
book August 29, 2007

Chapter Six

Likelihood and all that



book August 29, 2007

228 CHAPTER 6

SUMMARY

This chapter presents the basic concepts and methods you need in order to
estimate parameters, establish confidence limits, and choose among compet-
ing hypotheses and models. It defines likelihood and discusses frequentist,
Bayesian, and information-theoretic inference based on likelihood.

6.1 INTRODUCTION

Previous chapters have introduced all the ingredients you need to define a
model — mathematical functions to describe the deterministic patterns and
probability distributions to describe the stochastic patterns — and shown
how to use these ingredients to simulate simple ecological systems. However,
you need to learn not only how to construct models but also how to estimate
parameters from data, and how to test models against each other. You may
be wondering by now how one actually does this.

In general, to estimate the parameters of a model we have to find the
parameters that make that model fit the data best. To compare among
models we have to figure out which one fits the data best, and decide if
one or more models fit sufficiently much better than the rest that we can
declare them the winners. Our goodness-of-fit metrics will be based on the
likelihood, the probability of seeing the data we actually collected given a
particular model — which in this case will mean both the general form of
the model and the specific parameter values.

6.2 PARAMETER ESTIMATION: SINGLE DISTRIBUTIONS

Parameter estimation is simplest when we have a a collection of independent
data that are drawn from a distribution (e.g. Poisson, binomial, normal),
with the same parameters for all observations. As an example with discrete
data, we will select one particular case out of Vonesh’s tadpole predation
data (p. 67) — small tadpoles at a density of 10 — and estimate the param-
eters of a binomial distribution (each individual’s probability of being eaten
by a predator). As an example with continuous data, we will introduce a
new data set on myxomatosis virus concentration in experimentally infected
rabbits (?Myxo in the emdbook package: Fenner et al., 1956; Dwyer et al.,
1990). Although the titer actually changes systematically over time, we will
gloss over that problem for now and pretend that all the measurements are
drawn from the same distribution so that we can estimate the parameters of
a Gamma distribution that describes the variation in titer among different
rabbits.
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6.2.1 Maximum likelihood

We want the maximum likelihood estimates of the parameters — those pa-
rameter values that make the observed data most likely to have happened.
Since the observations are independent, the joint likelihood of the whole data
set is the product of the likelihoods of each individual observation. Since
the observations are identically distributed, we can write the likelihood as
a product of similar terms. For mathematical convenience, we almost al-
ways maximize the logarithm of the likelihood (log-likelihood) instead of
the likelihood itself. Since the logarithm is a monotonically increasing func-
tion, the maximum log-likelihood estimate is the same as the maximum
likelihood estimate. Actually, it is conventional to minimize the negative
log-likelihood rather than maximizing the log-likelihood. For continuous
probability distributions, we compute the probability density of observing
the data rather than the probability itself. Since we are interested in rela-
tive (log)likelihoods, not the absolute probability of observing the data, we
can ignore the distinction between the density (P (x)) and the probability
(which includes a term for the measurement precision: P (x) dx).

6.2.1.1 Tadpole predation data: binomial likelihood

For a single observation from the binomial distribution (e.g. the number
of small tadpoles killed by predators in a single tank at a density of 10),
the likelihood that k out of N individuals are eaten as a function of the per
capita predation probability p is Prob(k|p, N) =

(
N
k

)
pk(1 − p)N−k. If we

have n observations, each with the same total number of tadpoles N , and
the number of tadpoles killed in the ith observation is ki, then the likelihood
is

L =
n∏

i=1

(
N

ki

)
pki(1− p)N−ki . (6.2.1)

The log-likelihood is

L =
n∑

i=1

(
log
(

N

ki

)
+ ki log p + (N − ki) log(1− p)

)
. (6.2.2)

In R, this would be sum(dbinom(k,size=N,prob=p,log=TRUE)).

Analytical approach

In this simple case, we can actually solve the problem analytically, by dif-
ferentiating with respect to p and setting the derivative to zero. Let p̂ be
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the maximum likelihood estimate, the value of p that satisfies

dL

dp
=

d
∑n

i=1

(
log
(
N
ki

)
+ ki log p + (N − ki) log(1− p)

)
dp

= 0. (6.2.3)

Since the derivative of a sum equals the sum of the derivatives,
n∑

i=1

d log
(
N
ki

)
dp

+
n∑

i=1

dki log p

dp
+

n∑
i=1

d(N − ki) log(1− p)
dp

= 0 (6.2.4)

The term log
(
N
ki

)
is a constant with respect to p, so its derivative is zero

and the first term disappears. Since ki and (N − ki) are constant factors
they come out of the derivatives and the equation becomes

n∑
i=1

ki
d log p

dp
+

n∑
i=1

(N − ki)
d log(1− p)

dp
= 0. (6.2.5)

The derivative of log p is 1/p, so the chain rule says the derivative of log(1−p)
is d(log(1 − p))/d(1 − p) · d(1 − p)/dp = −1/(1 − p). We will denote the
particular value of p we’re looking for as p̂. So

1
p̂

n∑
i=1

ki −
1

1− p̂

n∑
i=1

(N − ki) = 0

1
p̂

n∑
i=1

ki =
1

1− p̂

n∑
i=1

(N − ki)

(1− p̂)
n∑

i=1

ki = p̂

n∑
i=1

(N − ki)

n∑
i=1

ki = p̂

(
n∑

i=1

ki +
n∑

i=1

(N − ki)

)
= p̂

n∑
i=1

N

n∑
i=1

ki = p̂nN

p̂ =
∑n

i=1 ki

nN
(6.2.6)

So the maximum-likelihood estimate, p̂, is just the overall fraction of tad-
poles eaten, lumping all the observations together: a total of

∑
ki tadpoles

were eaten out of a total of nN tadpoles exposed in all of the observations.

We seem to have gone to a lot of effort to prove the obvious, that
the best estimate of the per capita predation probability is the observed
frequency of predation. Other simple distributions like the Poisson behave
similarly. If we differentiate the likelihood, or the log-likelihood, and solve
for the maximum likelihood estimate, we get a sensible answer. For the Pois-
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son, the estimate of the rate parameter λ̂ is equal to the mean number of
counts observed per sample. For the normal distribution, with two param-
eters µ and σ2, we have to compute the partial derivatives of the likelihood
with respect to both parameters and solve the two equations simultaneously
(∂L/∂µ = ∂L/∂σ2 = 0). The answer is again obvious in hindsight: µ̂ = x̄

(the estimate of the mean is the observed mean) and σ̂2 =
∑

(xi − x̄)2/n
(the estimate of the variance is the variance of the sample∗.).

For some simple distributions like the negative binomial, and for all
the complex problems we will be dealing with hereafter, there is no easy
analytical solution and we have to find the maximum likelihood estimates
of the parameters numerically. The point of the algebra here is just to
convince you that maximum likelihood estimation makes sense in simple
cases.

Numerics

This chapter presents the basic process of computing and maximizing like-
lihoods (or minimizing negative log-likelihoods in R; Chapter 7 will go into
much more detail on the technical details. First, you need to define a func-
tion that calculates the negative log-likelihood for a particular set of param-
eters. Here’s the R code for a binomial negative log-likelihood function:

> binomNLL1 = function(p, k, N) {

+ -sum(dbinom(k, prob = p, size = N, log = TRUE))

+ }

The dbinom function calculates the binomial likelihood for a specified data
set (vector of number of successes) k, probability p, and number of trials
N; the log=TRUE option gives the log-probability instead of the probability
(more accurately than taking the log of the product of the probabilities);
-sum adds the log-likelihoods and changes the sign to get an overall negative
log-likelihood for the data set.

Load the data and extract the subset we plan to work with:

> data(ReedfrogPred)

> x = subset(ReedfrogPred, pred == "pred" & density ==

+ 10 & size == "small")

> k = x$surv

∗Maximum likelihood estimation actually gives a biased estimate of the variance, dividing the
sum of squares

P
(xi − x̄)2 by n instead of n− 1.
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Figure 6.1 Likelihood curves for a simple distribution: binomial-distributed predation.

We can use the optim function to numerically optimize (by default,
minimizing rather than maximizing) this function. You need to give optim
the objective function — the function you want to minimize (binomNLL1
in this case) — and a vector of starting parameters. You can also give
it other information, such as a data set, to be passed on to the objective
function. The starting parameters don’t have to be very accurate (if we had
accurate estimates already we wouldn’t need optim), but they do have to
be reasonable. That’s why we spent so much time in Chapters 3 and 4 on
eyeballing curves and the method of moments.

> O1 = optim(fn = binomNLL1, par = c(p = 0.5), N = 10,

+ k = k, method = "BFGS")

fn is the argument that specifies the objective function and par speci-
fies the vector of starting parameters. Using c(p=0.5) names the parameter
p — probably not necessary here but very useful for keeping track when you
start fitting models with more parameters. The rest of the command speci-
fies other parameters and data and optimization details; Chapter 7 explains
why you should use method="BFGS" for a single-parameter fit.

Check the estimated parameter value and the maximum likelihood
— we need to change sign and exponentiate the minimum negative log-
likelihood that optim returns to get the maximum log-likelihood:

> O1$par
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p
0.7499998

> exp(-O1$value)

[1] 0.0005150149

The mle2 function in the bbmle package provides a “wrapper” for
optim that gives prettier output and makes standard tasks easier∗. Unlike
optim, which is designed for general-purpose optimization, mle2 assumes
that the objective function is a negative log-likelihood function. The names
of the arguments are easier to understand: minuslogl instead of fn for
the negative log-likelihood function, start instead of par for the starting
parameters, and data for additional parameters and data.

> library(bbmle)

> m1 = mle2(minuslogl = binomNLL1, start = list(p = 0.5),

+ data = list(N = 10, k = k))

> m1

Call:
mle2(minuslogl = binomNLL1, start = list(p = 0.5), data = list(N = 10,

k = k))

Coefficients:
p

0.7499998

Log-likelihood: -7.57

The mle2 package has a shortcut for simple likelihood functions. In-
stead of writing an R function to compute the negative log-likehood, you
can specify a formula:

> mle2(k ~ dbinom(prob = p, size = 10), start = list(p = 0.5))

gives exactly the same answer as the previous commands. R assumes that
the variable on the left-hand side of the formula is the response variable (k

∗Why mle2? There is an mle function in the stats4 package that comes with R, but I added
some features — and then renamed it to avoid confusion with the original R function.
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in this case) and that you want to sum the negative log-likelihood of the
expression on the right-hand side for all values of the response variable.

One final option for finding maximum likelihood estimates for data
drawn from most simple distributions — although not for the binomial
distribution — is the fitdistr command in the MASS package, which will
even guess reasonable starting values for you. However, it only works in the
very simple case where none of the parameters of the distribution depend
on other covariates.

The estimated value of the per capita predation probability, 0.75, is
very close to the analytic solution of 0.75. The estimated value of the
maximum likelihood (Figure 6.1) is quite small (L =5.150 × 10−4). That
is, the probability of this particular outcome is low∗. In general, however,
we will only be interested in the relative likelihoods (or log-likelihoods) of
different parameters and models rather than their absolute likelihoods.

Having fitted a model to the data (even a very simple one), it’s worth
plotting the predictions of the model. In this case the data set is so small
(4 points) that sampling variability dominates the plot (Figure 6.1b).

6.2.1.2 Myxomatosis data: Gamma likelihood

As part of the effort to use myxomatosis as a biocontrol agent against in-
troduced European rabbits in Australia, Fenner and co-workers studied the
virus concentrations (titer) in the skin of rabbits that had been infected
with different virus strains (Fenner et al., 1956). We’ll choose a Gamma
distribution to model these continuously distributed, positive data†. For
the sake of illustration, we’ll use just the data for one viral strain (grade 1).

> data(MyxoTiter_sum)

> myxdat = subset(MyxoTiter_sum, grade == 1)

The likelihood equation for Gamma-distributed data is hard to maxi-
mize analytically, so we’ll go straight to a numerical solution. The negative
log-likelihood function looks just very much like the one for binomial data‡.

∗I randomly simulated 1000 samples of four values drawn from the binomial distribution with
p = 0.75, N = 10. The maximum likelihood was smaller than the observed value given in the text
22% of the time. Thus, although it is small this likelihood is not significantly lower than would
be expected by chance.

†We could also use a log-normal distribution or (since the minimum values are far from zero
and the distributions are reasonably symmetric) a normal distribution.

‡optim insists that you specify all of the parameters packed into a single numeric vector in
your negative log-likelihood function. mle prefers the parameters as a list. mle2 will accept either
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> gammaNLL1 = function(shape, scale) {

+ -sum(dgamma(myxdat$titer, shape = shape, scale = scale,

+ log = TRUE))

+ }

It’s harder to find starting parameters for the Gamma distribution. We
can use the method of moments (Chapter 4) to determine reasonable start-
ing values for the scale (=variance/mean=coefficient of variation [CV]) and
shape(=variance/mean2=mean/CV) parameters∗.

> gm = mean(myxdat$titer)

> cv = var(myxdat$titer)/mean(myxdat$titer)

Now fit the data:

> m3 = mle2(gammaNLL1, start = list(shape = gm/cv,

+ scale = cv))

> m3

Call:
mle2(minuslogl = gammaNLL1, start = list(shape = 45.8, scale = 0.151))

Coefficients:
shape scale

49.3421124 0.1403326

Log-likelihood: -37.67

I could also use the formula interface,

> m3 = mle2(myxdat$titer ~ dgamma(shape, scale = scale),

+ start = list(shape = gm/cv, scale = cv))

Since the default parameterization of the Gamma distribution in R uses
the rate parameter instead of the scale parameter, I have to make sure to
specify the scale parameter explicitly. Or I could use fitdistr from the
MASS package:

a list, or, if you use parnames to specify the parameter names, a numeric vector (p. 244)
∗Because the estimates of the shape and scale are very strongly correlated in this case, I ended

up having to tweak the starting conditions slightly away from the method of moments estimates,
to {45.8,0.151}.
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Figure 6.2 Likelihood curves for a simple distribution: Gamma-distributed virus titer.
Black contours are spaced 200 log-likelihood units apart; gray contours are
spaced 20 log-likelihood units apart. In the right-hand plot, the gray line is
a kernel density estimate; solid line is the Gamma fit; and dashed line is the
normal fit.

> f1 = fitdistr(myxdat$titer, "gamma")

fitdistr gives slightly different values for the parameters and the likeli-
hood, but not different enough to worry about. A greater possibility for
confusion is that fitdistr reports the rate (=1/scale) instead of the scale
parameter.

Figure 6.2 shows the negative log-likelihood (now a negative log-likelihood
surface as a function of two parameters, the shape and scale) and the fit
of the model to the data (virus titer for grade 1). Since the “true” distri-
bution of the data is hard to visualize (all of the distinct values of virus
titer are displayed as jittered values along the bottom axis), I’ve plotted
the nonparametric (kernel) estimate of the probability density in gray for
comparison. The Gamma fit is very similar, although it takes account of
the lowest point (a virus titer of 4.2) by spreading out slightly rather than
allowing the bump in the left-hand tail that the nonparametric density esti-
mate shows. The large shape parameter of the best-fit Gamma distribution
(shape=49.34) indicates that the distribution is nearly symmetrical and ap-
proaching normality (Chapter 4). Ironically, in this case the plain old nor-
mal distribution actually fits slightly better than the Gamma distribution,
despite the fact that we would have said the Gamma was a better model
on biological grounds (it doesn’t allow virus titer to be negative). However,
according to criteria we will discuss later in the chapter, the models are
not significantly different and you could choose either on the basis of conve-
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nience and appropriateness for the rest of the story you were telling. If we
fitted a more skewed distribution, like the wrasse settlement distribution,
the Gamma would certainly win over the normal.

6.2.2 Bayesian analysis

Bayesian estimation also uses the likelihood, but it differs in two ways from
maximum likelihood analysis. First, we combine the likelihood with a prior
probability distribution in order to determine a posterior probability dis-
tribution. Second, we often report the mean of the posterior distribution
rather than its mode (which would equal the MLE if we were using a com-
pletely uninformative or “flat” prior). Unlike the mode, which reflects only
local information about the peak of the distribution, the mean incorporates
the entire pattern of the distribution, so it can be harder to compute.

6.2.2.1 Binomial distribution: conjugate priors

In the particular case when we have so-called conjugate priors for the distri-
bution of interest, Bayesian estimation is easy. As introduced in Chapter 4,
a conjugate prior is a choice of the prior distribution that matches the like-
lihood model so that the posterior distribution has the same form as the
prior distribution. Conjugate priors also allow us to interpret the strength
of the prior in simple ways.

For example, the conjugate prior of the binomial likelihood that we
used for the tadpole predation data is the Beta distribution. If we pick a
Beta prior with shape parameters a and b, and if our data include a total
of
∑

k “successes” (predation events) and nN −
∑

k “failures” (surviving
tadpoles) out of a total of nN “trials” (exposed tadpoles), the posterior
distribution is a Beta distribution with shape parameters a +

∑
k and b +

(nN−
∑

k). If we interpret a−1 as the total number of previously observed
successes and b− 1 as the number of previously observed failures, then the
new distribution just combines the total number of successes and failures
in the complete (prior plus current) data set. When a = b = 1, the Beta
distribution is flat, corresponding to no prior information (a− 1 = b− 1 =
0). As a and b increase, the prior distribution gains more information and
becomes peaked. We can also see that, as far as a Bayesian is concerned, it
doesn’t matter how we divide our experiments up. Many small experiments,
aggregated with successive uses of Bayes’ Rule, give the same information
as one big experiment (provided of course that there is no variation in per-
trial probability among sets of observations, which we have assumed in our
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statistical model for both the likelihood and the Bayesian analysis).

We can also examine the effect of different priors on our estimate of
the mean (Figure 6.3). If we have no prior information and choose a flat
prior with a = b = 1, then our final answer is that the per-capita predation
probability is distributed as a Beta distribution with shape parameters a =∑

k + 1 = 31, b = nN −
∑

k + 1 = 11. The mode of this Beta distribution
occurs at (a − 1)/(a + b − 2) =

∑
k/(nN) = 0.75 — exactly the same as

the maximum likelihood estimate of the per-capita predation probability. Its
mean is a/(a+b) = 0.738 — very slightly shifted toward 0.5 (the mean of our
prior distribution) from the MLE. If we wanted a distribution whose mean
was equal to the maximum likelihood estimate, we could generate a scaled
likelihood by normalizing the likelihood so that it integrated to 1. However,
to create the Beta prior that would lead to this posterior distribution we
would have to take the limit as a and b go to zero, implying a very peculiar
prior distribution with infinite spikes at 0 and 1.

If we had much more prior data — say a set of experiments with a
total of (nN)prior = 200 tadpoles, of which

∑
kprior = 120 were eaten —

then the parameters of prior distribution would be a = 121, b = 81, the
posterior mode would be 0.625, and the posterior mean would be 0.624.
Both the posterior mode and mean are much closer to the prior values than
to the maximum likelihood estimate because the prior information is much
stronger than the information we can obtain from the data.

If our data were Poisson, we could use a conjugate prior Gamma dis-
tribution with shape α and scale s and interpret the parameters as α=total
counts in previous observations and 1/s=number of previous observations.
Then if we observed C counts in our data, the posterior would be a Gamma
distribution with α′ = α + C, 1/s′ = 1/s + 1.

The conjugate prior for the mean of a normal distribution, if we know
the variance, is another normal distribution. The posterior mean is an
average of the prior mean and the observed mean, weighted by the precisions
— the reciprocals of the prior and observed variances. The conjugate prior
for the precision if we know the mean is the Gamma distribution.

6.2.2.2 Gamma distribution: multiparameter distributions and non-conjugate
priors

Unfortunately simple conjugate priors aren’t always available, and we often
have to resort to numerical integration to evaluate Bayes’ Rule. Just plotting
the numerator of Bayes’ Rule, (prior(p)× L(p)), is easy: for anything else,
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Figure 6.3 Bayesian priors and posteriors for the tadpole predation data. The scaled
likelihood is the normalized likelihood curve, corresponding to the weakest
prior possible. Prior(1,1) is weak, corresponding to zero prior samples and
leading to a posterior (31,11) that is almost identical to the scaled likelihood
curve. Prior(121,81) is strong, corresponding to a previous sample size of 200
trials and leading to a posterior (151,111) that is much closer to the prior than
to the scaled likelihood.
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we need to integrate (or use summation to approximate an integral).

In the absence of much prior information for the myxomatosis param-
eters a (shape) and s (scale), I chose a weak, independent prior distribution:

Prior(a)∼Gamma(shape = 0.01, scale = 100)
Prior(s)∼Gamma(shape = 0.1, scale = 10)

Prior(a, s) = Prior(a) · Prior(s).

Bayesians often use the Gamma as a prior distribution for parameters that
must be positive. Using a small shape parameter gives the distribution a
large variance (corresponding to little prior information) and means that
the distribution will be peaked at small values but is likely to be flat over
the range of interest. Finally, the scale is usually set large enough to make
the mean of the parameter (= shape · scale) reasonable. Finally, I made
the probabilities of a and s independent, which keeps the form of the prior
simple.

As introduced in Chapter 4, the posterior probability is proportional to
the prior times the likelihood. To compute the actual posterior probability,
we need to divide the numerator Prior(p)×L(p) by its integral to make sure
the total area (or volume) under the probability distribution is 1:

Posterior(a, s) =
Prior(a, s)× L(a, s)∫∫
Prior(a, s)L(a, s) da ds

Figure 6.4 shows the (two-dimensional) posterior distribution for the myx-
omatosis data. As is typical for reasonably large data sets, the probability
density is very sharp. The contours shown on the plot illustrate a rapid de-
crease from a probability density of 0.01 at the mode down to a probability
density of 10−10, and most of the posterior density is even lower than this
minimum contour line.

If we want to know the distribution of each parameter individually, we
have to calculate its marginal distribution: that is, what is the probability
that a or s fall within a particular range, independent of the value of the
other variable? To calculate the marginal distribution, we have to integrate
(take the expectation) over all possible values of the other parameter:

Posterior(a) =
∫

Posterior(a, s)s ds

Posterior(s) =
∫

Posterior(a, s)a da

(6.2.7)

Figure 6.4 also shows the marginal distributions of a and s.

What if we want to summarize the results still further and give a single
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value for each parameter (a point estimate) representing our conclusions
about the virus titer? Bayesians generally prefer to quote the mean of a
parameter (its expected value) rather than the mode (its most probable
value). Neither summary statistic is more correct than the other — they
give different information about the distribution — but they can lead to
radically different inferences about ecological systems (Ludwig, 1996). The
differences will be largest when the posterior distribution is asymmetric (the
only time the mean can differ from the mode) and when uncertainty is large.
In Figure 6.4, the mean and the mode are close together.

To compute mean values for the parameters, we need to compute
some more integrals, finding the weighted average of the parameters over
the posterior distribution:

ā =
∫

Posterior(a) · a da

s̄ =
∫

Posterior(s) · s ds

(we can also compute these means from the full rather than the marginal
distributions: e.g. ā =

∫∫
Posterior(a, s)a da ds)∗.

R can compute all of these integrals numerically. We can define func-
tions

> prior.as = function(a, s) {

+ dgamma(a, shape = 0.01, scale = 100) * dgamma(s,

+ shape = 0.1, scale = 10)

+ }

> unscaled.posterior = function(a, s) {

+ prior.as(a, s) * exp(-gammaNLL1(shape = a, scale = s))

+ }

and use integrate (for 1-dimensional integrals) or adapt (in the adapt
package; for multi-dimensional integrals) to do the integration. More crudely,
we can approximate the integral by a sum, calculating values of the inte-
grand for discrete values, (e.g. s = 0, 0.01, . . . 10) and then calculating∑

P (s)∆s — this is how I created Figure 6.4.

However, integrating probabilities is tricky for two reasons. (1) Prior
probabilities and likelihoods are often tiny for some parameter values, lead-
ing to roundoff error; tricks like calculating log-probabilities for the prior

∗The means of the marginal distributions are the same as the mean of the full distribution.
Confusingly, the modes of the marginal distributions are not the same as the mode of the full
distribution.
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Figure 6.4 Bivariate and marginal posterior distributions for the myxomatosis titer data.
Contours are drawn, logarithmically spaced, at probability levels from 0.01 to
10−10. Posterior distributions are weak and independent, Gamma(shape=0.1,
scale=10) for scale and Gamma(shape=0.01, scale=100) for shape.

and likelihood, adding, and then exponentiating can help. (2) You must
pick the number and range of points at which to evaluate the integral care-
fully. Too coarse a grid leads to approximation error, which may be severe
if the function has sharp peaks. Too small a range, or the wrong range, can
miss important parts of the surface. Large, fine grids are very slow. The
numerical integration functions built in to R help — you give them a range
and they try to evaluate the number of points at which to evaluate the inte-
gral — but they can still miss peaks in the function if the initial range is set
too large so that their initial grid fails to pick up the peaks. Integrals over
more than two dimensions make these problem even worse, since you have
to compute a huge number of points to cover a reasonably fine grid. This
problem is the first appearance of the curse of dimensionality (Chapter 7).

In practice, brute-force numerical integration is no longer feasible with
models with more than about two parameters. The only practical alterna-
tives are Markov chain Monte Carlo approaches, introduced later in this
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Figure 6.5 Maximum-likelihood fits to tadpole predation (Holling type II/binomial) and
myxomatosis (Ricker/Gamma) models.

chapter and in more detail in Chapter 7.

For the myxomatosis data, the posterior mode is (a = 47, s = 0.15),
close to the maximum likelihood estimate of (a = 49.34, s = 0.14) (the
differences are probably caused more by round-off error than by the effects
of the prior). The posterior mean is (a = 45.84, s = 0.16).

6.3 ESTIMATION FOR MORE COMPLEX FUNCTIONS

So far we’ve estimated the parameters of a single distribution (e.g. X ∼
Binomial(p) or X ∼ Gamma(a, s)). We can easily extend these techniques
to more interesting ecological models like the ones simulated in Chapter 5,
where the mean or variance parameters of the model vary among groups or
depend on covariates.

6.3.1 Maximum likelihood

6.3.1.1 Tadpole predation

We can combine deterministic and stochastic functions to calculate likeli-
hoods, just as we did to simulate ecological processes in Chapter 5. For ex-
ample, suppose tadpole predators have a Holling type II functional response
(attack rate = aN/(1 + ahN)), meaning that the per capita predation rate
of tadpoles decreases hyperbolically with density (= a/(1 + ahN)). The
distribution of the actual number eaten is likely to be binomial with this
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probability. If N is the number of tadpoles in a tank,

p =
a

1 + ahN

k ∼ Binom(p, N).
(6.3.1)

Since the distribution and density functions in R (such as dbinom)
operate on vectors just as do the random-deviate functions (such as rbinom)
used in Chapter 5, I can translate this model definition directly into R, using
a numeric vector p={a, s} for the parameters:

> binomNLL2 = function(p, N, k) {

+ a = p[1]

+ h = p[2]

+ predprob = a/(1 + a * h * N)

+ -sum(dbinom(k, prob = predprob, size = N, log = TRUE))

+ }

Now we can dig out the data from the functional response experiment
of Vonesh and Bolker (2005), which contains the variables Initial (N)
and Killed (k). Plotting the data (Figure 2.8) and eyeballing the initial
slope and asymptote gives us crude starting estimates of a (initial slope) at
around 0.5 and h (1/asymptote) at around 1/80 = 0.0125.

> data(ReedfrogFuncresp)

> attach(ReedfrogFuncresp)

> O2 = optim(fn = binomNLL2, par = c(a = 0.5, h = 0.0125),

+ N = Initial, k = Killed)

This optimization gives us parameters (a = 0.526, h = 0.017) — so
our starting guesses were pretty good.

In order to use mle2 for this purpose, you would normally have to
rewrite the negative log-likelihood function with the parameters a and h as
separate arguments (i.e. function(a,h,p,N,k)). However, mle2 will let
you pass the parameters inside a vector as long as you use parnames to
attach the names of the parameters to the function.

> parnames(binomNLL2) = c("a", "h")

> m2 = mle2(binomNLL2, start = c(a = 0.5, h = 0.0125),

+ data = list(N = Initial, k = Killed))

> m2
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Call:
mle2(minuslogl = binomNLL2, start = c(a = 0.5, h = 0.0125), data = list(N = Initial,

k = Killed), vecpar = TRUE)

Coefficients:
a h

0.52630319 0.01664362

Log-likelihood: -46.72

The answers are very slightly different from the optim results (mle2 uses a
different numerical optimizer by default).

As always, we should plot the fit to the data to make sure it is sensible.
Figure 6.5a shows the expected number killed (a Holling type II function)
and uses the qbinom function to plot the 95% confidence intervals of the
binomial distribution∗. One point falls outside of the confidence limits: for
16 points, this isn’t surprising (we would expect one point out of 20 to
fall outside the limits on average), although this point is quite low (5/50,
compared to an expectation of 18.3 — the probability of getting this extreme
an outlier is only 2.11× 10−5).

6.3.1.2 Myxomatosis virus

When we looked at the myxomatosis titer data before we treated it as
though it all came from a single distribution. In reality, titers typically
change considerably as a function of the time since infection. Following
Dwyer et al. (1990), we will fit a Ricker model to the mean titer level.
Figure 6.5 shows the data for the grade 1 virus: as a function that starts
from zero, grows to a peak, and then declines, the Ricker seems to make
sense although for the grade 1 virus we have only biological common sense,
and the evidence from the other virus grades to say that the titer would
eventually decrease. Grade 1 is so virulent that rabbits die before titer
has a chance to drop off. We’ll stick with the Gamma distribution for the
distribution of titer T at time t, but parameterize it with shape (s) and
mean rather than shape and scale parameters (i.e. scale=mean/shape):

m = ate−bt

T ∼ Gamma(shape = s, scale = m/a)
(6.3.2)

∗These confidence limits, sometimes called plug-in estimates, ignore the uncertainty in the
parameters.
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Translating this into R is straightforward:

> gammaNLL2 = function(a, b, shape) {

+ meantiter = a * myxdat$day * exp(-b * myxdat$day)

+ -sum(dgamma(myxdat$titer, shape = shape, scale = meantiter/shape,

+ log = TRUE))

+ }

We need initial values, which we can guess knowing from Chapter 3
that a is the initial slope of the Ricker function and 1/b is the x-location
of the peak. Figure 6.5 suggests that a ≈ 1, 1/b ≈ 5. I knew from the
previous fit that the shape parameter is large, so I started with shape=50.
When I tried to fit the model with the default optimization method I got a
warning that the optimization had not converged, so I used an alternative
optimization method, the Nelder-Mead simplex (p. 302).

> m4 = mle2(gammaNLL2, start = list(a = 1, b = 0.2,

+ shape = 50), method = "Nelder-Mead")

> m4

Call:
mle2(minuslogl = gammaNLL2, start = list(a = 1, b = 0.2, shape = 50),

method = "Nelder-Mead")

Coefficients:
a b shape

3.5614933 0.1713346 90.6790545

Log-likelihood: -29.51

We could run the same analysis a bit more compactly, without explicitly
defining a negative log-likelihood function, using mle2’s formula interface:

> mle2(titer ~ dgamma(shape, scale = a * day * exp(-b *

+ day)/shape), start = list(a = 1, b = 0.2, shape = 50),

+ data = myxdat, method = "Nelder-Mead")

Specifying data=myxdat lets us use day and titer in the formula instead
of myxdat$day and myxdat$titer.
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6.3.2 Bayesian analysis

Extending the tools to use a Bayesian approach is straightforward, although
the details are more complicated than maximum likelihood estimation. We
can use the same likelihood models (e.g. (6.3.1) for the tadpole predation
data or (6.3.2) for myxomatosis). All we have to do to complete the model
definition for Bayesian analysis is specify prior probability distributions for
the parameters. However, defining the model is not the end of the story.
For the binomial model, which has only two parameters, we could proceed
more or less as in the Gamma distribution example above (Figure 6.4),
calculating the posterior density for many combinations of the parameters
and computing integrals to calculate marginal distributions and means. To
evaluate integrals for the three-parameter myxomatosis model we would
have to integrate the posterior distribution over a three-dimensional grid,
which would quickly become impractical.

Markov chain Monte Carlo (MCMC) is a numerical technique that
makes Bayesian analysis of more complicated models feasible. BUGS is
a program that allows you to run MCMC analyses without doing lots of
programming. Here is the BUGS code for the myxomatosis example:

1 model {
2 for (i in 1:n) {
3 mean[i] <- a*day[i]*exp(-b*day[i])
4 rate[i] <- shape/mean[i]
5 titer[i] ~ dgamma(shape ,rate[i])
6 }
7 ## priors
8 a ~ dgamma (0.1 ,0.1)
9 b ~ dgamma (0.1 ,0.1)

10 shape ~ dgamma (0.1 ,0.01)
11 }

BUGS’s modeling language is similar but not identical to R. For example,
BUGS requires you to use <- instead of = for assignments.

As you can see, the BUGS model also looks a lot like the likelihood
model (eq. 6.3.2). Lines 3–5 specify the model (BUGS uses shape and rate
parameters to define the Gamma distribution rather than shape and scale
parameters: differences in parameterization are some of the most important
differences between the BUGS and R languages.) Lines 8–10 give the prior
distributions for the parameters, all Gamma in this case. The BUGS model
is more explicit than eq. 6.3.2 — in particular, you have to put in an ex-
plicit for loop to calculate the expected values for each data point — but
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the broad outlines are the same, even up to using a tilde (~) to mean “is
distributed as”.

You can either run BUGS either as a standalone program, or from
within R, using the R2WinBUGS package as an interface to the WinBUGS
program for running BUGS on Windows∗.

> library(R2WinBUGS)

You have to specify the names of the data exactly as they are listed in the
BUGS model (given above, but stored in a separate text file myxo1.bug):

> titer = myxdat$titer

> day = myxdat$day

> n = length(titer)

You also have to specify starting points for multiple chains, which should
vary among reasonable values (p. 7.3.2), as a list of lists:

> inits <- list(list(a = 4, b = 0.2, shape = 90), list(a = 1,

+ b = 0.1, shape = 50), list(a = 8, b = 0.4, shape = 150))

(I originally started b at 1.0 for the third chain, but WinBUGS kept giving
me an error saying “cannot bracket slice for node a”. By trial and error
— by eliminating chains and changing parameters — I established that the
value of b in chain 3 was the problem.)

Now you can run the model through WinBUGS:

> myxo1.bugs <- bugs(data = list("titer", "day", "n"),

+ inits, parameters.to.save = c("a", "b", "shape"),

+ model.file = "myxo1.bug", n.chains = length(inits),

+ n.iter = 3000)

As we will see shortly, you can recover lots of information for a Bayesian
analysis from a WinBUGS run — for now, you can use print(myxo1.bugs,digits=4)
to see that the estimates of the means, {a = 3.55, b = 0.17, s = 79.9}, are
reassuringly close to the maximum-likelihood estimates (p. 246).

∗WinBUGS runs on Windows and on Intel machines under Linux or MacOS (using Wine or
Crossover Office). Chapter 7 gives more details.
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6.4 LIKELIHOOD SURFACES, PROFILES, AND CONFIDENCE

INTERVALS

So far, we’ve used R or WinBUGS to find point estimates (maximum like-
lihood estimates or posterior means) automatically, without looking very
carefully at the curves and surfaces that describe how the likelihood varies
with the parameters. This approach gives little insight when things go
wrong with the fitting (as happens all too often). Furthermore, point esti-
mates are useless without measures of uncertainty. We really want to know
the uncertainty associated with the parameter estimates, both individually
(univariate confidence intervals) and together (bi- or multivariate confidence
regions). This section will show how to draw and interpret goodness-of-fit
curves (likelihood curves and profiles, Bayesian posterior joint and marginal
distributions) and their connections to confidence intervals.

6.4.1 Frequentist analysis: likelihood curves and profiles

The most basic tool for understanding how likelihood depends on one or
more parameters is the likelihood curve or likelihood surface, which is just
the likelihood plotted as a function of parameter values (e.g. Figure 6.1). By
convention, we plot the negative log-likelihood rather than log-likelihood, so
the best estimate is a minimum rather than a maximum. (I sometimes call
negative log-likelihood curves badness-of-fit curves, since higher points indi-
cate a poorer fit to the data.) Figure 6.6a shows the negative log-likelihood
curve (like Figure 6.1 but upside-down and with a different y axis), indicat-
ing the minimum negative log-likelihood (=maximum likelihood) point, and
lines showing the upper and lower 95% confidence limits (we’ll soon see how
these are defined). Every point on a likelihood curve or surface represents a
different fit to the data: Figure 6.6b shows the observed distribution of the
binomial data along with three separate curves corresponding to the lower
estimate (p = 0.6), best fit (p = 0.75), and upper estimate (p = 0.87) of the
per capita predation probability.

For models with more than one parameter, we draw likelihood surfaces
instead of curves. Figure 6.7 shows the negative log-likelihood surface of the
tadpole predation data as a function of attack rate a and handling time h.
The minimum is where we found it before, at (a = 0.526, h = 0.017). The
likelihood contours are roughly elliptical and are tilted near a 45 degree
angle, which means (as we will see) that the estimates of the parameters are
correlated. Remember that each point on the likelihood surface corresponds
to a fit to the data, which we can (and should) look at in terms of a curve
through the actual data values: Figure 6.9 shows the fit of several sets of
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Figure 6.6 (a) Negative log-likelihood curve and confidence intervals for binomial-
distributed predation of tadpoles. (b) Comparison of fits to data. Gray verti-
cal bars show proportion of trials with different outcomes; lines and symbols
show fits corresponding to different parameters indicated on the negative log-
likelihood curve in (a).

parameters (the ML estimates, and two other less well-fitting a-h pairs) on
the scale of the original data.

If we want to deal with models with more than two parameters, or if we
want to analyze a single parameter at a time, we have to find a way to isolate
the effects of one or more parameters while still accounting for the rest. A
simple, but usually wrong, way of doing this is to calculate a likelihood
slice, fixing the values of all but one parameter (usually at their maximum
likelihood estimates) and then calculating the likelihood for a range of values
of the focal parameter. The horizontal line in the middle of Figure 6.7 shows
a likelihood slice for a, with h held constant at its MLE. Figure 6.8 shows
an elevational view, the negative log-likelihood for each value of a. Slices
can be useful for visualizing the geometry of a many-parameter likelihood
surface near its minimum, but they are statistically misleading because they
don’t allow the other parameters to vary and thus they don’t show the
minimum negative log-likelihood achievable for a particular value of the
focal parameter.

Instead, we calculate likelihood profiles, which represent “ridgelines”
in parameter space showing the minimum negative log-likelihoods for par-
ticular values of a single parameter. To calculate a likelihood profile for a
focal parameter, we have to set the focal parameter in turn to a range of
values, and for each value optimize the likelihood with respect to all of the
other parameters. The likelihood profile for a in Figure 6.7 runs through the
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contour lines (such as the confidence regions shown) at the points where the
contours run exactly vertical. Think about looking for the minimum along a
fixed-a transect (varying h — vertical lines in Figure 6.7); the minimum will
occur at a point where the transect is just touching (tangent to) a contour
line. Slices are always steeper than profiles, (e.g. Figure 6.8), because they
don’t allow the other parameters to adjust to changes in the focal param-
eter. Figure 6.9 shows that the fit corresponding to a point on the profile
(triangle/dashed line) has a lower value of h (handling time, correspond-
ing to a higher asymptote) that compensates for its enforced lower value
of a (attack rate/initial slope), while the equivalent point from the slice
(star/dotted line) has the same handling time as the MLE fit, and hence
fits the data worse — corresponding to the higher negative log-likelihood in
Figure 6.8.

6.4.1.1 The Likelihood Ratio Test

On a negative log-likelihood curve or surface, higher points represent worse
fits. The steeper and narrower the valley (i.e. the faster the fit degrades
as we move away from the best fit), the more precisely we can estimate the
parameters. Since the negative log-likelihood for a set of independent ob-
servations is the sum of the individual negative log-likelihoods, adding more
data makes likelihood curves steeper. For example, doubling the number of
observations will double the negative log-likelihood curve across the board
— in particular, doubling the slope of the negative log-likelihood surface∗.

It makes sense to determine confidence limits by setting some upper
limit on the negative log-likelihood and declaring that any parameters that
fit the data at least that well are within the confidence limits. The steeper
the likelihood surface, the faster we reach the limit and the narrower are
the confidence limits. Since we only care about the relative fit of different
models and parameters, the limits should be relative to the maximum log-
likelihood (minimum negative log-likelihood).

For example, Edwards (1992) suggested that one could set reasonable
confidence regions by including all parameters within 2 log-likelihood units
of the maximum log-likelihood, corresponding to all fits that gave likeli-
hoods within a factor of ≈ 7.4 of the maximum. However, this approach

∗Doubling the sample size also typically doubles the minimum negative log-likelihood as well,
which may seem odd — why would adding more data worsen the fit of the model? — until
you remember that we’re not really interested in the probability of a particular set of data, just
the relative likelihood of different models and parameters. The probability of flipping a fair coin
(p = 0.5) twice and getting one head and one tail is 0.5. The probability of flipping the same coin
1000 times and getting 500 heads and 500 tails is only 0.025; that doesn’t mean that we should
reject the hypothesis that the coin is fair.
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lacks a frequentist probability interpretation — there is no corresponding
p-value. This deficiency may be an advantage, since it makes dogmatic
null-hypothesis testing impossible.

If you insist on p-values, you can also use differences in log-likelihoods
(corresponding to ratios of likelihoods) in a frequentist approach called the
Likelihood Ratio Test (LRT). Take some likelihood function L(p1, p2, . . . , pn),
and find the overall best (maximum likelihood) value, Labs = L(p̂1, p̂2, . . . p̂n)
(“abs” stands for “absolute”). Now fix some of the parameters (say p1 . . . pr)
to specific values (p∗1, . . . p

∗
r), and maximize with respect to the remaining

parameters to get Lrestr = L(p∗1, . . . , p
∗
r , p̂r+1, . . . , p̂n) (“restr” stands for “re-

stricted”, sometimes also called a reduced or nested model). The Likelihood
Ratio Test says that the distribution of twice the negative log of the like-
lihood ratio, −2 log(Lrestr/Labs), called the deviance, is approximately χ2

(“chi-squared”) distribution with r degrees of freedom∗†.

The log of the likelihood ratio is the difference in the log-likelihoods,
so

2 (− logLrestr − (− logLabs)) ∼ χ2
r . (6.4.1)

The definition of the LRT echoes the definition of the likelihood pro-
file, where we fix one parameter and maximize the likelihood/minimize the
negative log-likelihood with respect to all the other parameters: r = 1 in
the definition above. Thus, for univariate confidence limits we cut off the
likelihood profile at (min. neg. log. likelihood + χ2

1(1 − α)/2), where α
is our chosen confidence level (0.95, 0.99, etc.). (The cutoff is a one-tailed
test, since we are looking only at differences in likelihood that are larger
than expected under the null hypothesis.) Figure 6.10 shows the likelihood
profiles for a and h, along with the 95% and 99% confidence intervals: you
can see how the confidence intervals on the parameters are drawn as verti-
cal lines through the intersection points of the (horizontal) likelihood cutoff
levels with the profile.

The 99% confidence intervals have a higher cutoff than the 95% con-
fidence intervals (χ2

1(0.99)/2 = 3.32 > χ2
1(0.95)/2 = 1.92), and hence the

∗You may associate the χ2 distribution with contingency table analysis, chisq.test in R, but
it is a distribution that appears much more broadly in statistics.

†Here’s a heuristic explanation: you can prove that the distribution of the maximum likelihood
estimate is asymptotically normally distributed (i.e. with sufficiently large sample sizes). You
can also show, by Taylor expanding, that the log-likelihood surface is quadratic, with curvature
determined by the variances of the parameters. If we are restricting r parameters, then we are
moving away from the maximum likelihood of the more complex model in r directions, by a
normally distributed amount θi in each direction. Since the log-likelihood surface is quadratic,
the drop in the negative log-likelihood is

Pr
i=1 θ2

i . Since the θi values (likelihood estimates of each
parameter) are each normally distributed, the sum of squares of r of them is χ2 distributed with
r degrees of freedom. (This explanation is necessarily crude; for the real derivation, see Kendall
and Stuart (1979).)
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Figure 6.10 Likelihood profiles and LRT confidence intervals for tadpole predation data.

99% intervals are wider.

Here are the numbers:

α χ2
1(α)
2 −L + χ2

1(α)
2 variable lower upper

0.95 1.92 48.6 a 0.40200 0.6820
h 0.00699 0.0264

0.99 3.32 50.0 a 0.37000 0.7390
h 0.00387 0.0296

R can compute profiles and profile confidence limits automatically.
Given an mle2 fit m, profile(m) will compute a likelihood profile and
confint(m) will compute profile confidence limits. plot(profile(m2))
will plot the profile, square-root transformed so that a quadratic profile will
appear V-shaped (or linear if you specify absVal=FALSE). This transforma-
tion makes it easier to see whether the profile is quadratic, since it’s easier
to see whether a line is straight than it is to see whether it’s quadratic.
Computing the profile can be slow, so if you want to plot the profile and
find confidence limits, or find several different confidence limits, you can
save the profile and then use confint on the profile:

> p2 = profile(m2)

> confint(p2)

It’s also useful to know how to calculate profiles and profile confi-
dence limits yourself, both to understand them better and for the not-so-
rare times when the automatic procedures break down. Because profiling
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requires many separate optimizations, it can fail if your likelihood surface
has multiple minima (p. 323) or if the optimization is otherwise finicky. You
can try to tune your optimization procedures using the techniques discussed
in Chapter 7, but in difficult cases you may have to settle for approximate
quadratic confidence intervals (Section 6.5).

To compute profiles by hand, you need to write a new negative log-
likelihood function that holds one of the parameters fixed while minimizing
the likelihood with respect to the rest. For example, to compute the profile
for a (minimizing with respect to h for many values of a), you could use the
following reduced negative log-likelihood function:

> binomNLL2.a = function(p, N, k, a) {

+ h = p[1]

+ p = a/(1 + a * h * N)

+ -sum(dbinom(k, prob = p, size = N, log = TRUE))

+ }

Compute the profile likelihood for a range of a values:

> avec = seq(0.3, 0.8, length = 100)

> aprof = numeric(100)

> for (i in 1:100) {

+ aprof[i] = optim(binomNLL2.a, par = 0.02, k = ReedfrogFuncresp$Killed,

+ N = ReedfrogFuncresp$Initial, a = avec[i],

+ method = "BFGS")$value

+ }

The curve drawn by plot(avec,aprof) would look just like the one in
Figure 6.10a.

To find the profile confidence limits for a, we have to take one branch
of the profile at a time. Starting with the lower branch, the values below
the minimum negative log-likelihood:

> prof.lower = aprof[1:which.min(aprof)]

> prof.avec = avec[1:which.min(aprof)]

Finally, use the approx function to calculate the a value for which
− log L = − log Lmin + χ2

1(0.95)/2:

> approx(prof.lower, prof.avec, xout = -logLik(m2) +

+ qchisq(0.95, 1)/2)
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$x
'log Lik.' 48.64212 (df=2)

$y
[1] 0.4024598

Now let’s go back and look at the bivariate confidence region in Fig-
ure 6.7. The 95% bivariate confidence region (solid black line) occurs at
negative log-likelihood equal to − log L̂ + χ2

2(0.95)/2 = − log L̂ + 5.991/2.
This is about 3 log-likelihood units up from the minimum. I’ve also drawn
the univariate region (log L̂+χ2

1(0.95)/2 contour). That region is not really
appropriate for this figure, because it applies to a single parameter at a
time, but it illustrates that univariate intervals are smaller than the bivari-
ate confidence region, and that the confidence intervals, like the profiles, are
tangent to the univariate confidence region.

The LRT is only correct asymptotically, for large data sets. For small
data sets it is an approximation, although one that people use very freely.
The other limitation of the LRT that frequently arises, although it is often
ignored, is that it only works when the best estimate of the parameter is
not on the edge of its allowable range (Pinheiro and Bates, 2000). For
example, if you are fitting an exponential model y = exp(rx) that must be
decreasing, so that r ≤ 0, and your best estimate of r is equal to 0, then the
LRT estimate for the upper bound of the confidence limit is not technically
correct (see p. 329).

6.4.2 Bayesian approach: posterior distributions and marginal distribu-
tions

What about the Bayesians? Instead of drawing likelihood curves, Bayesians
draw the posterior distribution (proportional to prior×L, e.g. Figure 6.4).
Instead of calculating confidence limits using the (frequentist) LRT, they
define the credible interval, which is the region in the center of the distribu-
tion containing 95% (or some other standard proportion) of the probability
of the distribution, bounded by values on either side that have the same
probability (or probability density). Technically, the credible interval is
the interval [x1, x2] such that P (x1) = P (x2) and C(x2) − C(x1) = 1 − α,
where P is the probability density and C is the cumulative density. The
credible interval is slightly different from the frequentist confidence interval,
which is defined as [x1, x2] such that C(x1) = α/2 and C(x2) = 1 − α/2.
For empirical samples, use quantile to compute confidence intervals and
HPDinterval (“highest posterior density interval”), in the coda package, to
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Figure 6.11 Bayesian 95% credible interval (gray), and 5% tail areas (hashed), for the
tadpole predation data (weak prior: shape=(1,1)).

compute credible intervals. For theoretical distributions, use the appropri-
ate “q” function (e.g. qnorm) to compute confidence intervals and tcredint,
in the emdbook package, to compute credible intervals.

Figure 6.11 shows the posterior distribution for the tadpole predation
(from Figure 6.4), along with the 95% credible interval and the lower and
upper 2.5% tails for comparison. The credible interval is symmetrical in
height; the cutoff value on either end of the distribution has the same pos-
terior probability. The extreme tails are symmetrical in area; the likelihood
of extreme values in either direction is the same. The credible interval’s
height symmetry leads to a uniform probability cutoff: we never include a
less probable value at the one boundary than the other. To a Bayesian, this
property makes more sense than insisting (as the frequentists do in defining
confidence intervals) that the probabilities of extremes in either direction
are the same.

For multi-parameter models, the likelihood surface is analogous to a bi-
variate or multivariate probability distribution (Figure 6.12). The marginal
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Figure 6.12 Bayesian credible intervals (bivariate and marginal) for tadpole predation
analysis.

probability density is the Bayesian analogue of the likelihood profile. Where
frequentists use likelihood profiles to make inferences about a single param-
eter while taking the effects of the other parameters into account, Bayesians
use the marginal posterior probability density, the overall probability for a
particular value of a focal parameter integrated over all the other parame-
ters. Figure 6.12 shows the 95% credible intervals for the tadpole predation
analysis, both bivariate and marginal (univariate). In this case, when the
prior is weak and the posterior distribution is reasonably symmetrical, there
is little difference between the bivariate 95% confidence region and the bi-
variate 95% credible interval (Figure 6.12), but Bayesian and frequentist
conclusions will not always be so similar.

6.5 CONFIDENCE INTERVALS FOR COMPLEX MODELS:

QUADRATIC APPROXIMATION

The methods I’ve discussed so far (calculating likelihood profiles or marginal
likelihoods numerically) work fine when you have only two, or maybe three,
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parameters, but become impractical for models with many parameters. To
calculate a likelihood profile for n parameters, you have to optimize over
n − 1 parameters for every point in a univariate likelihood profile. If you
want to look at the bivariate confidence limits of any two parameters you
can’t just compute a likelihood surface. To compute a 2-D likelihood profile,
the analogue of the 1-D profiles we calculated previously, you would have
to take every combination of the two parameters you’re interested in (e.g.
a 50 × 50 grid of parameter values) and maximize with respect to all the
other n − 2 parameters for every point on that surface, and then use the
values you’ve calculated to draw contours. Especially when the likelihood
function itself is hard to calculate, this procedure can be extremely tedious.

A powerful, general, but approximate shortcut is to examine the sec-
ond derivative(s) of the log-likelihood as a function of the parameter(s). The
second derivatives provide information about the curvature of the surface,
which tells us how rapidly the log-likelihood gets worse, which allows us to
estimate the confidence intervals. This procedure involves a second level
of approximation (like the LRT, becoming more accurate as the number of
data points increases), but it can be useful when you run into numerical dif-
ficulties calculating the profile confidence limits, when you want to compute
bivariate confidence regions for complex models, or more generally explore
correlations in high-dimensional parameter spaces.

To motivate this procedure, let’s briefly go back to a one-dimensional
normal distribution and compute an analytical expression for the profile
confidence limits. The likelihood of a set of independent samples from a
normal distribution is L =

∏n
i=1

1√
2πσ

exp(−(xi − µ)2/(2σ2))∗. That means
the negative log-likelihood as a function of the parameters µ and σ is

− logL(µ, σ) = C + n log σ +
∑

i

(
(xi − µ)2

2σ2

)
, (6.5.1)

where we’ve lumped the parameter-independent parts of the likelihood into
the constant C. We could differentiate this expression with respect to µ
and solve for µ when the derivative is zero to show that µ̂ =

∑
xi/n. We

could then substitute µ = m̂u into (6.5.1) to find the minimum negative
log-likelihood. Once we have done this we want to calculate the width of
the profile confidence interval c — that is, what is the value of c such that

− log L(µ̂± c, σ) = − log L(µ̂, σ) + χ2
1(α)/2 ? (6.5.2)

Some slightly nasty algebra leads to:

c =
√

χ2
1(α) · σ√

n
(6.5.3)

∗The symbol
Q

denotes a product, like
P

but for multiplication.
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This expression might look familiar: we’ve just rederived the expres-
sion for the confidence limits of the mean! The term σ/

√
n is the standard

error of the mean; it turns out that the term
√

χ2
1(α) is the same as the

α/2 quantile for the normal distribution†. The test uses the quantile of a
normal distribution, rather than a Student t distribution, because we have
assumed the variance is known.

How does this relate to the second derivative? For the normal distri-
bution, the second derivative of the negative log-likelihood with respect to
µ is

D2 =
d2
(∑

(xi − µ)2/(2σ2)
)

dµ2
=

n

(σ2)
(6.5.4)

So we can rewrite the term σ/
√

n in (6.5.3) as
√

1/D2; the standard devia-
tion of the parameter, which determines the width of the confidence interval,
is proportional to the square root of the reciprocal of the curvature (i.e., the
second derivative).

While we have derived these conclusions for the normal distribution,
they’re true for any model if the data set is large enough. In general, for a
one-parameter model with parameter p, the width of our confidence region
is

N(α)
(

d2(logL)
dp2

)−1/2

, (6.5.5)

where N(α) is the appropriate quantile for the standard normal distribution.
This equation gives us a general recipe for finding the confidence region
without doing any extra computation, if we know the second derivative of
the negative log-likelihood at the maximum likelihood estimate. We can
find that second derivative either by calculating it analytically (sometimes
feasible), or by calculating it numerically by finite differences, extending
the general rule that the derivative df(p)/dp is approximately (f(p + ∆p)−
f(p))/∆p:

d2f

dp2

∣∣∣∣
p=m

≈ f(m + 2∆p)− 2f(m + ∆p) + f(m)
(∆p)2

. (6.5.6)

The hessian=TRUE option in optim tells R to calculate the second derivative
in this way; this option is set automatically in mle2.

The same idea works for multi-parameter models, but we have to
know a little bit more about second derivatives to understand it. A multi-
parameter likelihood surface has more than one second partial derivative:

†try sqrt(qchisq(0.95,1)) and qnorm(0.975) in R to test this idea [use 0.975 instead of
0.95 in the second expression because this procedure involves a two-tailed test on the normal
distribution but a one-tailed test on the χ2 distribution, because the χ2 is the distribution of a
squared normal deviate]
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in fact, we get a matrix of second partial derivatives, called the Hessian.
When calculated for a likelihood surface, the negative of the expected value
of the Hessian is called the Fisher information; when evaluated at the maxi-
mum likelihood estimate, it is the observed information matrix. The second
partial derivatives with respect to the same variable twice (e.g. ∂2L/∂µ2)
represent the curvature of the likelihood surface along a particular axis; the
cross-derivatives, e.g. ∂2L/(∂µ∂σ), describe how the slope in one direc-
tion changes as you move along another direction. For example, for the
log-likelihood L of the normal distribution with parameters µ and σ, the
Hessian is: (

∂2L
∂µ2

∂2L
∂µ∂σ

∂2L
∂µ∂σ

∂2L
∂σ2 .

)
. (6.5.7)

In the simplest case of a one-parameter model, the Hessian reduces
to a single number (i.e. d2L/dp2), the curvature of the likelihood curve at
the MLE, and the estimated standard deviation of the parameter is just
(∂2L/∂µ2)−1/2 as above.

In simple two-parameter models such as the normal distribution the
parameters are uncorrelated, and the matrix is diagonal:(

∂2L
∂µ2 0
0 ∂2L

∂σ2

)
. (6.5.8)

The off-diagonal zeros mean that the slope of the surface in one direction
doesn’t change as you move in the other direction, and hence the shape
of the likelihood surface in the µ direction and the σ direction are un-
related. In this case we can compute the standard deviations of each
parameter independently—they’re the inverse square roots of the second
partial derivative with respect to each parameter (i.e., (∂2L/∂µ2)−1/2 and
(∂2L/∂σ2)−1/2).

In general, when the off-diagonal elements are different from zero, we
have to invert the matrix numerically, which we can do with solve. For
a two-parameter model with parameters a and b we obtain the variance-
covariance matrix

V =
(

σ2
a σab

σab σ2
b

)
, (6.5.9)

where σ2
a and σ2

b are the variances of a and b and σab is the covariance
between them; the correlation between the parameters is σab/(σaσb).

Comparing the (approximate) 80% and 99.5% confidence ellipse to
the profile confidence regions for the tadpole predation data set, they don’t
look too bad. The profile region is slightly skewed—it includes more points
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where d and r are both larger than the maximum likelihood estimate, and
fewer where both are smaller—while the approximate ellipse is symmetric
around the maximum likelihood estimate.

This method extends to more than two parameters, even though it
is difficult to draw the pictures. The information matrix of a p-parameter
model is a p×p matrix. Using solve to invert the information matrix gives
the variance-covariance matrix

V =


σ2

1 σ12 . . . σ1p

σ21 σ2
2 . . . σ2p

...
...

. . .
...

σp1 σp2 . . . σ2
p

 , (6.5.10)

where σ2
i is the estimated variance of variable i and where σij = σji is the

estimated covariance between variables i and j: the correlation between i
and j is σij/(σiσj). For an mle2 fit m, vcov(m) will give the approximate
variance-covariance matrix computed in this way and cov2cor(vcov(m))
will scale the variance-covariance matrix by the variances to give a correla-
tion matrix with entries of 1 on the diagonal and parameter correlations for
the off-diagonal elements.

The shape of the likelihood surface contains essentially all of the in-
formation about the model fit and its uncertainty. For example, a large
curvature or steep slope in one direction corresponds to high precision for
the estimate of that parameter or combination of parameters. If the cur-
vature is different in different directions (leading to ellipses that are longer
in one direction than another) then the data provide unequal amounts of
precision for the different estimates. If the contours are oriented vertically
or horizontally, then the estimates of the parameters are independent, but
if they are diagonal then the parameter estimates are correlated. If the con-
tours are roughly elliptical (at least near the MLE), then the surface can be
described by a quadratic function.

These characteristics also help determine which methods and approx-
imations will work well (Figure 6.14). If the parameters are uncorrelated
(contours oriented horizontally/vertically), then you can estimate them sep-
arately and still get the correct confidence intervals: the likelihood slice is
the same as the profile (Figure 6.14a). If they are correlated, on the other
hand, you will need to calculate a profile (or solve the information matrix)
to allow for variation in the other parameters (Figure 6.14b,d). If the like-
lihood contours are elliptical — which happens when the likelihood surface
has a quadratic shape — the information matrix approximation will work
well (Figure 6.14a,b): otherwise, a full profile likelihood may be necessary
to calculate the confidence intervals accurately.
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You can usually handle non-quadratic and correlated surfaces by com-
puting profiles rather than using the simpler quadratic approximations, but
in extreme cases these characteristics can cause problems for fitting (Chap-
ter 7). All other things being equal, smaller confidence regions (i.e., for
larger and less noisy data sets and for higher α levels), are more ellipti-
cal. Reparameterizing functions can sometimes make the likelihood surface
closer to quadratic and decrease correlation between the parameters. For
example, one might fit the asymptote and half-maximum of a Michaelis-
Menten function rather than the asymptote and initial slope, or fit log-
transformed parameters.

6.6 COMPARING MODELS

The last topic for this chapter, a controversial and important one, is model
comparison or model selection. Model comparison and selection are closely
related to the techniques for estimating confidence regions that we have just
covered.

Dodd and Silvertown did a series of studies on fir (Abies balsamea)
in New York state, exploring the relationships among growth, size, age,
competition, and number of cones produced in a given year (Silvertown
and Dodd, 1999; Dodd and Silvertown, 2000): see ?Fir in the emdbook
package. Figure 6.15 shows the relationship between size (diameter at breast
height, DBH) and the total fecundity over the study period, contrasting
populations that have experienced wave-like die-offs (“wave”) with those that
have not (“nonwave”). A power-law (allometric) dependence of expected
fecundity on size allows for increasing fecundity with size while preventing
the fecundity from being negative for any parameter values. It also agrees
with the general observation in morphology that different traits increase as
a power function of size. A negative binomial distribution in size around
the expected fecundity describes discrete count data with potentially high
variance. The resulting model is

µ = a ·DBHb

Y ∼ NegBinom(µ, k)
(6.6.1)

where the subscripts i denote different populations — wave (i = w) or
non-wave (i = n).

We might ask any of these biological/statistical questions:

� Does fir fecundity (total number of cones) change (increase) with size
(DBH)?

� Do the confidence intervals (credible intervals) of the slope parameters
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Figure 6.15 Fir fecundity as a function of DBH for wave and non-wave populations. Lines
show estimates of the model y = a ·DBHb fitted to the populations separately
and combined.

bi include zero (no change)? Do they include 1 (isometry)?

� Are the allometric parameters bi significantly different from (greater
than) zero? One?

� Does a model incorporating the allometric parameters fit the data
significantly better than a model without a allometric parameter, or
equivalently where the allometric parameter is set to zero (µ = ai) or
one (µ = ai ·DBH?)

� What is the best model to explain, or predict, fir fecundity? does it
include DBH?

Figure 6.15 shows very clearly that fecundity does increase with size:
while we might want to know how much it increases (based on the estimation
and confidence-limits procedures discussed above), any statistical test of the
null hypothesis b = 0 would be pro forma. More interesting questions in
this case ask whether and how the size-fecundity curve differs in wave and
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non-wave populations. We can extend the model to allow for differences
between the two populations:

µ = ai ·DBHbi

Yi ∼ NegBinom(µ, ki)
(6.6.2)

where the subscripts i denote different populations — wave (i = w) or
non-wave (i = n).

Now our questions become:

� Is fecundity the same for small trees in both populations? (Can we
reject the null hypothesis an = aw? Do the confidence intervals of
an − aw include zero? Does a model with an 6= aw fit significantly
better?)

� Does fecundity increase with DBH at the same rate in both popula-
tion? (Can we reject the null hypothesis bn = bw? Do the confidence
intervals of bn − bw include zero? Does a model with bn 6= bw fit
significantly better?)

� Is variability around the mean the same in both populations? (Can
we reject the null hypothesis kn = kw? Do the confidence intervals
of kn − kw include zero? Does a model with kn 6= kw fit significantly
better?)

We can boil any of these questions down to the same basic statistical
question: for any one of a, b, and k, does a simpler model (with a single
parameter for both populations rather than separate parameters for each
population) fit adequately? Does adding extra parameters improve the fit
sufficiently much to justify the additional complexity?

As we will see, there are many ways to translate these questions into
statistical hypotheses and tests. While there are stark differences in the
assumptions and philosophy behind different statistical approaches, and hot
debate over which ones are best, it’s worth remembering that in many cases
they will all give reasonably consistent answers to the underlying ecological
questions. The rest of this introductory section explores some general ideas
about model selection. The following sections describe the basics of different
approaches, and the final section summarizes the pros and cons of various
approaches.

If we ask “does fecundity change with size?” or “do two populations
differ?”, we know as ecologists that the answer is “yes” — every ecological
factor has some impact, and all populations differ in some way. The real
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questions are, given the data we have, whether we can tell what the differ-
ences are, and how we decide which model best explains the data or predicts
new results.

Parsimony (sometimes called “Occam’s razor”) is a general argument
for choosing simpler models even though we know the world is complex.
All other things being equal, we should prefer a simpler model to a more
complex one — especially when the data don’t tell a clear story. Model selec-
tion approaches typically go beyond parsimony to say that a more complex
model must be not just better than, but a specified amount better than, a
simpler model. If the more complex model doesn’t exceed a threshold of
improvement in fit (we will see below exactly where this threshold comes
from), we typically reject it in favor of the simpler model.

Model complexity also affects our predictive ability. Walters and
Ludwig (1981) simulated fish population dynamics using a complex age-
structured model and showed that in many cases, when data were realisti-
cally sparse and noisy, they could best predict future (simulated) dynamics
using a simpler non-age-structured model. In other words, even though
they knew for sure that juveniles and adults had different mortality rates
(because they simulated the data from a model with mortality differences),
a model that ignored this distinction gave more accurate predictions. This
apparent paradox is an example of the bias-variance tradeoff introduced
in Chapter 5. As we add more parameters to a model, we necessarily get
an increasingly accurate fit to the particular data we have observed (the
bias of our predictions decreases), but our precision for predicting future
observations decreases as well (the variance of our predictions increases).
Data contain a fixed amount of information; as we estimate more and more
parameters we spread the data thinner and thinner. Eventually the gain in
accuracy from having more details in the model is outweighed by the loss in
precision from estimating the effect of each of those details more poorly. In
Ludwig and Walters’s case, spreading the data out across age classes meant
there was not enough data to estimate each age class’s dynamics accurately.

The left-hand plot of Figure 6.16 shows a set of simulated data gen-
erated from a generalized Ricker model, Y ∼ Normal((a + bx + cx2)e−dx).
I fitted these data with a constant model (y equal to the mean of data),
a Ricker model (y = ae−bx), and the generalized Ricker model. Despite
being the true model that generated the data, the generalized Ricker model
is overly flexible and adjusts the fit to go through an unusual point at
(1.5,0.24). It fits the first data set better than the Ricker (R2 = 0.55 for the
generalized Ricker vs. R2 = 0.29 for the Ricker). However, the generalized
Ricker has overfitted these data. It does poorly when we try to fit new data
generated from the same underlying model. In the new set of data shown
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Figure 6.16 Fits to simulated “data” generated with y = (0.4 + 0.1 · x + 2 · x2)e−x, plus
normal error with σ = 0.35. Models fitted: constant (y = x̄), Ricker (y =
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point at x ≈ 1.5 drives much of the fit to the original data, and much of the
failure to fit new data sets. Left: original data, right: a new data set.

in Figure 6.16, the generalized Ricker fit misses the point near x = 1.5 so
badly that it actually fits the data worse than the constant model and has a
negative R2! In 500 new simulations, the Ricker prediction did best 83% of
the time, while the generalized Ricker prediction only won 11% of the time:
the rest of the time, the constant model was best.

6.6.1 Likelihood Ratio test: nested models

How can we tell when we are overfitting real data? We can use the Like-
lihood Ratio Test, which we used before to find confidence intervals and
regions, to choose models in certain cases. A simpler model (with fewer
parameters) is nested in another, more complex, model (with more pa-
rameters) if the complex model reduces to the simpler model by setting
some parameters to particular values (often zero). For example, a constant
model, y = a, is nested in the linear model, y = a+bx because setting b = 0
makes the linear model constant. The linear model is nested in turn in the
quadratic model, y = a + bx + cx2. The linear model is also nested in the
Beverton-Holt model, y = ax/(1 + (a/b)x), for b →∞. The Beverton-Holt
is in turn nested in the Shepherd model, y = ax/(1 + (a/b)xd), for d = 1.
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(The nesting of the linear model in the Beverton-Holt model is clearer if we
use the parameterization of the Holling type II model, y = ax/(1 + ahx).
The handling time h is equivalent to 1/b in the Beverton-Holt. When h = 0
predators handle prey instantaneously and their per capita consumption
rate increases linearly forever as prey densities increase.)

Comparisons among different groups can also be framed as a compar-
ison of nested models. If the more complex model has the mean of group 1
equal to a1 and the mean of group 2 equal to a2, then the nested model
(both groups equivalent) applies when a1 = a2. It is also common to pa-
rameterize this model as a2 = a1 + δ12, where δ12 = a2 − a1, so that the
simpler model applies when δ12 = 0. This parameterization works better
for model comparisons since testing the hypothesis that the more complex
model is better becomes a test of the value of one parameter (δ12 = 0?)
rather than a test of the relationship between two parameters (a1 = a2?)∗.

To prepare to ask these questions with the fir data, we read in the
data, drop NAs, pull out the variables we want, and attach the resulting
data frame so that we can refer to the variables directly:

> data(FirDBHFec)

> X = na.omit(FirDBHFec[, c("TOTCONES", "DBH", "WAVE_NON")])

> X$TOTCONES = round(X$TOTCONES)

Using mle2’s formula interface is the easiest way to estimate the nested
series of models in R. The reduced model (no variation among populations)
is

> nbfit.0 = mle2(TOTCONES ~ dnbinom(mu = a * DBH^b,

+ size = k), start = list(a = 1, b = 1, k = 1),

+ data = X)

To fit more complex models, use the parameters argument to specify which
parameters differ among groups. For example, the argument list(a~WAVE_NON,b~WAVE_NON)
would allow a and b to have different values for wave and non-wave popu-
lations, corresponding to the hypothesis that the populations differ in both
a and b but not in variability (aw 6= an, bw 6= bn, kw = kn). The statistical
model is Yi ∼ NegBinom(ai ·DBHbi , k), and the R code is

∗We can also interpret these parameterizations geometrically. In (a1,a2) parameter space,
we’re testing to see whether the best fit falls on the line through the origin a1 = a2; in (a1, δ12)
parameter space, we’re testing whether the best fit lies on the line δ12 = 0. To explore further how
different parameterizations relate to testing different hypotheses, look for the topic of contrasts
(in Crawley (2002) or Venables and Ripley (2002)).
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> start.ab = as.list(coef(nbfit.0))

> nbfit.ab = mle2(TOTCONES ~ dnbinom(mu = a * DBH^b,

+ size = k), start = start.ab, data = X, parameters = list(a ~

+ WAVE_NON, b ~ WAVE_NON))

Here I have used the best-fit parameters of the simpler model as starting
parameters for the complex model. Using the best available starting param-
eters avoids many optimization problems.

mle2’s formula interface automatically expands the starting parame-
ter list (which only includes a single value for each of a and b) to include the
appropriate number of parameters. mle2 uses default starting parameter
values corresponding to equality of all groups, which for this parameteriza-
tion means that all of the additional parameters for groups other than the
first are set to zero.

The formula interface is convenient, but as with likelihood profiles you
often encounter situations where you have to know how to build the models
by hand. Here’s a negative log-likelihood model for the second model:

> attach(X)

> nbNLL.ab = function(a.w, b.w, a.n, b.n, k) {

+ wcode = as.numeric(WAVE_NON)

+ a = c(a.n, a.w)[wcode]

+ b = c(b.n, b.w)[wcode]

+ predcones = a * DBH^b

+ -sum(dnbinom(TOTCONES, mu = predcones, size = k,

+ log = TRUE))

+ }

The first three lines of nbNLL.ab turn the factor WAVE_NON into a numeric
code (1 or 2) and use the resulting code as an index to decide which value
of a or b to use in predicting the value for each individual. To make k differ
by group as well, just change k in the argument list to k.n and k.w and add
the line

> k = c(k.n, k.w)[wcode]

To simplify the model by making a or b homogeneous, cut down the ar-
gument list and eliminate the line of code that specifies the value of the
parameter by group.
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The only difference between this negative log-likelihood function and
the one that mle2 constructs when you use the formula interface is that the
mle2-constructed function uses the parameterization {a1, a1+δ12} while our
hand-coded function uses {a1, a2} (see p. 272). The former is more conve-
nient for statistical tests, while the latter is more convenient if you want to
know the parameter values for each group. To tell mle2 to use the latter pa-
rameterization, specify parameters=list(a~WAVE_NON-1,b~WAVE_NON-1).
The -1 tells mle2 to fit the model without an intercept, which in this case
means that the parameters for each group are specified relative to 0 rather
than relative to the parameter value for the first group. When mle2 fills in
default starting values for this parameterization, it sets the starting param-
eters for all groups equal.

The anova function∗ performs likelihood ratio tests on a series of
nested mle2 fits, automatically calculating the difference in numbers of pa-
rameters (denoted by Df for degrees of freedom) and deviance and calcu-
lating p values.

> anova(nbfit.0, nbfit.a, nbfit.ab)

Likelihood Ratio Tests
Model 1: nbfit.0, TOTCONES~dnbinom(mu=a*DBH^b,size=k)
Model 2: nbfit.a, TOTCONES~dnbinom(mu=a*DBH^b,size=k):

a~WAVE_NON
Model 3: nbfit.ab, TOTCONES~dnbinom(mu=a*DBH^b,size=k):

a~WAVE_NON, b~WAVE_NON
Tot Df Deviance Chisq Df Pr(>Chisq)

1 3 2272.0
2 4 2271.6 0.4276 1 0.5132
3 5 2271.3 0.2496 1 0.6173

The Likelihood Ratio Test can compare any two nested models, test-
ing whether the nesting parameters of the more complex model differ sig-
nificantly from their null values. Put another way, the LRT tests whether
the extra goodness of fit to the data is worth the added complexity of the
additional parameters. To use the LRT to compare models, compare the dif-
ference in deviances (the more complex model should always have a smaller
deviance — if not, check for problems with the optimization) to the critical
value of the χ2 distribution, with degrees of freedom equal to the addi-
tional number of parameters in the more complex model. If the difference
in deviances is greater than χ2

n2−n1
(1−α), then the more complex model is

∗Why anova? The corresponding series of tests for a simple linear model with categorical
predictors is an analysis of variance (Chapter 9).
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Figure 6.17 Nested hierarchy of models for the fir data. D, deviance.
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significantly better at the p = α level. If not, then the additional complexity
is not justified.

Choosing among statistical distributions can often be reduced to com-
paring among nested models As a reminder, Figure 4.17 (p. 182) shows some
of the relationships among common distributions. The most common use of
the LRT in this context is to see whether we need to use an overdispersed
distribution such as the negative binomial or beta-binomial instead of their
lower-variance counterparts (Poisson or binomial). The Poisson distribu-
tion is nested in the negative binomial distribution when k →∞. If we fit a
model with a and b varying but using a Poisson distribution instead of a neg-
ative binomial, we can then use the LRT to see if adding the overdispersion
parameter is justified:

> poisfit.ab = mle2(TOTCONES ~ dpois(a * DBH^b), start = list(a = 1,

+ b = 1), data = X, parameters = list(a ~ WAVE_NON,

+ b ~ WAVE_NON))

> anova(poisfit.ab, nbfit.ab)

Likelihood Ratio Tests
Model 1: poisfit.ab, TOTCONES~dpois(a*DBH^b): a~WAVE_NON,

b~WAVE_NON
Model 2: nbfit.ab, TOTCONES~dnbinom(mu=a*DBH^b,size=k):

a~WAVE_NON, b~WAVE_NON
Tot Df Deviance Chisq Df Pr(>Chisq)

1 4 6302.7
2 5 2271.4 4031.4 1 < 2.2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

We conclude that negative binomial is clearly justified: the difference in
deviance is greater than 4000, compared to a critical value of 3.84! This
analysis ignores the non-applicability of the LRT on the boundary of the
allowable parameter space (k →∞ or 1/k = 0: see p. 329), but the evidence
is so overwhelming in this case that it probably doesn’t matter.

Models with multiple parameters and multiple groups naturally lead
to a web of nested models. Figure 6.17 shows all of the model comparisons
for the fir data — even for this relatively simple example there are 7 possible
models and 9 possible series of nested comparisons. In this case the answer
is easy, because none of the comparisons is significant according to the LRT
(i.e., none of the one-step comparisons differ by more than 3.84). In more
complex scenarios it can be quite hard to decide which set of comparisons
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to do first. Two simple options are forward selection (try to add parameters
one at a time to the simplest model) and backward selection (try to subtract
parameters from the most complex model). Either of these approaches will
work, but for comparisons that are close to the edge of statistical signifi-
cance, or where the effects of the parameters are strongly correlated, you’ll
often find that you get different answers. Similar problems arise in multiple
regression (in fact, in any complex modeling exercise). With too large a set
of possibilities, this kind of model selection can devolve into data-dredging.
You should: (1) use common sense and ecological knowledge to isolate the
most important comparisons. (2) Draw plots of the best candidate fits to
try to understand why different models fit the data approximately equally
well. (3) Try to rule out differences in variance parameters (k in this case)
first. If you can simplify the model in this way it will be more comparable
with classical models. If not, something interesting may be happening.

6.6.2 Information criteria

One way to avoid having to make pairwise model comparisons is to select
models based on information criteria, which compare all candidate mod-
els at once and do not require nested alternatives. These relatively recent
alternatives to likelihood ratio tests are based on the expected distance
(quantified in a way that comes from information theory) between a partic-
ular model and the “true” model (Burnham and Anderson, 1998, 2002). In
practice, all information-theoretic methods reduce to the finding the model
that minimizes some criterion that is the sum of a term based on the like-
lihood (usually twice the negative log-likelihood) and a penalty term which
is different for different information criteria.

The Akaike Information Criterion, or AIC, is the most widespread
information criterion, and is defined as

AIC = −2L + 2k (6.6.3)

where L is the log-likelihood and k is the number of parameters in the
model∗. As with all information criteria, small values represent better over-

∗Where does the magic penalty term 2k come from? AIC is the expected value of the Kullback-
Leibler distance,

R
f(x) log(f(x)/g(x0)) dx, between the true probability of the data, f(x), and

the probability of the data at the best parameter values for a candidate model, g(x0). The K-L
distance measures the log of the ratio of the predictions, (log(f(x)/g(x0))), averaged over the true
distribution of the data. Separating terms and dropping a constant that doesn’t contain g(x0), we
get E[− log g(x0)]. We don’t really know the true MLE x0, only the observed MLE x̂, so we take
another expectation: E[E[− log g(x̂)]]. Taylor expanding − log g(x̂) around x0, the expectation
of the second (linear) term drops out (because the likelihood is flat at x̂) and we are left with the
constant and quadratic terms: E[E[− log g(x̂)− 1

2
(x− x̂)T V(x− x̂)]]. V is the matrix of second

derivatives of the log-likelihood (the information matrix): −V −1 ≈ Σ, the variance-covariance
matrix of the parameters. By definition, E[(x− x̂)T (x− x̂)] also equals Σ. After more math, the
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all fits; adding a parameter with a negligible improvement in fit penalizes
the AIC by 2 log-likelihood units. For small sample sizes (n) — such as
when n/k < 40 (Burnham and Anderson, 2004, p. 66) — you should use a
finite-size correction and apply the AICc (“corrected AIC”) instead:

AICc = AIC +
2k(k + 1)
n− k − 1

. (6.6.4)

As n grows large, the correction term in (6.6.4) vanishes and the AICc

matches the AIC. The AICc was originally derived on the basis of linear
models with normally distributed errors, so it may apply to a smaller range
of models than the AIC — but this is really an open question. Shono
(2000) found using simulation studies that the AICc gave accurate answers
for typical fisheries data sets, although Richards (2005) suggests that AICc

might not perform as well for other kinds of ecological data sets. (I would
recommend using AICc for small samples, but being careful with the results
if they disagree with the results based on large-sample AIC.)

The second most common information criterion, the Schwarz crite-
rion or Bayesian information criterion (SC/BIC)∗, uses a penalty term of
(log n)k. When n is greater than e2 ≈ 9 observations (so that log n > 2), the
BIC is more conservative than the AIC, insisting on a greater improvement
in fit before it will accept a more complex model.

Information criteria do not allow frequentist significance tests based
on the estimated probability of getting more extreme results in repeated
experiments (some statisticians would say this is an advantage). With ICs,
you cannot say that there is a statistically significant difference between
models; a model with a lower IC is better, but there is no p-value associated
with how much better it is †. Instead, there are commonly used rules of
thumb: models with ICs less than 2 apart (∆IC < 2) are more or less
equivalent; those with ICs 4-7 apart are clearly distinguishable; and models
with ICs more than 10 apart are definitely different. Richards (2005) concurs
with these recommendations, but cautions that simply dropping models
with ∆AIC > 2 (as some ecologists do) will probably discard useful models.

One big advantage of IC-based approaches is that they do not require
nested models. You can compare all models to each other, rather than

expression becomes − log g(x̂)+trace(Σ−1Σ), where the trace is the sum of the diagonal elements
of a matrix. Since a matrix times its inverse is the identity matrix, this becomes − log g(x̂) + k,
where k is the number of rows/columns of the matrix — which is the number of parameters.
Doubling the whole expectation so that the first term is the minimum deviance (−2 logL) gives
the penalty term 2k. For more information, see Chapter 7 of Burnham and Anderson (2002).

∗While the BIC is derived from a Bayesian argument, it is not inherently a Bayesian technique.
It is also not how most Bayesians would compare models (Section 6.6.3).

†Burnham and Anderson recommend avoiding the word“significant” in conjunction with AIC-
based model selection (Burnham and Anderson, 2002, p. 84); no matter how carefully you phrase
your conclusions, some readers will impose a frequentist hypothesis-testing interpretation.
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stepping through a sometimes confusing sequence of pairwise tests. In IC-
based approaches, you simply compute the likelihood and IC for all of the
candidate models and rank them in order of increasing IC. The model with
the lowest IC is the best fit to the data; those models with ICs within
10 units of the minimum IC are worth considering. As with the LRT, the
absolute size of the ICs is unimportant — only the differences in ICs matter.

The AICtab, AICctab, and BICtab commands in the bbmle package
will compute IC tables from lists of mle fits. Use the options delta=TRUE to
get a list of the ∆IC values, weights=TRUE to get AIC weights (see below),
and nobs to specify the number of observations for BIC or AICc. Here are
the results for the fir models:

model params ∆AIC ∆AICc ∆BIC
nbfit.0 3 0.00 0.00 0.00
nbfit.a 4 1.57 1.64 5.06
nbfit.b 4 1.48 1.55 4.97
nbfit.k 4 0.62 0.69 4.11
nbfit.ab 5 3.32 3.48 10.30
nbfit.ak 5 2.24 2.39 9.21
nbfit.bk 5 2.24 2.39 9.21
nbfit.abk 6 3.99 4.25 14.46

All three approaches pick the simplest model as the best model (minimum
IC). AIC would keep all models under consideration (∆AIC < 4 for all
models), while AICc might rule out the most complex model (∆AICc =
4.25), and BIC would definitely rule out complex models where a and b
both change (∆BIC > 10).

ICs can also be useful to choose among stochastic models, which are of-
ten not nested. For example, the Gamma, log-normal, and negative binomial
models can all describe skewed data, and they all converge to the normal dis-
tribution in some limit (Figure 4.17), but there is no easy way to nest them.
We can fit the same deterministic model as before (fecundity = ai · DBHb

i)
with different probability distributions and then use AIC to compare the
results.

For each distribution I have to modify the parameters slightly. The
log-normal’s parameters are the mean and standard deviation of the distri-
bution on the log scale, so I set µlog = log(a · DBHb) = log a + b log DBH.
The Gamma’s are shape and scale, with the mean equal to shape · scale,
so I set scale = (a · DBHb)/shape. I also added 0.001 to TOTCONES for
the log-normal and Gamma fits because zero values are impossible for the
log-normal distribution and for the Gamma distribution with shape > 1,
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leading to infinite negative log-likelihoods. This problem warns us that a
discrete distribution like the negative binomial might make more sense, but
a better fit to a continuous distribution might override this concern.

> lnormfit.ab = mle2(TOTCONES + 0.001 ~ dlnorm(meanlog = b *

+ log(DBH) + log(a), sdlog = sdlog), start = list(a = 1,

+ b = 1, sdlog = 0.1), data = X, parameters = list(a ~

+ WAVE_NON, b ~ WAVE_NON), method = "Nelder-Mead")

> gammafit.ab = mle2(TOTCONES + 0.001 ~ dgamma(scale = a *

+ DBH^b/shape, shape = shape), start = list(a = 1,

+ b = 1, shape = 2), data = X, parameters = list(a ~

+ WAVE_NON, b ~ WAVE_NON))

AIC df ∆AIC
Neg. binom. 2281.4 5 0.0
Gamma 2288.7 5 7.4
Log-normal 2556.3 5 274.9
Poisson 6310.7 4 4029.4

I conclude that the negative binomial is best after all.

6.6.3 Bayesian analyses

Bayesians are on the whole less interested in formal methods of model se-
lection. Dropping a parameter from a model is often equivalent to testing
a null hypothesis that the parameter is exactly zero, and Bayesians con-
sider such point null hypotheses silly. They would describe a parameter’s
distribution as being concentrated near zero rather than saying its value is
exactly zero∗.

Nevertheless, Bayesians do have a way to compute the relative proba-
bility of different models, one that implicitly recognizes the bias-variance
tradeoff and penalizes more complex models (Kass and Raftery, 1995).
Bayesians prefer to make inferences based on averages rather than on most-
likely values: for example, they generally use the posterior mean values
of parameters rather than the posterior mode. This preference extends to
model selection. The marginal likelihood of a model is the probability of
observing the data (likelihood), averaged over the prior distribution of the

∗Although they might consider testing a hypothesis about whether a parameter is small (i.e.,
whether its absolute value is below some threshold: Gelman and Tuerlinckx (2000)).
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parameters:
L̂ =

∫
L(x) · Prior(x) dx, (6.6.5)

where x represents a parameter or set of parameters (if a set, then the
integral would be a multiple integral). The marginal likelihood (the average
probability of observing a particular data set exactly) is often very small,
and we are really interested in the relative probability of different models.
If we have two models with marginal likelihoods L̂1 and L̂2, the Bayes
factor is the ratio of the marginal likelihoods, B12 = L̂1/L̂2, or the odds in
favor of model 1∗. If we want to compare several different (not necessarily
nested) models, we can look at the pairwise Bayes factors or compute a set of
posterior probabilities — assuming that all the models have the same prior
probability — by computing the relative values of the marginal likelihoods:

Prob(Mi) =
L̂i∑N

j=1 L̂j

. (6.6.6)

Marginal likelihoods and Bayes factors incorporate an implicit penalty
for overparameterization. When you add more parameters to a model, it can
fit better — the maximum likelihood and the maximum posterior probabil-
ity increase — but at the same time the posterior probability distribution
spreads out to cover more less-well-fitting possibilities. Since marginal like-
lihoods express the mean and not the maximum posterior probability, they
will actually decrease when the model becomes too complex.

In principle, using Bayes factors to select the better of two models is
simple. If we compare twice the logarithm of the Bayes factors (thus putting
them on the deviance scale), the generally accepted rules of thumb for Bayes
factors are (Jeffreys, 1961, p. 432):

2 log B12 evidence in favor of model 1
0–2 weak
2–6 positive
6–10 strong
> 10 very strong

It is no coincidence that these rules of thumb are similar to those quoted for
the AIC. With fairly strong priors, the Bayes factor converges to the AIC
instead of the BIC (Kass and Raftery, 1995).

∗the Bayes factor is based on assuming equal prior probabilities (p1 = p2 = 0.5) for both
models.
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In practice, computing Bayes factors for a particular set of models can
be tricky (Congdon, 2003), involving either complicated multidimensional
integrals or some kind of stochastic sampling from the prior distribution.
One simple approximation is to calculate the harmonic mean of the likeli-
hoods returned from an MCMC run (the harmonic mean is 1/(

∑
(1/L)/n)).

Another, the analogue of the quadratic approximations to the likelihood
profile described above, is the Laplace approximation which combines the
posterior mode (the maximum value of prior × likelihood) with information
on the curvature of the posterior probability density near the mode†.

Most of these approximations improve as the sample size increases:
Kass and Raftery (1995) suggest that the Laplace approximation requires
at least 5 times as many samples as parameters, and that the other approxi-
mations should be reasonable with 20 times as many samples as parameters.
How do these approximations compare for the fir data set, with 242 data
points and up to 6 parameters?

harmonic mean Laplace BIC
null 0.0 0.0 0.0
a, b differ 5.2 8.2 10.3
a, b, k differ 24.9 9.5 14.5

The different approximations of the Bayes factor do differ considerably, but
the only qualitative difference among them according to the rules of thumb
is that the evidence supporting the null model (all parameters the same)
over the model with different a and b parameters is “positive” according to
the harmonic mean and “strong” according to the Laplace approximation
and BIC.

A more recent criterion, conveniently built into WinBUGS, is the DIC
or deviance information criterion, which was designed particularly for mod-
els containing random effects where even specifying the number of param-
eters is confusing (see Chapter 10). To compute DIC, start by calculating
D̄, the average of the deviance (-2 × log-likelihood) over the posterior dis-
tribution (as contrasted with the marginal likelihood, which is the average
over the prior distribution), and D̂, which is the deviance calculated at the
posterior mean parameters. Then use these two values to estimate an effec-
tive number of parameters pD = D̄ − D̂; the more spread out the posterior
distribution, the bigger the difference between the deviance of the mean

†The expression is
L̂ ≈ (2π)d/2|V|1/2Postmax

where d is the number of parameters, |V| is the determinant of the variance-covariance matrix
estimated from the Hessian at the posterior mode, and Postmax is the height of the posterior
mode.
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parameters and the mean deviance, and the larger the effective number of
parameters. Finally, as with AIC and BIC, use this effective number of
parameters as a penalty term on the goodness of fit (defined in this case
as the deviance at the mean parameters D̂): DIC=D̂ + 2pD. As with all
information criteria, lower values of DIC indicate a better model. The rules
of thumb are similar too: differences in DIC from 5–10 indicate that one
model is clearly better, while models with difference in DIC > 10 probably
don’t need to be considered further (Spiegelhalter et al., 2002).

Two important cautions about the DIC are:

� if the model contains random effects (see chapter 9), the DIC focuses
on the random effects. In the fir tree case, because of a peculiar-
ity of BUGS, we had to parameterize the negative binomial model
by assuming that each tree’s fecundity is a Poisson variable with a
different, Gamma-distributed rate. Since DIC focuses on random ef-
fects, it reports the effective number of parameters as > 200 (it takes
a lot of information to describe the variation in rates), and the ef-
fective number of parameters for the most complex model is actually
slightly smaller than for the simpler model, because there is slightly
less variation in the rates. This drop in effective model size gives the
most complex model the lowest DIC. However, the range of DICs is
very small — from 1709.2 to 1710.9 — so we should just say that the
models can’t be well distinguished.

� DIC is convenient, and so it is likely to become established as the stan-
dard “canned” method of model comparison in Bayesian statistics. It
has already begun to appear in ecological journals (Jonsen et al., 2003;
Morales et al., 2004; McCarthy and Parris, 2004; Okuyama and Bolker,
2005; Parris, 2006; Vesk, 2006), but statisticians continue to debate its
exact meaning and appropriateness (both Spiegelhalter et al. (2002)
and Celeux et al. (2006) are accompanied by lively discussions).

The bottom line on Bayesian model selection is that, despite the con-
ceptual simplicity of the Bayes factor (giving the “average” quality of fit
to the data, and automatically incorporating a penalty for overfitting), it
is relatively difficult to calculate and so is likely to be superseded by the
convenient DIC. You should exercise the same care with DIC as you would
with any canned model selection procedure.
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6.6.4 Model weighting and averaging

Bayesians themselves would say that you should not simply select one model.
Taking the best model and ignoring the rest is equivalent to assigning a
probability of 1.0 to the best and 0.0 to the rest. Model averaging methods
take the average of the predictions of different models, weighted by the
probability of the models or by some other index.

Bayesian model averaging simply takes the probabilities based on the
marginal likelihoods or the BIC: the posterior probabilities of a set of mod-
els, if they all have equal prior probabilities, are the marginal likelihoods
(or BICs) divided by the sum of the marginal likelihoods (or BICs)∗. If
a set of models have BIC values, relative to the best one, of ∆Bi (where
∆Bi = BICi − min(BIC)), then the approximate posterior probabilities of
the models, assuming all the prior probabilities are equal, are

pi =
e−∆Bi/2∑n

j=1 e−∆Bj/2
. (6.6.7)

To make a weighted prediction, use the posterior probabilities to combine
the predictions of the different models (say C1, C2, . . . Cn):

Ĉ =
n∑

i=1

piCi. (6.6.8)

Of course, you can do the same with marginal likelihoods.

Burnham and Anderson have also promoted model averaging, in their
case based on AIC weights: (Burnham and Anderson, 1998, 2002). The
AIC weights are analogous to the probabilities calculated from the relative
BIC values, but with AIC values substituted for BIC values in (6.6.7). AIC
weights have no probability interpretation, but they can be used in model
averaging †.

Even if you don’t do formal model averaging, AIC or BIC weights
are a useful way of getting a feel for the relative goodness-of-fit of different
models.

∗Equal prior probabilities for all the models usually makes sense, although one does face
some of the questions about equal priors raised in Chapter 4: for example, should all of the
models incorporating differences between groups in the fir example be treated as subsets of a
single model?

†Akaike weights are widely and incorrectly presented as “the probability that model i is the
best model for the observed data, given the candidate set of models” (Mazerolle, 2004; Johnson
and Omland, 2004). Burnham and Anderson (2004) are slightly more careful: they say that the
AIC weights “are interpreted as probabilities . . . ” (emphasis added), but it is clearly a slippery
slope. Taking AIC weights as actual probabilities is trying to have one’s cake and eat it too;
the only rigorous way to get such probabilities of models is to use Bayesian inference, with its
associated complexities (Link and Barker, 2006).
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6.6.5 Model criticism and goodness-of-fit tests

If the best model is a poor fit to the data, then none of the machinery
of model selection and averaging makes sense. You should always check
that your model gives a reasonable fit to the data. Goodness-of-fit testing
may remind you of the classical Pearson chi-square statistic, adding up
((expected−observed)2/expected) for all of your data to test whether there
is more variance than expected around the model predictions. However,
the chi-square test only works for simple count data where the answers
fall in discrete groups. If your data are continuous, or if you are using an
overdispersed distribution such as the negative binomial, then your model
contains a parameter describing the variance and the chi-square test is no
longer useful‡.

In practice, model criticism (a more generic term than goodness-of-fit
testing) is simply common sense. Are the predictions reasonable? Are there
consistent deviations from the estimates or unexplained outliers? Start with
a simple graph of the predictions of the model (Figure 6.15), to see whether
the deterministic component of the model works well.

A plot of predicted vs. actual data can sometimes be useful (Fig-
ure 6.18). You have already had to figure out how to calculate the predicted
values in order to write a likelihood function. Take these values and plot
them against the corresponding data points, then use abline(a=0,b=1) to
add a predicted=actual line to the plot. However, while the predicted-vs-
actual plot can identify outliers, it really gives a consistency check rather
than providing any new information. Ideally, the scatter around the pre-
dicted=actual line will be small — in which case the deterministic compo-
nent of the model explains most of the variation in the data, so that the
model is precise as well as accurate (and therefore useful for prediction). Re-
member, though, that a reasonable amount of unexplained variability does
not necessarily mean that the model fits badly or is not useful; it just means
it can’t make very precise predictions∗. Model criticism is more concerned
with systematic deviations that suggest that the form of the model itself is
wrong.

Examining the goodness of fit of the stochastic part of a model is

‡Much of the protocol that Burnham and Anderson (2002) have developed for working with
AIC concerns testing and correcting for overdispersion — ĉ in their notation. These overdispersion
corrections are only relevant when your model uses a simple count distribution such as binomial
or Poisson.

∗People who are familiar with classical statistical approaches would often like to compute an
R2 statistic (proportion variance explained) for a model. Unfortunately, “[d]espite various analogs
for categorical response models, no proposed measure is as widely useful as R and R2” (Agresti,
2002, p. 226).
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Figure 6.18 Predicted vs. actual cones for the fir data, on a logarithmic scale.
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Figure 6.19 Goodness-of-fit checking for the fir model. Panels break data up by wave/non-
wave (rows) and DBH (columns) and plot the density of points for each cat-
egory along with the predicted negative binomial distribution (gray) for the
mean DBH value in the category.

harder. If the model contains only discrete groups (factors), you can divide
the data into those groups and overlay the observed distribution (described
by a histogram or density plot) with the predicted distribution. If it contains
continuous covariates you will have to break the data up into discrete subsets
in order to compare the predicted and observed distributions (Figure 6.19).

6.6.6 Model selection: comparisons and conclusions

Deciding what models to use and how to use them is fundamentally diffi-
cult. In one form or another, this debate goes all the way back to the early
Bayesian/frequentist divide. While statisticians have come a long way in
exploring the possible approaches and (to some extent) in providing prac-
tical recipes for applying them, we still do not have — and never will have
— a single best method.
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� Hypothesis testing based on the likelihood ratio test is well-established,
widely used, and simple to implement. There are times when we really
do want a yes-or-no answer about whether some ecological factor is
affecting the system in a way that is distinguishable from randomness,
and the LRT is appropriate here. The LRT becomes unwieldy when
there are many possibly interacting factors — one has to choose a
path through the nested hierarchy of factors (Figure 6.17). Analogous
problems in multiple regression analysis led to stepwise model-building
approaches, which are widely used by researchers but widely dismissed
by statisticians because they encourage data-dredging, and because
the results can depend on the exact thresholds used to include or
exclude factors from the model (Whittingham et al., 2006).

If you do find yourself with seemingly inconsistent results from a LRT
analysis (e.g. if some parameters are only significant when other pa-
rameters are included in the model: Lindsey (1999b) calls these in-
compatible results), examine your data carefully to understand how
the fit changes with different sets of parameters. If two parameters
explain essentially the same patterns in the data (e.g. if you are us-
ing strongly correlated predictors like soil moisture and precipitation),
then whichever enters the model first will be selected. On the other
hand, the effects of nitrogen availability might only be visible once
the effects of soil moisture are accounted for — in this case, nitrogen
would only be significant if soil moisture were in the model already.
These kinds of interactions are challenging, but handled properly they
tell you more about what’s going on in your data.

� Information theoretic (AIC-based) approaches are also well-established
and practical. They neatly avoid the problem of pairwise testing, the
need for nested models, and the philosophical issues associated with
null hypothesis testing — rather than asking about the probability
of a more extreme outcome, they simply try to identify the model
with the best predictive ability. They can be used for model averag-
ing, taking the predictions of all reasonable models into account, as
well as for model testing. However, AIC-based approaches can also
be abused (Guthery et al., 2005). Precisely because of their popu-
larity and ease of use, they have led some ecologists down the path
of data-dredging and thoughtless model selection (against the explicit
warnings of Burnham and Anderson, AIC’s main proponents in ecol-
ogy).

AIC-based analyses make decisions based on rules of thumb about
∆AIC values or AIC weights, which are in turn based on extensive
simulation analysis. You can’t interpret your results in terms of out-
come probabilities or “statistical significance” (which may be a good
thing). In some theoretical situations (i.e. when sample sizes grow to
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infinity but the set of candidate models remains fixed), AIC is known
to “overfit” data by choosing an inappropriately complex model. Re-
searchers hotly debate the practical relevance of these criteria (Spiegel-
halter et al., 2002; Burnham and Anderson, 2004; Link and Barker,
2006).

� Bayesian (marginal likelihood, BIC, DIC) approaches are philosophi-
cally satisfying since they allow us to state results in terms of poste-
rior probabilities of different models. The selection criteria (posterior
probabilities) depend on the number of the parameters and on the
sample size, which seems sensible. However, Bayesian approaches are
also challenging to apply. Marginal likelihood is hard to calculate in a
stable way; BIC is an approximation to the marginal likelihood that
applies when sample sizes are large and the priors are vague (AIC
is similarly an approximation to a marginal likelihood with a fairly
strongly informative prior). For reasonable sample sizes, BIC will be
more conservative than AIC; whether this conservatism is appropriate
or not is still a matter of deep contention. Some researchers feel that
a method that gives the wrong answer as more and more informa-
tion is available is unacceptable; others say that we should be more
concerned with the performance of the method in the more realistic,
data-limited case ∗.
Bayesian approaches are also sensitive to the priors used: one may
not be able to get away with the common practice of setting a vague
prior and forgetting about it. DIC is promising, but continues to
be controversial among statisticians. According to Spiegelhalter et
al. (2002, p. 613), it is “a Bayesian analogue of AIC, with a similar
justification but wider applicability”. It is similar to AIC in its large-
sample behavior. DIC is likely to become increasingly popular among
ecologists using WinBUGS since it is implemented by default.

Should we use formal rules to do model selection (or model averag-
ing) at all? Many Bayesians would say that all possible model components
really exist in the world, and we ought not throw components away just
because they fall below some arbitrary threshold criterion. Gelman et al.
(1996) prefer to formulate selection problems as estimating a continuous pa-
rameter rather than selecting from discrete choices. Bayesians do recognize
the fundamental tradeoff between bias and variance, but in general they
use less formal methods (such as checking whether the marginal posterior
distribution has a peak, indicating that the model component is not just
adding noise to the model) to decide what components to include.

∗Lindsey (1999b) suggests an adjustable penalty term that depends on the sample size and
may fall somewhere between the AIC and BIC criteria, but he gives little practical advice on
deciding what penalty term to use.
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A second, more intuitive argument usually comes from biologists, who
are unhappy when their favorite bit of biology is dropped from a model
even though they know that mechanism operates in nature. If you want to
evaluate the effects of age structure (or spatial structure, or genetic struc-
ture) on population dynamics, you have to include it in the model even if
a formal model selection procedure tells you to leave it out (Hilborn and
Mangel, 1997, p. 261). What the model selection criterion is warning you,
however, is that you may be basing your conclusions on dangerously little
information.

A third argument often comes from conservationists who are concerned
that adding a biologically relevant but statistically insignificant term to the
model changes the predicted dynamics of a species, often for the worse.
This is a real problem, but it is also sometimes used dishonestly. Adding
complexity to a model often makes its dynamics less stable, and if you’re
looking to bolster an argument that a species is in trouble and needs to be
protected, you’ll favor results that show the species is in trouble. How often
do we see conservationists arguing for more realistic biological models that
suggest that a species is in no real danger and needs no protection? (On the
flip side, how often do we see developers arguing that we should sample more
thoroughly to make absolutely sure that there are no endangered species on
a tract of land before starting construction?)

There are rules of thumb and procedures for model selection, but they
don’t settle the fundamental questions of model selection. Is parsimony
really the most important thing? Is it OK to add more complexity to
the model if you’re interested in a particular biological mechanism, even
if the data don’t appear to support it? In the end you have to learn all
the rules, but also know when to bend them — and when you do bend
them, give a clear justification. The plethora of available model selection
approaches opens a new avenue for data dredging, by trying every model
selection procedure on your models and choosing the one that gives you the
answers you want.

CONCLUSION

This chapter has covered an enormous amount of material, starting from
the basic ideas of likelihood and maximum likelihood estimation, discussing
various ways of estimating confidence intervals, and tackling the contentious
issue of hypothesis testing and model selection. The two big ideas to take
away are: (1) The geometry of the likelihood surface or posterior probabil-
ity distribution — where it peaks and how the distribution falls off around
the peak — contains essentially all the information you need to estimate
parameters and confidence intervals. (2) Deciding which models best de-
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scribe a given set of data is necessary, but essentially impossible to do in a
completely consistent way.


