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Abstract. Many standard statistical models used to examine population dynamics ig-
nore significant sources of stochasticity. Usually only process error is included, and un-
certainty due to errors in data collection is omitted or not directly specified in the model.
We show how standard time-series models for population dynamics can be extended to
include both observational and process error and how to perform inference on parameters
in these models in the Bayesian setting. Using simulated data, we show how ignoring
observation error can be misleading. We argue that the standard Bayesian techniques used
to perform inference, including freely available software, are generally applicable to a
variety of time-series models.

Key words: Bayesian; Markov chain Monte Carlo (MCMC) simulation; nonlinear models; normal
dynamic linear models; observation error; population dynamics; state-space; time-series; uncertainty.

INTRODUCTION

Population biologists use time-series data to infer
the factors that regulate natural populations (Stenseth
1995, Stenseth et al. 1998, Bjørnstad et al. 1999) and
to determine when populations may be at risk of ex-
tinction. Inference on the dynamics of natural popu-
lations is based on estimated model parameters and
should incorporate the uncertainty in these parameters.
Many analyses, however, ignore the multiple sources
of stochasticity that commonly impact population time-
series (Dennis and Taper 1994, Bjørnstad and Grenfell
2001). These analyses include process error, accounting
for the fact that population dynamics is not a deter-
ministic process and that the model for the process may
be misspecified, but they often ignore uncertainty due
to errors in the observations. In this way, the true abun-
dances through time is an unobserved (‘‘latent’’) state
variable on which the data provides imperfect infor-
mation. DeValpine and Hastings (2002) extend stan-
dard population models to include both observation
error and process error. Using maximum likelihood
techniques, they show that ignoring observation error
can lead to inaccurate estimates of population param-
eters. Their approach provides a more flexible method
than classical error-in-variables models (Carpenter et
al. 1994). We apply an alternative method for incor-
porating observation error in models of population dy-
namics, which is based on the Bayesian, rather than
frequentist, paradigm of statistics. Frequentist meth-
ods, sometimes referred to in the statistical literature
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as classical methods, treat parameters as fixed, un-
known constants. Alternatively, under the Bayesian
paradigm, parameters are viewed as random variables;
the data are used to update one’s beliefs about the dis-
tribution of the model parameters. The coherence of
the Bayesian method provides a straightforward way
to account for observation error in addition to process
error.

The state-space model framework provides a struc-
ture for extending time-series models to include both
observation and process error. The data are assumed to
arise from an unobserved state variable that represents
the ‘‘true’’ dynamic process. This underlying variable
evolves over time by a process model that explicitly
models process error. The model for the relationship
between the actual data and the state variable incor-
porates observation error. Bayesian state-space models
with linear structure and normal error distributions al-
low entirely analytic results; we review the relevant
expressions. We discuss extensions and alternative ap-
proaches for models with nonlinear structure and non-
normal error distributions, including Markov chain
Monte Carlo (MCMC) posterior simulation. The co-
herence of the Bayesian paradigm allows for more
straightforward inference than do maximum likelihood
methods and numerical quadrature techniques required
for classical inference. In the Bayesian setting, state
variables can be treated as parameters, and full pos-
terior inference can be performed as if they are time-
invariant parameters. We describe how to derive full
posterior distributions for the state variables/parame-
ters and time invariant parameters. Throughout, we use
models for density-dependent population dynamics as
illustrative examples.

Bayesian statistics and Bayesian state-space models
are not new to the ecology literature. Soudant et al.
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FIG. 1. This diagram represents the conditional indepen-
dence structure of a state-space model. Each of the x’s, given
the values of the surrounding nodes, is conditionally inde-
pendent of the rest of the graph.

(1997) developed a Bayesian dynamic model for phy-
toplankton time series that allows for time-varying in-
fluence of the covariates. Cottingham and Schindler
(2000) use a Bayesian dynamic linear model to model
how phytoplankton respond to pulsed nutrient loading.
State-space models have been used in the fisheries lit-
erature (e.g., see references in Millar and Meyer
[2000a]). For example, Millar and Meyer (2000a) and
Meyer and Millar (2000b) introduce a Bayesian non-
linear state-space model to incorporate more realism
into fish stock assessment models.

In this article, we show how standard population
models can be extended to the state space framework
in order to include multiple sources of error. Rather
than focusing on a particular model, we concentrate on
general techniques necessary to fit Bayesian state-space
models. The relative simplicity of the methods de-
scribed here have broad application and lead to state-
ments of uncertainty that take a more comprehensive
accounting of variability.

STATE-SPACE MODELING

The standard models used to describe changes in
population size have the form yt 5 G(Dt2l) 1 wt, where
yt is a function of the size of the population at time t
and Dt represents all of the observed population counts
up until time t, i.e., Dt 5 {y1, y2, . . . , yt2l}. The function
G(·) provides a deterministic relationship between the
size of the population at time t and its size in the past.
G(·) will typically also be a function of unknown pa-
rameters that can be estimated from data. The term wt

represents the process error and depends intrinsically
on the function G(·); it accounts for the variability in
the size of the population that cannot be captured by
G(·).

Population census data come from trapping, counts,
photographs, and so forth and are typically observed
with measurement error. Counts are rarely equal to the
true size of the population. The error term wt in the
model for population dynamics described in the pre-
vious paragraph subsumes both process error and mea-
surement error. It is often useful to extend this model
to a state-space model that explicitly separates multiple
sources of stochasticity. DeValpine and Hastings
(2002) describe how inference can be performed for
state-space models within the frequentist framework.
We focus on Bayesian state-space models. The Bayes-
ian state-space model is based on the Kalman filter
(Kalman 1960), which is a popular technique used in
engineering and statistical quality control. While not
inherently a Bayesian technique, the Kalman filter pro-
vides a method for forecasting that is consistent with
the theory of Bayesian inference. Harrison and Stevens
(1976) discuss the principles of Bayesian forecasting
and its relationship to the Kalman filter. Meinhold and
Singpurwalla (1983) present a less technical version of
these issues.

The standard framework for a Bayesian state-space
model is as follows:

Observation equation

y 5 F(x ) 1 n , n ; N [0, V ]t t t t

Process equation

x 5 G(x ) 1 w , w ; N [0, W ]t t21 t t

x 5 N [m , C ]. (1)0 0 0

In Eq. 1, yt is a function of the value of the time series
at time t; xt is an unknown underlying state variable,
e.g., the log of population density at time t, that is
propagated through time by the function G(·). It rep-
resents the true size of the population at time t. The
function F(·) models the deterministic relationship be-
tween the underlying state variable and the observa-
tions, yt. If the data are believed to be unbiased esti-
mates of yt, F(·) can be taken to be the identity (Coulson
et al. 2001). The variable vt represents the measurement
or observation error. It is modeled using a normal dis-
tribution with mean 0 and a known variance, V. This
normality assumption is not necessary; it is possible
under the Bayesian framework to perform inference
assuming any error distribution. Generalization to un-
known V is straightforward (West and Harrison 1997).
Bjørnstad et al. (1999) suggest a Poisson counting pro-
cess for the observation error. The variable wt repre-
sents the process error. It is also usually assumed to
come from a normal distribution with mean 0 and var-
iance W. In the Bayesian framework, it is necessary to
specify the prior distribution of the initial latent state
variable x0. We assume that it comes from a normal
distribution with known mean, m0, and variance, C0.

Standard state-space models further assume that the
error terms are conditionally independent. Fig. 1 shows
the structure of a state-space model. Each of the x’s
given the values of the surrounding nodes is condi-
tionally independent of the rest of the graph.

Normal dynamic linear models

When the functions F(·) and G(·) are linear and the
error distributions are normal, the Bayesian state-space
model is termed a normal dynamic linear model
(NDLM). The functions F(·) and G(·) are replaced by
the constants f and g that premultiply xt in the obser-
vation equation and xt2l in the process equation, re-
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FIG. 2. This figure demonstrates how the forward filtering backward smoothing (FFBS) algorithm updates posterior
distributions as it processes data sequentially. The details of the model and data are given in State-space modeling: Normal
dynamic linear models. The two data points, yl and y2, are represented by the black diamonds in (a) and (b), respectively.
The lines represent the following distributions: (a) dashed line, p(x1); solid line, p(x1zy1); (b) dashed line, p(x2zy1); solid line,
p(x2zy, y2); (c) solid line, p(x1zy1, y2).

spectively. In the case when either the observation
equation or the process equation is linear with an in-
tercept term, the underlying state parameter is replaced
by the vector {1, xt}.

The posterior distribution of the xt’s in an NDLM
can be found analytically by taking advantage of the
model’s conditional independence structure. As before,
Dt 5 {yl, y2, . . . , yt}. The desired posterior distributions
are p(xtzDT) for t 5 1, 2, . . . , T, but for the moment
we consider finding p(xtzDt) for all t. Using Bayes’ The-
orem,

p(x zD ) } p(y zx , D )p(x zD )t t t t t21 t t2l (2)

where p(ytzxt, Dt2l) is the likelihood of yt given all of
the past data and p(xtzDt2l) is prior density of xt con-
ditional on the past data values.

Given the linear structure of the process equation,
the fact that p(xt2lzDt2l) is normal allows p(xtzDt2l), the
second factor on the right side of Eq. 2, to be found
in closed form. This is done simply by updating the
moments of p(xt2lzDt2l) according to the process equa-
tion. Once the next data point, yt, is processed, the prior
of xt given Dt2l is updated to the posterior distribution
p(xtzDt).

In this manner, the distributions p(xtzDt) are com-
puted sequentially. We begin with p(x0), which we as-
sume to be normal with mean m0 and variance C0. This
procedure, known as the forward filtering algorithm,

due to Carter and Kohn (1994) and Frühwirth-Schnatter
(1994), is Theorem 4.1 in West and Harrison (1997).

The forward filtering algorithm defines a procedure
for sequentially determining the posterior distribution
of each of the xt’s given Dt. But we desire the posterior
distributions p(xtzDT) for t 5 1, 2, . . . , T, i.e., the pos-
terior distributions of the latent variables given all of
the data. These distributions can be found by recur-
sively updating the moments of p(xTzDT). The formulas
for this backward smoothing algorithm are given in
Theorem 4.4 of West and Harrison (1997). Together,
these two algorithms are know as the forward filtering
backward smoothing (FFBS) algorithm and are due to
Carter and Kohn (1994) and Frühwirth-Schnatter
(1994). It is a two-step algorithm. First, the forward
filtering algorithm is run on the data. Then, using the
final posterior distribution derived by the first algo-
rithm, p(xTzDT ), the backward smoothing algorithm is
used to recursively find p(xtzDT) for all t. Both of these
algorithms simply update the moments of normal dis-
tributions using the structure of the state-space model
(Eq. 1). For details on the algorithm, see the appendix.

Fig. 2 demonstrates how the FFBS algorithm updates
posterior distributions as it processes data sequentially.
For simplicity, we assume that the data arise from a
NDLM as in Eq. 1 with the function F(·) and G(·) taken
to be the identity and V 5 W 5 1.
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Assume we have two data points, yl 5 3 and y2 5
8, and that our prior on x0 is N (5, 3). The dashed line
in Fig. 2a shows the prior distribution of xl given no
data, i.e., p(xl) 5 N (5, 4). The moments of this distri-
bution are computed using the formulas in step b of
the forward filtering (FF) algorithm. This distribution
can be interpreted as the prior distribution for x1. The
point on this graph represents the first data point, yl 5
3, and the solid line represents the posterior distribution
of xl given the first data point, p(xlzy1) 5 N (3.4, 0.8).
The moments of this distribution are calculated using
step d of the FF algorithm. Since y1 is less than the
prior mean for xl, and F(·) is the identity, yl pulls the
distribution of xl to the left.

The dashed line in Fig. 2b represents the prior dis-
tribution of x2 given only the first data point, p(x2zyl)
5 N (3.4, 1.8). Its moments are calculated by process-
ing the posterior distribution of xl given yl through the
process equation (using step b of the FF algorithm).
Since G(·) is the identity, this process stretches out the
distribution represented by the solid line in the first
graph but keeps it centered at 3.4. This distribution can
be thought of as the prior distribution of x2 given only
yl and can be updated to the posterior distribution of
x2 given both yl and y2, p(x2zyl, y2) using step d of the
FF algorithm. Since y2 5 8, this posterior distribution
is to the right of the prior distribution.

We have computed the posterior distribution for x2

given all the data in this simple example, but we must
use the backward smoothing (BS) algorithm to derive
the posterior distribution of xl given all of the data.
Using the BS algorithm, p(xlzy1, y2) 5 N (4.7, 0.571).
If we had more data, we would follow the same pro-
cedure adding an additional step in both the FF and
BS algorithms for each data point.

Nonlinear dynamic models

Inference on the latent state variables in nonlinear
dynamic models is slightly more complicated. The pos-
terior distributions of the xt’s cannot be found in closed
form as they are above. Instead, we rely on numerical
techniques to explore their posteriors. The standard
method for performing this inference is the Markov
chain Monte Carlo (MCMC) algorithm that approxi-
mates the desired posterior distributions (Gilks et al.
1996). The algorithm constructs a Markov chain with
the posterior distribution as its stationary distribution.
The chain is run for sufficient time allowing it to ap-
proach its stationary distribution. Following conver-
gence, samples approximate the posterior distribution.

The Gibbs sampler is a version of MCMC simulation
that we use to approximate the posterior distributions
of the xt’s. The algorithm works by iteratively sampling
from each of the full conditional distributions of each
of the states given the current value of the other var-
iables. For example, if we want to sample from the
joint distribution p(A, B, C), we could construct a Gibbs
sampler as follows:

1) sample A(i) ; p(AzB(i2l), C(i2l))
2) sample B(i) ; p(BzA(i), C(i2l))
3) sample C(i) ; p(CzA(i), B(i))
4) repeat steps 1–3 many times, incrementing i after

each iteration.

When sampling from these distributions, we condition
on the currently imputed values, i.e., the most recent
parameter values.

In the nonlinear dynamic model, each of the states,
given the next state and the previous state, is indepen-
dent of the other states. The conditional independence
structure shown in Fig. 1 still applies. Thus, we need
only condition on neighboring states. The Gibbs sam-
pler for the nonlinear dynamics model works as fol-
lows:

1) Choose initial values for each of the latent state
variables and denote them as , , . . . .(0) (0) (0)x x x0 1 T

2) For each 1 # t # T, sequentially draw a sample
from

(i) (i) (i) (i)x ; p(x z x , x , . . . , x ,t t 0 1 t21

(i21) (i21)x , . . . , x , D ) (3)t11 T t

(i) (i21)} p(x z x , x , y ) (4)t t21 t11 t

(i) (i21)} p(y z x )p(x z x )p(x z x ) (5)t t t t21 t11 t

for each t.
3) Repeat step 2, I times.

The Gibbs sampler above requires simulation from
the distribution that is proportional to

(i) (i21)p(y zx )p(x zx )p(x zx ).t t t t21 t11 t

This can be done using a Metropolis-Hastings (M-H)
step, or in some cases a special case of M-H known as
a Metropolis step (Gelfand and Smith 1990, Tierney
1994). See, for example, Gilks et al. (1996) for a gen-
eral review of the algorithm. Carlin, Polson, and Stoffer
(1992) develop an efficient M-H algorithm for sam-
pling the latent state parameters in a nonlinear dynamic
model. The samples for i . Bx, where Bx is the(i)x t

number of iterations until the Markov chain converges,
will be samples from p(xtzDT).

Inference for parametric state-space models

The posterior distribution of parameters of the model
for population dynamics captured in G(·) are usually
the focus of a time-series analysis. An extended Gibbs
sampler can be used to find the posterior distributions
of model parameters and the latent state variables si-
multaneously. After assigning initial values to all pa-
rameters, we can sample from the full conditional dis-
tribution of the model parameters given the currently
imputed values of the xt’s. We then sample from the
full conditional distributions of the xt’s conditioning on
the currently imputed values of the model parameters.

The observation and process error variances, V and
W, are often unknown. Their posterior distributions can
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be recovered by sampling from their full conditional
distributions within the Gibbs sampler. If a is a param-
eter of the function G(·), the Gibbs sampler iterates
over the following steps:

1) Sample from p(xtzxt2l, xt11, a, V, W, yt) for t 5 1,
2, . . . , T using the M-H algorithm or directly
using FFBS.

2) Sample from p(azxl, x2, . . . , xT, V, W, DT) using
the M-H algorithm or, if possible, directly.

3) Sample from p(Vzx1, x2, . . . , xT, a, W, DT) directly.
4) Sample from p(Wzxl, x2, . . . , xT, a, V, DT) directly.

In each of the steps, the values of the variables to
the right of the conditional bar are assumed to be the
currently imputed values of each of the parameters. It
is also necessary to specify prior distributions for a,
V, and W if they are assumed to be unknown. These
prior distributions must be included when determining
each of the full conditional distributions. In the next
section, we show the results of a simulation study for
a state-space model.

SIMULATION STUDY

We use a simulation study, similar to the one in-
cluded in deValpine and Hastings (2002), to demon-
strate the importance of including observational error
and additionally to demonstrate how this particular
model, when framed as a Bayesian dynamic model, can
be fit. We focus on two models, the observation-error
model and the no-observation-error model. Both mod-
els are based on a common model for density depen-
dence, the Ricker model (e.g., Dennis and Taper 1994).
The observation-error model explicitly incorporates
observation error into the Ricker model, while the no-
observation-error model lumps process error and ob-
servation error together.

The observation-error model can be written as:

log(y ) 5 x 1 v v ; N [0, V ]t t t t

xt21x 5 x 1 a 1 be 1 w w ; N [0, W ]t t21 t t

x ; N [m , C ] V ; IG[a , b ]0 0 0 V V

W ; IG[a , b ] p(a, b) ; N [m, S].W W 2

IG represents the inverse gamma distribution, and N 2

represents the bivariate normal distribution.
The no-observation-error model can be written as:

*yy* 5 y* 1 a 1 be t21 1 w w ; N [0, W ]t t21 t t

y* ; N [m , C ] W ; IG[a , b ]0 0 0 W W

p(a, b) ; N [m, S]2

and is defined to be log(yt).y*t
First, we simulate data from the observation-error mod-

el with the parameter a fixed at 0.1 and the parameter b
fixed at 20.01. This is the ‘‘correct’’ model for the data.
We then find the posterior distributions of the model pa-
rameter b under both models and compare them.

For the observation-error model, we use a Gibbs
sampler to iteratively sample from the full conditional
distributions of each of the parameters in the model.
Each of the xt’s are sampled using a M-H step and the
parameters a, b, V, and W are sampled directly given
the current values of the xt’s using standard linear model
theory. The full conditional distributions are

1
2p(x z 2) } exp 2 (x 2 m )0 0 0[ 2C0

1
x 202 (x 2 x 2 a 2 be )1 0 ]2W

1
2p(x z 2) } exp 2 [log(y ) 2 x ]t t t5 2V

1
x 2t212 (x 2 x 2 a 2 be )t t212W

1
x 2t2 (x 2 x 2 a 2 be )t+1 t 62W

for t 5 1, 2, . . . , T 21

1
2p(x z 2) } exp 2 [log(y ) 2 x ]T T T5 2V

1
x 2T212 (x 2 x 2 a 2 be )T T21 62W

p[(a, b) z 2] } N [m, S]2

where
211 1

21 21S 5 X9X 1 S m 5 S X9Z 1 S m1 2 1 2W W

and X and Z are defined to be

x0     1 e x x1 0

x1     1 e x x2 1X 5 Z 5 2    
_ _ _ _    

xT211 e x xT T21    
TT 1

2p(V z 2) } IG a 1 , b 1 [log(y ) 2 x ]OV V t t5 62 2 t51

T
p(W z 2) } IG a 1 ,W[ 2

T1
x 2t21b 1 (x 2 x 2 a 2 be )OW t t21 ]2 t51

We can sample the posterior distributions for a, b,
and W directly under the no-observation-error model
without the need for MCMC using standard results
from linear regression. We generate samples from these
posteriors of the same size as the samples generated
from the MCMC algorithm used to analyze the obser-
vational error model.

We use three different values of V. For each value
of V, we simulate 10 random data sets and summarize
the resulting posterior distributions for b under both
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FIG. 3. The vertical lines represent 95% credible intervals of the posterior distribution of the parameter b under the two
different models for 10 data sets simulated from the observation-error model. (A 95% Bayesian credible interval is the range
from the 0.025 quantile to the 0.975 quantile of a posterior distributions. It can be approximated using samples from a
posterior distribution.) The posterior medians are denoted by the dash through the vertical lines. This simulation study was
repeated for V 5 0.001, 0.01, and 0.05, and the corresponding posterior summaries are grouped according to the value of V
used to simulate the data set. The true value of b is represented by the horizontal line at b 5 20.01. For each of the trials,
the value of W used to simulate the data was 0.01 and the length of the simulated data sets, T, was 60.

TABLE 1. Summary of Bayes factors for 50 trials.

Bayes
factor Evidence against Hno obs

Number
of trials

,1
1–3
3–20
0–150
.150

none
not worth more than a bare mention
positive
strong
very strong

0
0
0
1

49

Notes: The true values of the parameters in the Ricker
model are V 5 0.01, W 5 0.01, a 5 0.1, b 5 20.01. The
Bayes factor is computed by taking the ratio of the p
(datazHobs) to p (datazHno obs). The interpretations of the Bayes
factors are taken from Kass and Raftery (1995). Hobs, model
with observation error; Hno obs, model without observation er-
ror.

models (Fig. 3). Because we know that the observation-
error model is the correct model for the data, differ-
ences in the posterior distributions demonstrate mis-
leading inference that results from combining the two
types of error. In this case, the posterior distributions
under the observation-error model are mostly tighter
than under the no-observation-error model. In other
words, in the no-observation-error model, the two types
of error are inappropriately combined, leading to overly
broad credible intervals. It also appears from Fig. 3
that the posterior median becomes a considerably more
biased estimate of b as the true value of V used to
simulate the data increases. These results are not meant

to be generalized; if we use a different model or dif-
ferent parameter values, we expect different results.
The simulation study presented here demonstrates that
for one particular example it makes a difference wheth-
er or not observation error is modeled explicitly.

In addition to comparing posterior parameters under
the two models, we also computed Bayes factors, which
assess the weight of the evidence in favor of one model
as opposed to the other model. (See Kass and Raftery
[1995] for an overview of the technique.) If H1 rep-
resents the hypothesis that the data are generated by
model 1 and H2 represents the hypothesis that the data
are generated by model 2, the Bayes factor B12 is de-
fined as follows:

p(data z H )1B 5 . (6)129 p(data z H )2

The Bayes factor represents the ratio of the posterior
odds of hypothesis H1 to its prior odds. Kass and Raf-
tery (1995) illustrate how to calculate and interpret
Bayes factors in various settings. A recipe for approx-
imating Bayes factors using output from an MCMC
simulation is due to Newton and Raftery (1994). The
numerator and denominator of the Bayes factor, Eq. 6,
can be approximated as

21m1
(i) 21p̂(data z H.) 5 p[data z u , H.] .O5 6m i51

This is the harmonic mean of the likelihood of the data,
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given the samples of the parameters taken in the
MCMC algorithm. It can be shown that p(datazHj) con-
verges almost surely to p(datazHj) as m → `. Table 1
summarizes the Bayes factors computed in this way for
50 trials; the two models are fit and the Bayes factor
comparing them is computed for each trial. Also pro-
vided in the table are interpretations of the Bayes fac-
tors. Table 1 shows that all but one of the 50 trials
provided strong positive evidence against the null hy-
pothesis, i.e., against the hypothesis that the data were
generated from the no-observation-error model.

DISCUSSION

State-space models provide a framework for incor-
porating observational error into dynamic models of
population size. Bayesian state-space models and pro-
cedures used to perform inference on them are general
enough to be used on more complicated models than
the one discussed here, including those having higher
embedding dimension and thresholds. We need only to
iteratively sample from the full conditional distribu-
tions of each model parameter, which can be done di-
rectly using the Metropolis-Hastings algorithm.

When performing a statistical analysis on data con-
taining observation error, we recommend considering
a state-space model because it explicitly separates pro-
cess error from observation error and therefore affords
a more detailed understanding of the posterior distri-
bution. Our simulation study illustrates that ignoring
observational error can result in misleading inference,
especially in estimates of posterior uncertainty of mod-
el parameters. The results of this specific simulation
study are not general. For others models, the results of
ignoring observation error will be different; we simply
show that explicitly modeling observation error can
make a difference.

There is freely available software that can be used
to fit Bayesian state-space models. BUGS (Spiegel-
halter et al. 1996), Bayesian inference using Gibbs sam-
pling, takes advantage of the acyclical graphical struc-
ture of a Bayesian model to determine the full condi-
tional distributions required to construct a Gibbs sam-
pler. See Meyer and Millar (1999) for an illustration
of the BUGS software in the context of fitting a non-
linear Bayesian state-space model to analyze fisheries
stock assessments. Also freely available is the BATS
software, which fits a variety of Bayesian dynamic
models as described in West and Harrison (1997). In-
structions for this package are available in Pole et al.
(1994). General purpose statistical software packages
can also be used to fit state-space models.

We propose fitting Bayesian state-space models as
opposed to classical state-space when it is necessary
to explicitly include observation error in a time-series
model. The coherence of Bayesian paradigm allows
straightforward inference; both the time-invariant pa-
rameters and the underlying variables can be treated in

the same way. This is true regardless of how the anal-
ysis is performed.
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APPENDIX

The forward filtering backward smoothing algorithm is available in ESA’s Electronic Data Archive: Ecological Archives
E084-033-A1.


