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Progress in statistical computation often leads to advances in statistical modeling. For example, it is surprisingly common that an existing
model is reparameterized, solely for computational purposes, but then this new con� guration motivates a new family of models that is useful
in applied statistics. One reason why this phenomenon may not have been noticed in statistics is that reparameterizations do not change the
likelihood. In a Bayesian framework, however, a transformation of parameters typically suggests a new family of prior distributions. We
discuss examples in censored and truncated data, mixture modeling, multivariate imputation, stochastic processes, and multilevel models.
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1. INTRODUCTION

Progress in statistical computation often leads to advances
in statistical modeling. We explore this idea in the context of
data and parameter augmentation—techniques in which latent
data or parameters are added to a model. Data and parameter
augmentation are methods for reparameterizing a model, not
changing its description of data, but allowing computation to
proceed more easily, quickly, or reliably. In a Bayesian context,
however, these latent data and parameters can often be given
substantive interpretations in a way that expands the model’s
practical utility.

1.1 Data Augmentation and Parameter Expansion in
Likelihood and Bayesian Inference

Data augmentation (Tanner and Wong 1987) refers to a fam-
ily of computationalmethods that typically add new latent data
that are partially identi� ed by the data. By “partially identi� ed,”
we mean that there is some information about these new vari-
ables, but as sample size increases, the amount of information
about each variable does not increase. Examples included in
this article include censored data, latent mixture indicators, and
latent continuous variables for discrete regressions. Data aug-
mentation is designed to allow simulation-based computations
to be performed more simply on the larger space of “complete
data,” by analogy to the workings of the EM algorithm for max-
imum likelihood (Dempster, Laird, and Rubin 1977).

Parameter expansion (Liu, Rubin, and Wu 1998) typically
adds new parameters that are nonidenti� ed—in Bayesian terms,
if they have improper prior distributions (as they typically do),
then they have improper posterior distributions. An important
example is replacing a parameter µ by a product, ÁÃ , so that
inference can be obtained about the product but not about either
individual parameter. Parameter expansion can be viewed as
part of a larger perspective on iterative simulation (see van Dyk
and Meng 2001; Liu 2003), but our focus here is on its con-
struction of nonidenti� able parameters as a computationalaid.

Both data augmentation and parameter expansion are excit-
ing tools for increasing the simplicity and speed of compu-
tations. In a likelihood-inference framework, that is all they
can be—computational tools. By design, these methods do not
change the likelihood; they only change its parameterization.
The same goes for simpler computational methods, such as
standardizationof predictors in regression models and rotations
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to speed Gibbs samplers (e.g., Hills and Smith 1992; Boscardin
1996; Roberts and Sahu 1997).

From a Bayesian perspective, however, new parameteriza-
tions can lead to new prior distributions and thus new models.
One way in which this often occurs is if the prior distribution
for a parameter is conditionallyconjugate (i.e., conjugate in the
conditional posterior distribution), given the data and all other
parameters in the model. In Gibbs sampler computation,condi-
tional conjugacycan allow more ef� cient computationof poste-
rior moments using “Rao–Blackwellization” (see Gelfand and
Smith 1990). This technique is also useful for performing in-
ferences on latent parameters in mixture models, conditionalon
convergence of the simulations for the hyperparameters. As we
discuss in Section 5, parameter expansion leads to new families
of conditionallyconjugate models.

Once again, there is an analogy to Bayesian inference in sim-
pler settings. For example, in classical regression, applying a
linear transformation to regression predictors has no effect on
the predictions. But in a Bayesian regression with a hierarchi-
cal prior distribution, rescaling and other linear transformations
can pull parameters closer together so that shrinkage is more
effective, as we discuss in Section 5.1.

1.2 Model Expansion for Substantive or
Computational Reasons

The usual reason for expanding a model is for substantive
reasons—to better capture an underlying model of interest, to
better � t existing data, or both. Interesting statistical issues
arise when balancing these goals, and Bayesian inference with
proper prior distributions can resolve the potential nonidenti� -
ability problems that can arise.

A Bayesian model can be expanded by adding parameters, or
a set of candidate models can be bridged using discrete model
averaging or continuous model expansion. Recent treatments
of these approaches from a Bayesian perspective have been
presented by Madigan and Raftery (1994), Hoeting, Madigan,
Raftery, and Volinsky (1999), Draper (1995), and Gelman,
Huang, van Dyk, and Boscardin (2003, secs. 6.6 and 6.7). In
the context of data � tting, Green and Richardson (1997)showed
how Bayesian model mixing can be used to perform the equiv-
alent of nonparametric density estimation and regression.

Another important form of model expansion is for sensitiv-
ity to potential nonignorability in data collection (see Rubin
1976; Little and Rubin 1987). The additional parameters in
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these models cannot be identi� ed but are varied to explore sen-
sitivity of inferences to assumptions about selection (see Diggle
and Kenward 1994; Kenward 1998; Rotnitzky, Robins, and
Scharfstein 1998; Troxel, Ma, and Heitjan 2003). Nandaram
and Choi (2002) argued that continuous model expansion with
an informative prior distribution is appropriate for modeling
potential nonignorability in nonresponse, and showed how the
variation in nonignorability can be estimated from a hierarchi-
cal data structure (see also Little and Gelman 1998).

In this article, we do not further consider these substantive
examples of model expansion, but rather discuss several classes
of models for which theoreticallyor computationallymotivated
model expansion has unexpectedly led to new insights or new
classes of models. All of these examples feature new para-
meters or model structures that could be considered a purely
mathematical constructionsbut gain new life when given direct
interpretations. Where possible, we illustrate with applications
from our own research so that we have more certainty in our
claims about the original motivation and ultimate uses of the
reparameterizations and model expansions.

2. TRUNCATED AND CENSORED DATA

It is well understood that the censored data model is like
the truncated data model, but with additional information. With
censoring, certain speci� c measurements are missing. Here we
further explore the connection between the two models.

2.1 Truncated and Censored Data Models

We work in the context of a simple example (see Gelman
et al. 2003, sec. 7.8). A random sample of N animals are
weighed on a digital scale. The scale is accurate, but it does not
give a reading for objects that weigh more than 200 pounds. Of
the N animals, n D 91 are successfully weighed; their weights
are y1; : : : ; y91. We assume that the weights of the animals in
the population are normally distributed with mean ¹ and stan-
dard deviation ¾ .

In the “truncated data” scenario, N is unknown and the pos-
terior distribution of the unknown parameters ¹ and ¾ of the
data is

p.¹; ¾ jy/

/ p.¹; ¾/

µ
1 ¡ 8

³
¹ ¡ 200

¾

´¶¡91 91Y

iD1

N.yi j¹; ¾ 2/: (1)

In the “censored data” scenario, N is known and the posterior
distribution is

p.¹; ¾ jy;N/

/ p.¹;¾ /

µ
8

³
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¾

´¶N¡91 91Y

iD1

N.yi j¹; ¾ 2/: (2)

By using p.¹; ¾/ rather than p.¹; ¾ jN/, we are assuming that
N provides no direct information about ¹ and ¾ .

2.2 Modeling Truncated Data as Censored but With an
Unknown Number of Censored Data Points

Now suppose that N is unknown. We can consider two op-
tions for modeling the data:

1. Using the truncated-data model (1)
2. Using the censored-data model (2), treating the original

sample size N as missing data.

The second option requires a probabilitydistribution for N . The
complete posteriordistributionof the observed data y and miss-
ing data N is then

p.¹; ¾;N jy/ D p.N/p.¹; ¾/
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We can obtain the marginal posterior density of .¹; ¾/ by sum-
ming over N ,
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It turns out that if p.N/ / 1=N , then the expression inside the
summation in (3) has the form of a negative binomial den-
sity with µ D N ¡ 1, ® D 91, and 1

¯C1 D 8..¹ ¡ 200/=¾//.
The expression inside the summation is proportional to .1 ¡
8. ¹¡200

¾
//¡91, so that for this particular choice of noninfor-

mative prior distribution, the entire expression (3) becomes
proportional to the simple truncated-data posterior density (1).
Meng and Zaslavsky (2002) discussed other properties of
the 1=N prior distribution and the negative binomial model.

It seems completely sensible that if we add a parameter N

to the model and average it out, then we should return to the
originalmodel (1). What is odd,however, is that this works only
with one particular prior distribution,p.N/ / 1=N . This seems
almost to cast doubt on the original truncated-data model, in
that it has this hidden assumption about N .

The truncated-data expression of the censored data model
adds generality but introduces a sensitivity to the prior distri-
bution of the new parameter N .

2.3 Connection to the Themes of This Article

Model (1) is the basic posterior distribution for truncated
data. Going to the censored-data formulation is a model ex-
pansion; N is an additional piece of information that is not
needed in the model but allows it to be analyzed using a differ-
ent method (in this case the censored-data model). In examples
more complicated than the normal, this model expansion may
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be computationally useful, because it removes the integral in
the denominator of the truncated-data likelihood.

However, once we consider the model expansion, it reveals
the original truncated-data likelihoodas just one possibility in a
class of models. Depending on the information available in any
particular problem, it could make sense to use different prior
distributions for N and thus different truncated-data models. It
is hard to return to the original “state of innocence” in which
N did not need to be modeled.

A similar modeling issue arises in contingency table mod-
els (see, e.g., Fienberg 1977), where the multinomial model,
y1; : : : ; yJ » multinomial.nI ¼1; : : : ; ¼j / for counts can be
derived from the Poisson model, y1; : : : ; yJ » Poisson.¸1;

: : : ; ¸j /, conditioning on n D
P

j yj from the Poisson.
P

j ¸j /

distribution and with ¼j D ¸j =
P

¸ for each j . However, other
models with the same conditional distributions are possible,
corresponding to different marginal models for the total n.

3. LATENT VARIABLES

By de� nition, latent variables are constructions that add un-
knowns to the model without changing the marginal likelihood.
Here we consider two common ways in which latent variables
are constructed: (1) discrete labeling of components in a � nite
mixture model and (2) hypothesizing continuous unobserved
data underlying discrete-data models, such as logistic regres-
sion. We illustrate with examples from our research in voting
and public opinion.

3.1 Latent Discrete Variables in Mixture Models

Figure 1 shows a histogram of the Democratic party’s share
of the vote in about 400 elections to the U.S. House of Repre-
sentatives in 1988. In an earlier work (Gelman and King 1990),
we modeled similar data from many other elections to study the
properties of the electoral system under various assumptions
about electoral swings. Traditionally this problem had been
studied by � tting a normal distribution to district vote propor-
tions and then shifting this distributionto the left or right to sim-
ulate alternative hypothetical election outcomes (see Kendall
and Stuart 1950; Gudgin and Taylor 1979). There had been dis-
cussion in the political science literature of more general mod-
els (e.g., King and Browning 1987), and data such as that shown
in Figure 1 persuaded us that mixture distributionsmight be ap-
propriate. We set up a model for these sorts of election data

Figure 1. Histogram of Democratic Share of the Two-Party Vote in
Congressional Elections in 1988. Only districts that were contested by
both major parties are shown here.

using a mixture of three normal distributions, with two large
componentscorrespondingto the two modes and one lower and
broader component to pick up outlying districts that would not
be well captured by the two main components.

For electoral data ui (de� ned as the logit of the Democratic
share of the two-party vote in district i , excluding uncontested
districts), we � t an error model, ui » N.®i ; ¾ 2/, where ®i rep-
resented the “usual vote” in the district i (on the logit scale) that
would persist in future electionsor under counterfactual scenar-
ios. (The variance ¾ 2 was estimated from variation in district
votes between successive elections.) We continued by model-
ing the usual votes with a mixture distribution,

p.®i/ D
3X

jD1

¸j N.®i j¹j ; ¿ 2
j /:

It is unstable to estimate mixture parameters by maximum like-
lihood (see, e.g., Titterington,Smith, and Makov 1985;Gelman
2003), a problem compounded by the fact that the data ®i are
observed only indirectly, and so we regularized the estimates
of the hyperparameters ¸; ¹, and ¾ by assigning informative
prior distributions. The prior mode corresponded to a hump at
about 40% Democratic vote with standard deviation 10%, an-
other hump symmetrically located at about 60% Democratic
vote, and a third hump, centered at 50% and much wider, to
catch the outliers that are not close to either major mode. The
prior distributions were given enough uncertainty that the vari-
ances for the major humps could differ, and the combined dis-
tribution could be either unimodal or bimodal, depending on
the data. The model was completed with a Dirichlet.19; 19;4/

distribution on ¸1; ¸2, and ¸3, which allowed the major modes
to differ a bit in mass but constrained the third mode to its des-
ignated minor role of picking up outliers.

We � t the model using data augmentation, following Tanner
and Wong (1987). The data augmentation scheme alternately
updated the model parameters and the latent mixture indicators
for each district. The mixture model � t well and did a good job
estimating the distribution of the “usual vote” parameters, ®i ,
which in turn was useful in answering questions of political
interest, such as what proportion of districts we would expect
to switch parties if the national vote were to shift by x%.

The next step was to take the mixture indicators seriously.
What does it mean that some elections are in the “Republican
hump,” some are in the “Democratic hump,” and others are in
the group of “extras”? We realized that there was a key piece of
information not included in our model that took on three pos-
sible values: incumbency. An election could have a Republican
incumbent (i.e., the existing Congress member could be a Re-
publican, running for reelection), a Democratic incumbent, or
an open seat (no incumbent running).

Conditional on incumbency, the election data were � t rea-
sonably well by unimodal distributions, as shown by Figure 2.
The individual distributions are not quite normal, which is per-
haps an interesting feature, but it is certainly an improvement
to go from a three-component mixture model to a regression-
type model conditionalon a predictor that takes on three values.
The model with incumbency gives more accurate predictions
and makes more political sense (see Gelman and King 1994). It
came about because we were trying to make sense of a mixture
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Figure 2. Histogram of Democratic Share of the Two-Party Vote in Congressional Elections in 1988, in Districts With (a) Republican Incumbents,
(b) Democratic Incumbents, and (c) Open Seats. Combined, the three distributions yield the bimodal distribution in Figure 1.

model—not to estimate the latent categories, but merely to bet-
ter � t the distributionof data (as was done using more advanced
computational techniques by Green and Richardson 1997).

3.2 Latent Continuous Variables in Logistic Regression

We now consider the opposite sort of model: discrete data
usefully expressed in terms of a latent continuous variable. It
is well known in statistical computation that logistic or pro-
bit regression can be de� ned as linear regressions with latent
continuous variables (see Finney 1947; Ashford and Sowden
1970). More recently, this parameterizationhas been applied to
the Gibbs sampler for binary regression with probit and Stu-
dent t links (see Albert and Chib 1993; Liu 2004). We give an
example to illustrate how the latent variables, which might have
been viewed as a computationalconvenience,can take on a life
of their own.

In earlier work (Gelman and King 1993) we described a
study of opinion trends in a series of political polls during
the 1988 Presidential election campaign. In our analysis we
focused on the discrete binary outcome of whether a survey
respondent favored George Bush or Michael Dukakis for Pres-
ident, at one point � tting a series of logistic regressions. (The
article also brie� y considered the “no opinion” responses.)

Although the latent variable formulation was not needed in
our modeling, it provides some useful insights. For example,

Figure 3 shows some opinion trends among different subgroups
of the population of potential voters at three key periods: the
Democratic convention, the Republican convention, and the � -
nal 40 days of the campaign. The most notable patterns occur
during the two conventions;at each time there is a strong swing
toward the nominee of the party throwing the convention. The
swings occur among almost all subgroups but most strongly
among groups of Independents.Similar patterns were found by
Hillygus and Jackman (2003) in a study of the 2000 election.

The pattern of Independents showing the greatest swing was
� rst a surprise to us from a political perspective. We had ex-
pected that the strongest swings during each convention would
be within the party holding the convention—thusgreater move-
ments among Democrats in the Democratic conventionand Re-
publicans during their convention.

However, from a latent-variable perspective, the patterns
make sense. Think of each voter as havinga continuousvariable
that is positive for a Bush supported and negative for a Dukakis
supporter, and suppose that campaign events have additive ef-
fects on the latent variable. Then Independents will tend to be
near 0 on the continuous preference scale (we in fact learn this
from the logistic regressions—party identi� cation is a strong
predictor of vote preference) and thus will be more likely to
be shifted in their preference by an event such as a convention

Figure 3. Changes in Public Opinion During Three Periods in the 1988 Presidential Election Campaign: (a) The Democratic Convention, (b) the
Republican Convention, and (c) the Final 40 Days of the Campaign. In each graph each symbol represents a different subset of the adult population.
The circles represent different subsets of Democrats (e.g., white Democrats, college-educated Democrats, Democrats between 30 and 44), the
triangles represent different subsets of Independents, and the squares represent Republicans.Party labels are self-de�ned from survey responses.
In each graph the change in support for Bush during the period is plotted versus the � nal support for Bush at the time of the election. The different
groups tend to move together, but the largest changes tend to be among the Independents.

Maria Uriarte
Highlight



Gelman: Parameterization and Bayesian Modeling 541

that is small but in a uniform direction. In contrast, the shifts of
the last 40 days were not consistently in favor of a single party,
and so groups of Independentswere not so likely to show large
swings.

A natural model for the preference yi of an individualvoter i

at time t is then

yit D
»

Bush supporter if zit > 0
Dukakis supporter if zit · 0,

zit D .X¯/i C ±t C ²it ;

where the individual predictors X contain such information as
party identi� cation. The national swings controlled by the con-
tinuous time series ±t will then have the largest effects on indi-
viduals i for whom .X¯/i is near 0. The model can be further
elaboratedwith individualrandom effects and time-varyingpre-
dictors.

We are not claiming here that latent variables are neces-
sary for quantitativeor political understandingof these opinion
trends. Rather, we are pointing out that once the latent vari-
ables have been set up, they take on direct political interpreta-
tions far beyond what might have been expected had they been
treated only as computational devices. In this case the connec-
tion could be made more completely by including survey re-
sponses on “feeling thermometers”—that is, questions such as,
“Rate George Bush on a 1–10 scale, with 1 being most negative
and 10 being most positive.”

4. MULTIVARIATE MISSING–DATA IMPUTATION

4.1 Iterative Univariate Imputations

Van Buuren,Boshuizen,and Knook (1999)and Raghunathan,
Lepkowski, Solenberger, and Van Hoewyk (2001) have formal-
ized iterative algorithms for imputing multivariate missing data
using the following method. The algorithm starts by imputing
simple guessed values for all of the missing data. Then each
variable, one at a time, is modeled by a regression conditional
on all of the other variables in the model. The regression is � t
and used to impute random values from the predictive distribu-
tion for all of the missing data for that particular variable. The
algorithm then cycles through the variables and updates them
iteratively in Gibbs sampler fashion until approximate conver-
gence.

This “ordered pseudo-Gibbs sampler” (Heckerman,
Chickering, Meek, Rounthwaite, and Kadie 2001) is a Markov
chain algorithm,and if the valuesof the parameters are recorded
at the end of each loop of iterations, then they will converge to
a distribution. This distribution may be inconsistent with vari-
ous of the conditional distributions used in its implementation,
but in general there will be convergence to something (assum-
ing that the usual conditionshold for convergenceof a Markov
chain to a unique nondegenerate stationary distribution).

For the special case in which each regression model includes
all of the other variables with no interactions and is linear with
normal errors, then this is a Gibbs sampler, in which the missing
data are imputed based on an underlying multivariate normal
model that is encoded as a set of interlocking linear regressions.

In fact, the iterative imputation approach is more general,
� rst because it allows nonnormal models (e.g., logistic re-
gression for binary outcomes and truncated distributions for

bounded variables) and also because it allows different sets
of predictors for different regression models. These two fea-
tures allow imputation models to be more realistic for a wider
class of data problems, and they have been implemented in S
(Van Buuren and Oudshoom 2000) and SAS (Raghunathan,
Solenberger, and Van Hoewyk 2002) and used in applications.
In comparison, it would be much more dif� cult to set up, and
compute inferences from, a fully multivariate probabilitymodel
for � tting discrete, continuous, and bounded variables.

4.2 Inconsistent Conditional Distributions

But there is a potential problem with this computationally
convenient imputation algorithm: It is so � exible in its speci� -
cations that its interlocking conditional distributions will not in
general be compatible.That is, there is no implicit joint distrib-
ution underlying the imputation models.

This � exibility leading to incompatibility (Arnold, Castillo,
and Sarabia 1999) is a theoretical � aw, but in earlier work
(Gelman and Raghunathan 2001) we argued that in prac-
tice, it can be useful in modeling data structures that could
not be easily � t by more standard models. Separate regres-
sions often make more sense than joint models that assume
normality and hope for the best (Gelman, King, and Liu
1998), mix normality with completely unstructured discrete
distributions (Schafer 1997), mix normality (with random
effects) and log-linear structures for discrete distributions
(Raghunathan and Grizzle 1995), or generalize with the t dis-
tribution (Liu 1995). One may argue that having a joint distri-
bution in the imputation is less important than incorporating
information from other variables and unique features of the
dataset (e.g., zero/nonzero features in income components,
bounds, skip patterns, nonlinearity, interactions). Conditional
modeling allows enormous � exibility in dealing with practical
problems. In applied work, we have never been able to � t the
joint models to a real dataset without making drastic simpli� -
cations.

Thus we are suggesting the use of a new class of models—
inconsistent conditionaldistributions—that were initially moti-
vated by computational and analytical convenience. However,
as in the other examples of this article, once we accept these
new models, they take on their own substantive interpretations.

4.3 Example From Survey Imputation

We consider an example in which we found that structural
features of the conditional models can affect the distributions
of the imputations in ways that are not always obvious. In the
New York City Social Indicators Survey (Gar� nkel and Meyers
1999), it was necessary to impute missing responses for family
income conditional on demographics and information, such as
whether or not anyone in the family received government wel-
fare bene� ts. Conversely, if the “welfare bene� ts” indicator is
missing, then family income is clearly a useful predictor. (We
ignore here the complicating factor that the survey asked about
several different sources of income, and these questionshad dif-
ferent patterns of nonresponse.)

To simplify, suppose that we are imputing a continuous in-
come variable y1 and a binary indicator y2 for welfare bene� ts,
conditionalon a set X of fully-observedcovariates.We can con-
sider two natural approaches. Perhaps the simplest is a direct
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model where, for example, p.y1jy2;X/ is a normal distribution
(perhaps a regression model on y2, X, and the interactions of
y2 and X) and p.y2jy1;X/ is a logistic regression on y1, X,
and the interactions of y1 and X. (For simplicity, we ignore the
issues of nonnegativityand possible zero values of y1.)

A more elaborate and perhaps more appealing model uses
hidden variables. Let z2 be a latent continuousvariable, de� ned
so that

y2 D
»

1 if z2 ¸ 0
0 if z2 < 0.

(4)

We can then model p.y1; z2jX/ as a joint normal distribu-
tion (i.e., a multivariate regression). Compared with the direct
model, this latent-variable approach has the advantageof a con-
sistent joint distribution. And once inference for .y1; z2/ has
been obtained,we can directly infer about y2 using (4). In addi-
tion, this model has the conceptual appeal that z2 can be inter-
preted as some sort of continuous “proclivity” for welfare that
is activated only if it exceeds a certain threshold. In fact, the
relationship between z2 and y2 can be made stochastic if such
a model would appear more realistic.

So the latent-variable model is better (except for possible
computational dif� culties), right? Not necessarily. A perhaps-
disagreeable byproduct of the latent model is that, because
of the joint normality, the distributions of income among
the welfare and nonwelfare groups—that is, the distributions
p.y1jy2 D 1;X/ and p.y1jy2 D 0; X/—must substantially
overlap. In contrast, the direct model allows the overlap to be
large or small, depending on the data. Thus the class of incon-
sistent models, introduced for computational reasons, is more
general than previously considered models in ways that are rel-
evant for modeling multivariate data.

4.4 Potential Consequences of Incompatibility

In the multivariate missing-data problem, we are going be-
yond Bayesian analysis to computation from an inconsistent
model—but to the extent that inferences are being summarized
by simulations, these can be considered approximate Bayes.
The non-Bayesianity should show up as incoherence of infer-
ences, which suggests that estimates of the extent of the prob-
lem and approaches to correcting it could be obtained by data
partitioning—that is, combining analyses from different sub-
sets of the data—another statistical method that has been mo-
tivated by computational reasons (see Chopin 2002; Ridgeway
and Madigan 2003; Gelman and Huang 2003).

5. MULTILEVEL REGRESSION MODELS

5.1 Rescaling Regression Predictors

When linear transformations are applied to predictors in a
classical regression or generalized linear model, it is for rea-
sons of computational ef� ciency or interpretive convenience.
Two familiar examples are the expression of indicators in an
ANOVA setting in terms of orthogonal contrasts and standard-
ization of continuouspredictors to have mean 0 and variance 1.
These and other linear transformations can make regression co-
ef� cients easier to understand, but they have no effect on the
predictiveinferences from the model. From an inferential stand-
point, linear transformations do nothing in classical regression,
which is one reason why statistical theory has focused on non-

linear transformations (see Atkinson 1985; Carroll and Ruppert
1988). In classical inference, reparameterizations such as cen-
tering affect the likelihood for the model parameters but do not
affect predictive inference.

In contrast, even simple linear transformations can substan-
tively change inferences in hierarchical Bayesian regressions.
For a simple example, consider a regression predicting stu-
dents’ grades from a set of pretests, in which the coef� cients ¯j

for the pretests j are given a common N.¹; ¿ 2/ prior distrib-
ution, where ¹ and ¿ are hyperparameters estimated from the
data. Further suppose that the pretests were originallyon several
different scales and that each pretest has been rescaled to the
range 0–100. If the tests measure similar abilities, then it would
make sense for the coef� cients for the rescaled test scores to be
similar. The Bayesian model will then perform more shrinkage
on the new scale and lead to more accurate predictions com-
pared with the untransformed model. This is an example of a
reparameterization that has no effect on the likelihood but is
potentially important in Bayesian inference.

5.2 Parameter Expansion

A more elaborate example of linear reparameterization for
hierarchical regression is the parameter-expanded EM algo-
rithm proposed by Liu et al. (1998) that has since been adapted
to Gibbs sampler and Metropolis algorithms (Liu and Wu 1999;
van Dyk and Meng 2001; Liu 2003; Gelman et al. 2003). We
brie� y review the PX-Gibbs model here and then describe how
it has motivated model expansions.

5.2.1 Hierarchical Model With Potentially Slow Conver-
gence. The starting point is the hierarchical model expressed
as a regression with coef� cients in M exchangeablebatches,

y D
MX

mD1

X.m/¯.m/ C error;

where X.m/ is the mth submatrix of predictors and ¯ .m/ is the
mth subvector of regression coef� cients. The Jm coef� cients in
each subvector ¯ .m/ have exchangeableprior distributions,

¯
.m/
j » N.0; ¾ 2

m/; for j D 1; : : : ; Jm:

More generally, the distributionscould have nonzero means; we
use the simpler form here for ease in exploring the key issues.
Even so, this model is quite general and includes models with
several batches of random effects—for example, a model for
replicated two-way data can have row effects, column effects,
and two-way interactions. In a mixed-effects model, the coef-
� cients for the � xed effects can be collected into a batch with
standard deviation¾m set to in� nity. For the random effects, the
¾m parameters will be estimated from data.

For this class of hierarchical models, Gibbs sampler calcula-
tions can get stuck, as follows. If a particular standard deviation
parameter ¾m happens to be started near 0, then in the updating
stage, the batch of coef� cients in ¯ .m/ will be shrunk toward 0.
Then at the next update, ¾m will be estimated near 0, and so on.
Eventually, the simulation will spiral out of this trap, but under
some conditions this can take a long time (Gelman et al. 2003).
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5.2.2 Parameter Expansion to Speed Computation. The
slow convergence can be � xed using the following parameter
expansionscheme, adapted from a similar algorithmfor the EM
algorithm given by Liu et al. (1998). In the parameter-expanded
model, each componentm of the regression model is multiplied
by a new parameter, ®m ,

y D
MX

mD1

®mX.m/¯.m/ C error; (5)

and then the parameters ®m are given uniform prior distribu-
tions on .¡1; 1/. This new model is equivalent to the origi-
nal model but with a new parameterization: j®mj¾m in the new
model maps to ¾m in the original formulation, and each new
®m¯

.m/
j maps to the old ¯

.m/
j . The parameters ®m and ¾m are

not jointly identi� ed, but we can simply run the Gibbs sampler
on the expanded set of parameters .®; ¯; ¾/ and transform back
to the original scale to get inferences under the original model.

In the Gibbs sampler for the new model, the components
of ¯ and ¾ 2 are updated as before—normal and inverse chi-
squared distributions—and the new parameter vector ® is
updated using a normal distribution. This extra step stops the
algorithm from getting stuck near 0 (Gelman, Huang, van Dyk,
and Boscardin 2004; Liu and Wu 1999).

5.2.3 New Model Families Implied by Parameter Expansion.
By giving the new parameters ®m uniform prior distributions,
we can perform more ef� cient computationsfor the hierarchical
model. The parameter ® has no meaning and is used just as a
multiplier to create the parameters ¯ and ¾ from the original
model.

But now suppose that we take the parameters ®m seriously,
giving them informative prior distributions. What does that
get us?

First, the variance parameter ¾ 2
m in the old model has been

split into ®2
m¾ 2

m in the new model, which expands the family of
conditionally conjugate distributions from inverse chi-squared
to products of inverse chi-squared with squared normal distrib-
utions.

Second, and potentiallymore important, we can interpret the
parameters ®m themselves in the context of the multiplicative
model (5). For each m, X.m/¯ .m/ represents a “factor” formed
by a linear combination of the Jm individual predictors, and
®m represents the importance of that factor.

For the factor-analytic interpretation of the model to be use-
ful, we need informative prior distributions on the parameters
® or ¯ . Otherwise, the model is nonidenti� ed, and we cannot
distinguish between the importance®m of a factor and the coef-
� cients ¯

.m/
j of its individual components. This indeterminacy

can be resolved by, for example, constraining
P

j ¯
.m/
j D 1 for

each m, thus giving each factor the form of a weighted average,
or by setting a “soft constraint” in the form of a proper prior
distribution on the multiplicativeparameters ®m .

We illustrate with the problem of forecasting presidential
elections by state. A forecasting model based on 12 recent
national elections would have 600 “data points”—state-level
elections—and could then potentially include many state-level
predictors measuring such factors as economic performance,
incumbency, and popularity (see, e.g., Rosenstone 1983;

Campbell 1992). However, at the national level there are re-
ally only 12 observations, and so one must be parsimonious
with national-level predictors. In practice, this means perform-
ing some previous data analysis to pick a single economic pre-
dictor, a single popularitypredictor, and maybe one or two other
predictorsbased on incumbencyand political ideology(Gelman
and King 1993; Campbell, Ali, and Jalalzai 2003).

A more general approach to including national predictors
would use the parameter-expanded model. For example, sup-
pose that we wish to include � ve measures of the national
economy (e.g., change in per-capita GDP, change in unem-
ployment). We could � rst standardize them (see Sec. 5.1) and
then include them in the model exchangeably in a batch m, as
¯

.m/
1 ; : : : ; ¯

.m/
5 , each with a N. 1

5 ; ¾ 2
m/ prior distribution. This

prior distribution bridges the gap between the two extremes of
simply using the average of the � ve measures as a predictor
(that would be ¾m D 0), and including them as � ve independent
predictors (¾m D 1). The multiplicative form of model (5) al-
lows us to set up the full model using conditionally-conjugate
distributions. For example, we could predict the election out-
come in year t in state s within region r.s/ as

yst D X
.0/
st ¯ .0/ C ®1

5X

jD1

X
.1/
j t ¯

.1/
j C ®2°t C ®3±r.s/;t C ²st ;

where X.0/ is the matrix of state £ year-level predictors, X.1/ is
the matrix of year-level predictors, and ° , ±, and ² are national,
regional, and statewide error terms. In this model the auxiliary
parameters ®2 and ®3 exist for purely computational reasons,
and they can be given noninformative prior distributions with
the understanding that we are interested only in the products
®2°t and ®3±r;t . More interestingly, ®1 serves both a compu-
tational and modeling rule—with the ¯

.1/
j parameters having a

common N. 1
5 ; ¾ 2

m/ prior distribution, ®1 has the interpretation
as the overall coef� cient for the economic predictors. The pa-
rameters ® and ¯ are conditionally conjugate and form a more
general model than would be possible using marginally conju-
gate families with the usual linear model parameterization.

Both the parameter-expanded computations and the factor-
analytic model work with generalized linear models as well.
They connect somewhat to the recent approach of West (2003)
to using linear combinations to include more predictors in a
model than data points. The approach of West (2003) is more
completely data based, whereas the class of models that we
have developed here is structured using prior information (e.g.,
knowing which predictors correspond to economic conditions,
which correspond to presidential popularity, and so forth).

6. ITERATIVE ALGORITHMS AND TIME PROCESSES

Spatial models have motivateddevelopmentsin iterative sim-
ulation algorithms from Metropolis, Rosenbluth, Rosenbluth,
Teller, and Teller (1953) to Geman and Geman (1984) and
beyond. It has been pointed out that iterative simulation has
the role of transforming an intractable spatial process into
a tractable space–time process. Such developments as hybrid
sampling (Duane, Kennedy, Pendleton, and Roweth 1987; Neal
1994) take this idea even further by connecting the space–time
process to a physical model of particles with “momentum” as
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well as “position” in simulation space. In a simulation with
multiple sequences, algorithms have been developed in which
the “particles” from the different sequences can interact.

Perhaps insight can be gained by taking this time-series
process seriously. How would this be done? We � rst must dis-
tinguish between two phases of the iterative simulation. First,
there is the initial mixing of the sequences, moving from their
starting points to the target distribution.Second, the simulations
move around within the target distribution.

The � rst stage could be identi� ed with “learning,” or infor-
mation propagating from the model statement to the inferences.
This could be relevant in a setting in which new information is
coming in or in which a process is being tracked that is itself
changing (Gilks and Berzuini 2001). In that case the current
stage of the simulation could represent some current state of
knowledge. Another scenario could be a � xed truth, but with
actors who are learning about it by gathering information. This
might be of interest to economists. For example, if solving a
particular regression problem requires 10;000 Gibbs sampler
iterations, then perhaps it is a problem that in real time cannot
be solved immediately by economic actors. In this sort of appli-
cation, the Gibbs sampling (or other iterative algorithm) should
map, at least approximately, to a real-time learning process.

The second stage of an iterative algorithm—a walk through
the target distribution—could have a direct interpretation if un-
certainty about parameters in a model could be mapped onto
variabilityover time. For example, when in studying exposures
to radon gas, we found a high level of uncertainty in home radon
levels, even given some geographic information (Lin, Gelman,
Price, and Krantz 1999). It is also known that radon levels vary
over time (both on weekly and annual scales). Perhaps it could
be possible to set up an iterative sampling algorithm so that the
jumps in updating home radon levels correspond to temporal
variation.

7. CONCLUSION

It is increasingly common in statistical modeling to add la-
tent variables and parameters that do not change the likelihood
function, but rather improve computational tractability. Some-
times these additional variables are partially estimable (as with
censored data, latent mixture components, and latent continu-
ous variables for discrete regression); in other settings they are
completely nonidenti� ed (as in parameter expansion for hier-
archical linear models). In either case, we have found insights
from treating these computational parameters as “real.” Taking
these parameters seriously can lead to deeper understanding of
the original model (as with truncated data) or data (as with the
public opinion study) or suggest ways in which the model can
be improved by adding information (as with the Congressional
elections example). In other settings, improved algorithms can
actually lead to new statistical models that can � t data more ac-
curately, as with multivariate missing-data imputationand mul-
tilevel regression.

At a theoretical level, reparameterization has a special new
role in Bayesian analysis because it tends to lead to new classes
of prior distributions (especially true if the distributions are
originally motivated by computational concerns) and thus new
models, even if the likelihood is unchanged.At a practical level,
when using Bugs (Spiegelhalter,Thomas,Best, Gilks, and Lunn

1994, 2003), which requires speci� cations for all parameters in
a model, it is natural to give substantive models and interpre-
tations to the additional random variables that arise with data
augmentation and parameter expansion.

[Received September 2002. Revised November 2003.]
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