
Applying the same calculations to stems from Fidalgo and
roots from Payson and Fidalgo, the resulting posterior means
and 95% CIs for KSsat are 0.499 [0.483, 0.514], 1.052 [1.015,
1.088], and 1.954 [1.887, 2.019] kg m−1 MPa−1 s−1, respec-
tively. Thus, roots and stems from the driest and southernmost
extreme population of J. scopulorum’s distribution have signif-
icantly lower water transport capacity (i.e. lower KSsat) than
those from the wetter, more northern population. Moreover,
within both locations, water transport capacity of roots is an
order of magnitude or more greater than that of stems in
J. scopulorum, which is consistent with a variety of studies for
woody plants (Kavanagh et al., 1999; Martínez-Vilalta et al.,
2002; McElrone et al., 2004). This exercise, however,
illustrates that the explicit modeling of ksat (and thus KSsat)
means that one does not need to go to great lengths to remove
all native emboli before measuring hydraulic conductivity.
Instead, one should focus on making measurements over a
range of water potentials that sufficiently span zero to 100%
loss of conductivity.

In conclusion, although we illustrate the hierarchical
Bayesian statistical methods using hydraulic conductivity data
for J. scopulorum obtained under drought-induced cavitation
experiments, the methods can be easily extended to analysis
of vulnerability to cavitation during freeze–thaw cycles.
Moreover, while the mathematical reparameterizations are
specific to vulnerability curves, the statistical techniques may
be appropriate for a wide variety of physiological data that are
characterized by nonlinear response functions and mixed-
effects error structures.
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