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AVERAGE PREDICTIVE
COMPARISONS FOR MODELS
WITH NONLINEARITY,
INTERACTIONS, AND VARIANCE
COMPONENTS
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In a predictive model, what is the expected difference in the out-
come associated with a unit difference in one of the inputs? In a
linear regression model without interactions, this average predic-
tive comparison is simply a regression coefficient (with associated
uncertainty). In a model with nonlinearity or interactions, how-
ever, the average predictive comparison in general depends on the
values of the predictors. We consider various definitions based on
averages over a population distribution of the predictors, and we
compute standard errors based on uncertainty in model parame-
ters. We illustrate with a study of criminal justice data for urban
counties in the United States. The outcome of interest measures
whether a convicted felon received a prison sentence rather than a
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jail or non-custodial sentence, with predictors available at both in-
dividual and county levels. We fit three models: (1) a hierarchical
logistic regression with varying coefficients for the within-county
intercepts as well as for each individual predictor; (2) a hierarchi-
cal model with varying intercepts only; and (3) a nonhierarchical
model that ignores the multilevel nature of the data. The regression
coefficients have different interpretations for the different models;
in contrast, the models can be compared directly using predic-
tive comparisons. Furthermore, predictive comparisons clarify the
interplay between the individual and county predictors for the hi-
erarchical models and also illustrate the relative size of varying
county effects.

1. NOTATION AND BASIC DEFINITION
OF PREDICTIVE COMPARISONS

We develop here a systematic approach for defining and estimating av-
erage predictive comparisons that should be appropriate in a wide range
of applications.

In any model, such as p(y | x, θ ), for a continuous outcome y, we
consider the scalar inputs one at a time, using the following notation:

u : the input of interest

v : all the other inputs

Thus, x = (u, v). We focus on the expected change in y corresponding to a
specified change in the input of interest, u (from the value u(1) to the value
u(2), using superscripts here to avoid confusion with the subscripting in
the data (x, y)i , i = 1, . . . , n), with v (the other components of x) held
constant:

Predictive comparison:

δu(u(1) →u(2), v, θ ) = E(y |u(2), v, θ ) − E(y |u(1), v, θ )
u(2) − u(1)

. (1)

We assume that E(y |x, θ ) is a known function (e.g., the inverse logit)
that can be computed directly. As we shall discuss in Section 2, the
predictive comparison is not the same as the first-order partial derivative
of the mean function with respect to u since there is no limit taken as
u(2) − u(1) → 0.
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The comparison (1) corresponds to an expected causal effect un-
der a counterfactual assumption (Neyman 1923; Rubin 1974, 1990),
if it makes sense to consider the inputs u causally. We use the term
predictive comparison to emphasize that we are summarizing the struc-
ture of the predictive model and not necessarily estimating causal
effects.

For the logistic regression model when u(2) − u(1) = 1, the predic-
tive comparison (1) is a “predicted change in probability” (see Hanushek
and Jackson 1977; Roncek 1991; Kaufman 1996; Stolzenberg 2004). For
a linear model with no interactions, δu does not depend on u(1), u(2), or
v, and it is simply the regression coefficient associated with u. More
generally, however, δu varies as a function of these inputs, and it can be
useful to summarize the predicted difference with some sort of weighted
average. In practice, we must also average over θ (or plug in a point es-
timate).

The approach recommended here, of averaging E(y |x, θ ) over a
distribution for x, has been used in a number of applications and has
been discussed in the statistical literature as well as in applied fields
such as economics, medicine, psychology, and sociology; for example,
Lee (1981) considers predictive comparisons for binary inputs to logistic
regression models in epidemiology, and Graubard and Korn (1999) esti-
mate population-average model predictions in a sample survey context.
Lane and Nelder (1982) calculate average predicted values for gener-
alized linear models (McCullagh and Nelder 1989) in the context of
“standardization,” which in our notation refers to different possible
choices of the population distribution of v.

We go beyond this existing work by attempting to set up a gen-
eral framework for predictive comparisons, including for models with
interactions and variance components, and accounting for uncertainty
in parameter estimates.

In Section 2 we discuss the strengths and weaknesses of some ex-
isting and alternative methods to define and estimate average predictive
comparisons. Section 3 defines our approach in general, considering av-
erages of δu in (1) for numerical input variables, unordered categorical
inputs, variance components (random or mixed effects), interactions,
and other models. Section 4 discusses how to estimate average predic-
tive comparisons from data, and Section 5 covers standard errors for the
proposed estimates. Section 6 illustrates with an application to a study of
criminal justice data for urban counties in the United States, for which
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several models were fit. We find average predictive comparisons to be a
helpful adjunct to regression coefficients, both for understanding and
for comparing models. We conclude with a brief discussion in Section
7.

2. EXISTING METHODS FOR SUMMARIZING
PREDICTIVE COMPARISONS

2.1. Direct Examination of Regression Coefficients

The most common summary of predictive comparisons is simply the set
of estimated coefficients. These can be useful when directly interpretable;
for example, the coefficients of a linear regression model without inter-
actions are simply additive effects. In other cases the coefficients are
harder to understand. For example, logistic regression coefficients do
not have direct probability interpretations.

A completely different problem with regression coefficients is
that, when interactions are present, the individual coefficients cannot
be interpreted as predictive comparisons for individual inputs, holding
all other inputs constant. With interactions, a single input variable can
enter into several columns of the design matrix. This sort of problem
motivates a new approach, defining a predictive comparison for each
input rather than for each linear predictor. For example, consider a lo-
gistic regression of some individual outcome on age, sex, an age × sex
interaction, and age2. There are two inputs (age and sex) but five linear
predictors (including the constant term).

Finally, when considering different models, sometimes using dif-
ferent transformations, it can be hard to directly compare coefficients
between models so as to understand the true range of uncertainty indi-
cated by the different possible model fits (e.g., see Carroll and Ruppert
1981; Hinkley and Runger 1984; Siqueira and Taylor 1999). Coeffi-
cients can drastically change their meaning when a model is changed,
whether by altering the functional form or by adding or removing pre-
dictors. Carlin et al. (2001) illustrate with a comparison of a semipara-
metric marginal model and two hierarchical logistic regression models
fit to binary data: their “estimated marginal differences” (predictive
comparisons defined at a point value; see below) are similar for the
three models, while the estimated regression coefficients vary greatly,
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reflecting changes in parameterization more than real differences in the
implications of the models.

Coefficient estimates are an important way to understand re-
gression models, and we do not advocate abandoning them. Rather,
we propose augmenting them with displays of a new measure—average
predictive comparisons—which we define in Section 3.

2.2. Defining Predictive Comparisons at a Central Value

A rough approach that is sometimes used is to evaluate the regression
mean function, E(y |x), at a central value x0—perhaps the mean or the
median of the data—and then to estimate predictive comparisons by
perturbing x0 by altering the inputs one at a time. For binary inputs, this
means evaluating the function at 0 and 1—for example, Roncek (1991)
illustrates this method with a logistic regression of opinion differences
among ethnic groups. In general, we must define some rule for choosing
two values for each input—for example, the mean plus or minus one
standard deviation.

Evaluating changes about a central value can work well in
practice—for example, Gelman and King (1993), Gelman, King, and
Liu (1998), and King, Tomz, and Wittenberg (2000) use this approach to
summarize and compare logistic regression models with interactions—
but problems can arise when the space of inputs is very spread out (in
which case no single central value can be representative) or if many of
the inputs are binary or bimodal, in which case the concept of a “cen-
tral value” is less meaningful, as noted by Chang, Gelman, and Pagano
(1987). In addition, this approach is hard to automate since it requires
choices about how to set up the range for each input variable. In fact,
our work in this area was motivated by practical difficulties that can
arise in trying to implement this central-value approach.

We illustrate some of the challenges in defining predictive com-
parisons with a simple hypothetical example of a logistic regression
model of data y on a binary input of interest, u, and a continuous input
variable, v.

The curves in each plot of Figure 1 show the assumed predictive
relationship. In this example, u has a constant effect on the logit scale
but, on the scale of E(y), the predictive comparison as u increases from
0 to 1 is high for v in the middle of the plotted range and low at the
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FIGURE 1. Hypothetical examples of predictive comparisons for an input u in a model il-
lustrating the need for averaging over the distribution of other inputs v in the
model (rather than simply working with a central value). Each graph shows a
hypothesized logistic regression model for an outcome y given a binary input of
interest, u, and a continuous input variable, v. The vertical lines on the x-axis
indicate the values of v in the hypothetical dataset. In (a) data v are concentrated
near the ends of the predictive range. Hence, for each data value of v, the pre-
dictive comparison for y as u increases from 0 to 1 is small; averaging over v

produces a relatively small “average predictive comparison.” In contrast, E(v) is
near the center of the range; hence the predictive comparison at this average value
is large, even though this is not appropriate for any of the data points individually.
Conversely, in (b) the average predictive comparison is reasonably large, but this
would not be seen if the predictive comparison were evaluated at the average value
of v.

extremes. As a result, a “typical” (or average) predictive comparison
should depend on the distribution of the other input, v.

Figure 1 also shows two examples in which an average predictive
comparison differs from the predictive comparison evaluated at a central
value. In Part (a), the data are at the extremes, so the average predictive
comparison is small—but the predictive comparison evaluated at E(v)
is misleadingly large. The predictive comparison for y corresponding to
a realistic change in u is small, because switching u from 0 to 1 typically
has the effect of switching E(y |u, v) from, say, 0.02 to 0.05 or from 0.96
to 0.99. In contrast, the predictive comparison if evaluated at the mean
of the data is large, where switching u from 0 to 1 switches E(y |u, v)
from 0.36 to 0.60.

Figure 1(b) shows a similar example, but where the centrally
computed predictive comparison is too low compared to the population-
average predictive comparison. Here, the centrally located value of v

is already near the edge of the curve, at which point a change in u has
little effect on E(y |u, v), changing it by a mere 0.03. In comparison,
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the average predictive comparison has the larger value of 0.11, which
appropriately reflects that many of the sample data are in the range
where a unit difference in u can correspond to a large difference in E(y).

2.3. Partial Derivatives

Partial derivatives provide another approach to calculating an expected
change in outcome as a given input changes for models with transformed
outcome variables, interactions, polynomials, and other nonlinearities
and nonadditivities (see Stolzenberg 1979 and Roncek 1991). However,
as noted by DeMaris (1993) among others, the first-order partial deriva-
tive of a nonlinear function (such as a logistic regression mean function)
with respect to a particular input variable is not the same as the predic-
tive comparison, as defined in (1) for a one-unit change in that input.
To illustrate, consider predictive comparisons for v (rather than u) for
the situation represented by Figure 1(b). The predictive comparison for
y when v increases from 0 to 1 (and u is held constant at u = 0) is ap-
proximately 0.3 − 0.1 = 0.2. In contrast, the partial derivative (i.e., the
tangent line at v = 0) is much less than this (approximately 0.1). Even
if the tangent line is moved to midway between v = 0 and v = 1, the
slope of this tangent is still smaller than 0.2 due to the concavity of the
logistic function here.

As this example illustrates, partial derivatives can be useful sum-
maries of predictive comparisons for small changes in an input but
less so with larger changes. Also, partial derivatives can run into trouble
with discrete inputs where they may not be well-defined. Further, partial
derivatives suffer from the same difficulty as the differencing discussed
in Section 2.2, which is that there is no general way to pick a single point
at which to evaluate the predictive comparisons.

2.4. Transformed Coefficients

Transformations can sometimes clarify model interpretation; for exam-
ple, the exponentiated coefficients of a log regression model are simply
multiplicative effects. Similarly, users of logistic regression models can
transform the model coefficients to produce odds ratios that provide a
measure of the multiplicative impact on the odds of a particular out-
come for each unit increase in a given input (see also Long 1987 and
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DeMaris 1993). In contrast, the method we propose in this article au-
tomatically leads to interpretation on the original scale of the response
variable, which in the case of logistic regression is the probability scale
rather than odds. Without wishing to get too deep into the debate about
which scale is easier to interpret, we merely note that in our experience
probabilities are both more familiar and intuitive to work with than
odds for many social scientists. We can always choose to summarize
predictive comparisons on the transformed scale if that is deemed to be
more interpretable.

2.5. Standardized Coefficients

There is a long history of standardizing coefficients in regression models
in an attempt to determine the “relative importance” of each input in
affecting the outcome variable. This goal is controversial, however, and
Firth (1998) provides a useful annotated bibliography of the scattered
literature in this area. Common criticisms of comparing standardized
coefficients include their dependence on the sample variation in the
inputs, lack of inherent meaning for categorical inputs, and difficulties
in dealing with input transformations and interactions. In practice,
standardized coefficients can be useful in particular settings—for
example, Long (1987) and Kaufman (1996) apply them to multinomial
logit and logistic regression models—and to provide an automatic
starting point for making coefficients roughly comparable (see Gelman
2007). In any case, standardized coefficients do not directly address
the problem of estimating predictive comparisons in the presence of
nonlinearity and interactions.

3. GENERAL APPROACH TO DEFINING POPULATION
PREDICTIVE COMPARISONS

The basic predictive comparison δu defined in (1) depends in general on
u(1) and u(2) (the beginning and end points of the hypothesized change
in the input of interest), v (the values of the other inputs), and θ (the
parameters of the model). We define the average predictive comparison
�u as the mean value of δu over some specified distribution of the
inputs and parameters. Section 3.1 describes where these distributions
come from, and then in Sections 3.2 through 3.7 we define predictive
comparisons for various sorts of inputs u, starting with numerical
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input variables (including continuous and binary inputs as special
cases), and moving to unordered categorical variables, random effects,
interactions, and constraints.

It turns out that the form of the input of interest u, not the form of
data y or other predictors v, is crucial in deciding how to define average
predictive comparisons. We reiterate that in any application, we would
compute the average predictive comparison for each of the inputs to
a model one at a time—that is, treating each component of x in turn
as the “input of interest.” This is often a goal of regression modeling:
estimating the predictive change in the outcome while changing one
input variable, with all other inputs held constant.

3.1. Assumed Existing Data and Model Fit

We assume that a model p(y |x, θ ) has already been fit to a data set
(x,y)i, i = 1, . . . , n, and our goal is numerically to summarize the pre-
dictive comparison for y of each input in x, with inputs and predictive
comparisons as defined in Section 1.

We further assume that inference about the parameters θ can be
summarized by a set of simulation draws, θ s, s = 1, . . . , S (with S set
to some large value such as 100 or 1000) from a posterior distribution
or, in a non-Bayesian framework, from a distribution representing
the estimate of θ and its uncertainty. If, as in the output to a typical
generalized linear model program, only a point estimate and covariance
matrix for θ are available, we then suppose that posterior draws have
been obtained using the multivariate normal distribution with that
mean and variance. Another option is to obtain the simulation draws
from a bootstrap procedure applied to an estimator of θ (Efron and
Tibshirani 1993). For the purposes of this article, it is not important
to determine where the simulation draws come from, only that they
represent inferential uncertainty about θ .

3.2. Numerical Inputs

For the purpose of estimation, it does not matter whether inputs are con-
tinuous or discrete (since the likelihood function is the same). However,
for understanding the model it can make a difference. We start with nu-
merical input variables u that can take on multiple values, including con-
tinuous inputs as a special case. There are no restrictions or assumptions
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about the other inputs, v, or the response, y. We average over u(1), u(2), v,

and θ in both the numerator and denominator of (1), for all increasing
transitions of u (that is, u(1) < u(2)):

�u =∫ ∫
u(1)<u(2) du(1)du(2)

∫
dv

∫
dθ (E(y |u(2), v, θ) − E(y |u(1), v, θ))p(u(1) |v)p(u(2) |v)p(v)p(θ )∫ ∫

u(1)<u(2) du(1)du(2)
∫

dv
∫

dθ (u(2) − u(1))p(u(1) |v)p(u(2) |v)p(v)p(θ )
.

(2)

This is equivalent to taking a weighted average of the δus in (1) with
weights (u(2) − u(1))—this makes sense from an estimation perspective
since the estimates of predictive comparisons considered in Section 4
may be unstable for small values of (u(2) − u(1)). We consider only in-
creasing transitions of u in �u since otherwise the numerator and de-
nominator of (2) would reduce to zero.

Averaging over u(1), u(2), and v in this way is equivalent to
counting all pairs of transitions of (u(1), v(1)) to (u(2), v(2)) in which
v(1) =v(2)—that is, changes in u with v held constant, as illustrated in
Figure 2. The integral of θ averages over its distribution, which in a
Bayesian context would be a posterior distribution, or classically could

u

v

y

FIGURE 2. Diagram illustrating changes in the input of interest u, with the other inputs v

held constant. The ellipse in (u, v)-space represents the joint distribution p(u,
v), and as the arrows indicate, we wish to consider changes in u in the region of
support of this distribution.
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be a point estimate or an uncertainty distribution defined by simula-
tions (as discussed at the end of Section 3.1). The distributions of (u, v)
and θ are independent because we are working in a regression context
in which θ represents the parameters of the model for y conditional
on u, v. More generally, we could replace p(u(1)|v)p(u(2)|v)p(v)p(θ ) by
p(u(1)|v, θ )p(u(2)|v, θ )p(v|θ )p(θ ), in the multivariate modeling scenario
in which θ is also relevant to the distribution of the regression inputs u, v.

In the special case in which u is a binary input, (2) reduces to a
simple average of the differences (E(y |u(2), v, θ ) − E(y |u(1), v, θ )). More
generally, the average predictive comparison has the form of a ratio of
integrals.

3.3. Unordered Categorical Inputs

When an unordered categorical input variable u can take on more than
two values, the average predictive comparison—the expected change in
y corresponding to a change in u—becomes more difficult to define.
For instance, if u can take on the values “red,” “yellow,” and “blue,”
then there are three possible changes in color, each with two possible
directions. We consider here two natural ways to define predictive com-
parisons for general categorical input variables.

3.3.1. Separately Considering Each Possible Change in an Input
One option is to define predictive comparisons separately for each pos-
sible pair of values (u(1), u(2)) (in the above example, for the red-yellow,
yellow-blue, and red-blue transitions). These are the average predictive
comparisons (2), considering only two possible values of u at a time, and
taking the convention that u(2) − u(1) = 1 in the denominator. Thus,

�u(u(1) →u(2)) =∫ ∫
u(1)<u(2) du(1)du(2)

∫
dv

∫
dθ (E(y |u(2), v, θ) − E(y |u(1), v, θ))p(u(1) |v)p(u(2) |v)p(v)p(θ )∫ ∫

u(1)<u(2) du(1)du(2)
∫

dv
∫

dθ p(u(1) |v)p(u(2) |v)p(v)p(θ )
.

(3)

3.3.2. Averaging Over All Possible Transitions
Another option is to define a predictive comparison that averages over
all possible changes in the categorical input variable u. Such a definition
may be more appealing in the context of this article, where we seek to
summarize the conditional impact of each variable in a predictive model.
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In averaging over changes in an unordered categorical input u, we must
look at the magnitude, rather than the sign, of the comparisons. For
example, if some input values have large positive effects and others have
large negative effects, we would then want to say that this input has
effects of large magnitude.

Once we decide to average over all possible transitions, we au-
tomatically lose all ordering (e.g., the sense that “red to yellow” is the
opposite of “yellow to red”), so any averaging will have to take an abso-
lute value. We shall follow common practice in statistics and work with
the root mean square

�u =
(∑

u(1)

∑
u(2) [�u(u(1) →u(2))]2

∫
p(u(1) |v)p(u(2) |v)p(v)dv∑

u(1)

∑
u(2)

∫
p(u(1) |v)p(u(2) |v)p(v)dv

)1/2

, (4)

which weights each transition u(1) →u(2) in proportion to the probability
of that pair in the distribution.

3.4. Variance Components Models

“Random effects” or “mixed effects” or “variance components” models
correspond to categorical input variables whose parameters are struc-
tured in batches (e.g., see, Searle, Casella, and McCulloch 1992 and
Gelman 2005). For example, a model for longitudinal data, with several
measurements on each individual, might have a varying intercept for
each person, in which case the predictive comparison is the expected
change in y corresponding to a switch from one person to another. For
the purpose of defining average predictive comparisons, we can treat a
batch of K parameters φk, k = 1, . . ., K, as an unordered categorical
input variable with K levels u(k), in the sense of Section 3.3. The essence
of a variance components model is that this batch of parameters φk are
considered to have been drawn from a continuous population distribu-
tion. In our example in Section 6, we consider vector φks.

3.5. Models with Interactions

The above definitions automatically apply to models with interactions.
The key is that u represents a single input, and x = (u, v) represents
the vector of inputs to the predictive model. The vector of inputs (in
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the sense used in this article) is not in general the same as the vector
of linear predictors. For example, in the model in Section 2.1, sex is
included on its own and also interacted with age. When defining the
predictive comparison for sex, we must alter this input wherever it occurs
in the model—that is, both the “sex” predictor and the “sex × age”
predictor must be changed. For another example, the constant term
in a regression is not an input in our sense and has no corresponding
predictive comparison, since it can take on only one possible value.

From a computational perspective, it is important that the model
be coded in terms of its separate inputs. Thus, to compute predictive
comparisons, it is not enough simply to specify the design matrix of a
regression model; we must be able to evaluate E(y) as a function of the
original inputs.

3.6. Inputs That Are Not Always Active

A model will sometimes have inputs that are involved in prediction for
only some of the data. For example, consider an experiment in which
some units are given the control (no treatment) and others are given the
treatment, in doses ranging from 10 to 20 (on some meaningful scale).
Suppose the data are fit by a generalized linear model with treatment
indicator, dose, and some pretreatment measurements as predictors.

Now consider how to define the average predictive comparison
for dose. One approach is to consider treatment and dose to be a single
input with value 0 for control units and the dose for treated units. This
will not be appropriate, however, if we are particularly interested in the
effect of dose in the range 10 to 20, conditional on treatment. We can
define the predictive comparison for dose as in Section 3.2, restricting
all integrals over v to the subspace in which dose is defined (in this case,
the treated units).

We can formally define the average predictive comparison for a
partially active input u by introducing a function ζ u(v) that equals 1
wherever u is defined and 0 elsewhere. Then all the earlier definitions
hold, as long as we insert the factor ζ u(v) in all the integrals.

3.7. Nonmonotonic Functions

It is possible in some applications for the predictive comparisons in
(1) to be negative for some values of v and positive for other values
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of v such that the average predictive comparison cancels out to zero.
In such cases, it may be more appropriate to consider a root-mean-
square predictive comparison, as for categorical inputs in (4), or an
average absolute predictive comparison. Alternatively, variation in the
predictive comparisons resulting from variation in v can be displayed
graphically.

4. ESTIMATION

We now consider how to estimate average predictive comparisons from a
finite sample of data (u, v)i , i = 1, . . . , n, and a set of simulations θ s , s =
1, . . . , S. It is enough to figure out how to estimate (2) defined in Section
3.2 and (4) defined in Section 3.3.2; the average predictive comparisons
defined in the rest of Section 3 are all special cases or combinations of
these expressions.

4.1. Numerical Inputs

The challenge in (2) is averaging over the product of densities
p(u(1) |v)p(u(2) |v). Averaging over p(v) is simply attained by using the
empirical data points v1, . . . , vn, and we can similarly average over p(θ )
using θ1, . . . , θS. The distribution of u given θ is necessary to appro-
priately average over all possible transitions, but it cannot be trivially
estimated from a finite data set.

We estimate (2) by the following ratio of sums:

�̂u =∑n
i=1

∑n
j=1

∑S
s=1 wij

(
E

(
y |u j , vi , θ

s
) − E

(
y |ui , vi , θ

s
))

sign(u j − ui )∑n
i=1

∑n
j=1

∑S
s=1 wij(u j − ui ) sign(u j − ui )

,

(5)

where the factors w ij are weights that we shall discuss shortly. The
sign(u j − ui ) factors are used since we consider only increasing tran-
sitions of u in (2).

The summations over i, j, and s in (5) serve to average over the
distributions of (u(1), v), u(2), and θ . In the theoretical definition (2),
transitions are from points u(1) to u(2) with a common v. For any given
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data set, however, especially with continuous v, there may be few (if
any) pairs of points with identical values of v. To approximate such
exact transitions, we assign each pair of points with a weight,

wij = w(vi , v j ),

which should reflect how likely it is for u to transition from ui to uj when
v = v i. Since, from the data, uj occurs with v j, w ij should be maximized
when vj = vi and should in general have higher values when vj is close to
v i. The goal is to approximate the distribution p(u(2) |v) in (2) by giving
more weight to pairs of points in the data with values of v that are close
to one another and less weight to pairs of points in the data with values
of v that are far from one another.

As with any density estimation problem, the appropriate choice
of weighting function w will depend on the space of v. Recall that u is
scalar, but in general v will be a vector. If v lies in a continuous Euclidean
space, we suggest, as a default, the following weighting function based
on Mahalanobis distances:

w(vi , v j ) = 1
1 + (vi − v j )T−1

v (vi − v j )
.

This function will also work when v has one or more binary compo-
nents. If v has some unordered discrete components, we would use a
measure that penalizes components where v i does not match v j. If cer-
tain transitions are more likely than others, this could be included in
the weighting function definition, although this is information that goes
beyond the original predictive model.

For binary inputs u, (5) simplifies to

�̂u =
∑n

i=1

∑S
s=1

[∑n
j=1 wij

] (
E

(
y |u = 1, vi , θ

s
) − E

(
y |u = 0, vi , θ

s
))

S
∑n

i=1

[∑n
j=1 wij

] .

(6)

Expression (6) is an estimate of the expected difference in y from the
model, after changing u from 0 to 1 in a randomly chosen unit in the
population.
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4.2. Unordered Categorical Inputs

For unordered categorical inputs u with K categories, we estimate (4)
by the following:

�̂u =∑n
i=1

∑K
k=1

∑S
s=1

[∑
j∈{k} wij

] (
E

(
y |u(k), vi , θ

s
) − E(y |ui , vi , θ

s
))2

S
∑n

i=1

∑K
k=1

[∑
j∈{k} wij

]
1/2

,

(7)

where
∑

j∈{k} wij represents weights summed over the data points in
category k. This estimate is also appropriate for variance components
models—for example, where there is a batch of K parameters φk, k =
1, . . . , K considered to have been drawn from a continuous popula-
tion distribution. We also wish to estimate the predictive comparison
of switching from one group of measurements (represented by a value
of k) to another group (represented by another value of k).

Finally, the actual evaluation of (5), (6), and (7) requires comput-
ing double and triple sums that could be overwhelming to estimate if n
and S are large. Instead, we can approximate by replacing each of the
summations by a sum over a randomly drawn subset of the indexes. For
efficiency in simulation, it makes sense to use the same random draws
for approximating the numerator and the denominator of (5). If there
is a question about whether the subsets are large enough, the simula-
tions can be repeated with different random subsets to see if the answers
change substantially.

5. STANDARD ERRORS

We recommend automatically computing average predictive compar-
isons for each of the inputs to a fitted model, and then displaying them
in a table or graph along with their standard errors, (for example, see
Figure 3 in section 6.1). This can provide a useful addition to the usual
displays of regression coefficients. As discussed in Section 3.4, variance
components in a multilevel model can be considered as unordered cat-
egorical inputs in this context.

In determining standard errors for estimated average predictive
comparisons, we treat variation in the data points xi = (u, v)i differently
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from the uncertainty expressed by the parameter simulations θ s. Vari-
ation in x leads to variation in the predictive comparisons δu (except
in the trivial case of linear models with no interactions), and we are
averaging over this in estimating �u. We can also consider graphical
methods for displaying variation in δu that corresponds to variation
in x.

In contrast, we want uncertainty in θ to directly propagate to
uncertainty in the average predictive comparison. Thus, we are treating
θ in the expressions for �̂u as random and the values of u and v as fixed.
This is similar to inference for regression, where the standard errors
derive from the distribution of the outcomes y, conditional on the inputs
x. We can compute the standard errors using standard methods from
sampling theory.

5.1. Numerical Inputs

For general numerical inputs, estimate (5) can be expressed as �̂u =
1
S

∑S
s=1 �̂s

u , where

�̂s
u =

∑n
i=1

∑n
j=1 wij

(
E

(
y |u j , vi , θ

s
) − E

(
y |ui , vi , θ

s
))

sign(u j − ui )∑n
i=1

∑n
j=1 wij (u j − ui ) sign(u j − ui )

.

Then

S.E.(�̂u) =
(

1
S − 1

S∑
s=1

(�̂s
u − �̂u)2

)1/2

. (8)

Estimate (6) for binary inputs also takes this form, with

�̂s
u =

∑n
i=1

[∑n
j=1 wij

] (
E

(
y |u = 1, vi , θ

s
) − E

(
y |u = 0, vi , θ

s
))

∑n
i=1

[∑n
j=1 wij

] .
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5.2. Unordered Categorical Inputs

When averaging over all possible transitions for unordered categori-
cal inputs or considering variance components, expression (7) can be

written as �̂u =
√

1
S

∑S
s=1(�̂s

u)2, where

(�̂s
u)2 =

∑n
i=1

∑K
k=1

[∑
j∈{k} wij

] (
E

(
y |u(k), vi , θ

s
) − E

(
y |ui , vi , θ

s
))2

∑n
i=1

∑K
k=1

[∑
j∈{k} wij

] .

We then estimate the standard error of the entire expression (7), includ-
ing the square root, using a simple Taylor expansion: for any Z,

S.E.
(√

Z
)

≈ 1
2

s.e.(Z)
/√

Z.

Then

S.E.(�̂u) ≈ 1

2�̂u

(
1

S − 1

S∑
s=1

((�̂s
u)2 − �̂2

u)2

)1/2

. (9)

6. APPLICATION TO A MULTILEVEL LOGISTIC
REGRESSION OF PRISON SENTENCES

Pardoe and Weidner (2006) analyze the sentencing of 8446 convicted
felons in 39 of the 75 most populous counties in the United States
during May 1998. They use a Bayesian multilevel logistic regression
model with 12 individual-level variables from the State Court Process-
ing Statistics (SCPS) program of the Bureau of Justice Statistics, linked
to six county-level variables using the Federal Information Processing
Standards code. Information collected in the SCPS program includes
demographic characteristics, criminal history, details of pretrial pro-
cessing, disposition, and sentencing of felony defendants.

The response variable for this study was “sentence severity,” de-
fined as yij = 1 if offender i in county j received a prison sentence, or
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0 for a jail or noncustodial sentence (considered to be much less se-
vere than prison). Under the model, the outcomes are independent with
probabilities,

Pr(yij = 1) = logit−1 (
XT

i G jη + XT
i α j

)
, (10)

where Xi represents measurements on K individual-level variables and
Gj is a K × M block-diagonal matrix of measurements on L county-level
variables. In particular, interactions between individual and county-level
variables are used to account for dependence of individual-level effects
across counties, so that M is K ×L if all county-level variables are used to
explain these individual-level effects, or of smaller dimension otherwise.
The coefficients η in (10) represent main effects and interactions of the
predictors and are constant across counties, while the coefficients α

have a j-subscript and represent varying effects across counties, or they
can be viewed as interactions between the predictors X and the county
indicators j.

6.1. Applying Average Predictive Comparisons to a Single Model

The Bayesian model was fit with vague prior distributions for η and αj

and using the software package Bugs (Spiegelhalter et al. 1994, 2004) to
generate posterior samples; this free software enables Bayesian analysis
of complex statistical models using Markov chain Monte Carlo tech-
niques. Since nearly half the cases had some missing data, additional
steps in the algorithm were used to impute missing values (Little and
Rubin 1987). Model checking diagnostics (see Pardoe 2004) suggest that
the multilevel model provides a much-improved fit over a conventional
nonhierarchical model. However, the presence of individual-county in-
teractions and varying county effects complicates the interpretation of
the η and αj parameters. In contrast, average predictive comparisons
are relatively straightforward to compute and provide a clear indication
of the overall contribution of each variable to the probability of receiving
a prison sentence (rather than a jail or noncustodial sentence).

Table 1 displays the estimated regression coefficients and stan-
dard errors, with additional entries giving the estimates and standard
errors of the average predictive comparisons. As discussed at the be-
ginning of Section 1, average predictive comparisons are defined for
input variables rather than predictors and thus are not presented for
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the constant term, transformed variables, or interactions. The table also
displays estimated standard deviations for variance components.

The regression coefficients and predictive comparisons in Table 1
serve two different purposes: the coefficients allow direct use of the
model and can be interpreted on the logit scale, and the predictive
comparisons summarize the importance of each input variable on the
probability scale.

Figure 3 displays the average predictive comparison for each vari-
able in the model, together with a “random county” average predictive
comparison. Horizontal bars indicate ±1 standard error for each aver-
age predictive comparison, as calculated using the methods of Section
5. Due to computational limitations, we based all calculations on a ran-
domly drawn subset of S = 100 posterior samples, with n = 4500 data
points for the binary inputs, n = 450 for the continuous inputs, and n =
4000 for the varying county effects. Results varied little on repeating the
calculations with different random subsets.

Individual-level variables in Figure 3 are denoted with an ini-
tial “I” and county-level variables are denoted with an initial “C.”
The five individual-level variables for “most serious conviction charge”
(ICVIOL1, ICTRAF, ICVIOL2, ICPROP, and ICDRUG) are relative
to a reference category of weapons, driving-related, and other public
order offenses. The 12 individual-level variables and two of the county-
level variables are binary, and so their average predictive comparisons
were calculated using expression (6), with standard errors calculated
using expression (8). The remaining four county-level variables are con-
tinuous, and so their average predictive comparisons were calculated
using expression (5), with standard errors based on expression (8). Fi-
nally, the random county average predictive comparison was calculated
using expression (7), with standard error derived using expression (9).

The individual-level predictor with the largest contribution to the
probability of receiving a prison sentence is ICVIOL1 (murder, rape, or
robbery), with an estimated average predictive comparison of 0.36 (and
standard error 0.02). That is, the expected difference in the probability
of receiving a prison sentence between a randomly chosen individual
in the population charged with murder, rape, or robbery and a simi-
lar individual charged with a reference category offense is 0.36. Other
charges appear less likely to result in a prison sentence, with decreas-
ing probability: drug trafficking (with an estimated average predictive
comparison of 0.21), then assault (0.19), then property offenses (0.14),
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COUNTY: varying intercepts for county

CSOUTH: located in southern state

CGUIDE: under state sentencing guidelines

CUNEMP: unemployment rate, %

CBLPCT: African American population, %

CCRIME: index crime rate per 10,000 residents

CCONS: share of vote for Bush in 2000, %

IBLACK, 1: African American, 0: otherwise

IMALE, 1: male, 0: female

IACTCJS: active criminal justice status

ITRIAL, 1: convicted by trial, 0: by plea

IREVOKE: pretrial release revoked

IDETAIN: detained after being charged

IPPRIS: prior stay(s) in state prison

ICDRUG: drug possession offense

ICPROP: burglary or theft (property offense)

ICVIOL2: assault or other violent crime

ICTRAF: drug trafficking offense

ICVIOL1: murder, rape, or robbery

−0.2 −0.1 0.0 0.1 0.2 0.3

Average predictive comparison

−0.2 −0.1 0.0 0.1 0.2 0.3

FIGURE 3. Estimated average predictive comparisons for the probability of a prison sentence
(rather than a jail or noncustodial sentence), for each input variable in the prison
example. Horizontal lines show ± 1 standard-error bounds. The first set of inputs,
with initial letters I, are at the level of the individual offender; the second set, with
initial letters C, are county-level inputs; and the last corresponds to the effect of
varying the county random effect, keeping all other inputs constant. Many of the
individual predictors have large effects, and county itself predicts a fair amount
of variability, but the county-level variables have relatively small effects. (Recall
that these average predictive comparisons correspond to one standard deviation
changes.)

and finally drug possession offenses (0.05). Other individual-level vari-
ables can be interpreted similarly, as can the two binary county-level
variables (which compare individuals in Southern and non-Southern
counties, and individuals in counties with and without state sentencing
guidelines).



44 GELMAN AND PARDOE

T
A

B
L

E
1

E
st

im
at

ed
R

eg
re

ss
io

n
C

oe
ff

ic
ie

nt
s

fo
r

th
e

P
ri

so
n

E
xa

m
pl

e,
To

ge
th

er
w

it
h

E
st

im
at

ed
St

an
da

rd
D

ev
ia

ti
on

s
fo

r
V

ar
ia

nc
e

C
om

po
ne

nt
s

an
d

E
st

im
at

es
of

th
e

A
ve

ra
ge

P
re

di
ct

iv
e

C
om

pa
ri

so
ns

.∗

C
ou

nt
y

In
di

vi
du

al
C

C
R

IM
E

C
U

N
E

M
P

C
P

C
T

A
A

C
C

O
N

S
C

SO
U

T
H

C
G

U
ID

E
S.

D
.(
α

)
�̂

u

−
5.

2
0.

4
−

0.
6

0.
0

0.
6

−
0.

7
0.

1
1.

2
(0

.4
)

(0
.3

)
(0

.4
)

(0
.3

)
(0

.3
)

(0
.6

)
(0

.6
)

(0
.2

)
I C

V
IO

L
1

2.
6

−0
.1

−0
.1

0.
5

0.
2

−0
.0

0.
0

0.
6

0.
36

(0
.3

)
(0

.2
)

(0
.3

)
(0

.2
)

(0
.3

)
(0

.3
)

(0
.4

)
(0

.3
)

(0
.0

2)
I C

V
IO

L
2

1.
6

−
0.

3
0.

2
0.

4
0.

1
0.

5
−0

.1
0.

4
0.

19
(0

.2
)

(0
.2

)
(0

.2
)

(0
.2

)
(0

.2
)

(0
.3

)
(0

.3
)

(0
.1

)
(0

.0
2)

I C
T

R
A

F
1.

5
−0

.0
−0

.2
0.

0
−0

.0
−0

.1
0.

5
0.

8
0.

21
(0

.2
)

(0
.2

)
(0

.2
)

(0
.2

)
(0

.2
)

(0
.3

)
(0

.4
)

(0
.2

)
(0

.0
2)

I C
D

R
U

G
0.

4
−

0.
3

0.
2

0.
4

0.
3

0.
1

0.
2

0.
7

0.
05

(0
.2

)
(0

.2
)

(0
.3

)
(0

.2
)

(0
.2

)
(0

.3
)

(0
.4

)
(0

.2
)

(0
.0

1)
I C

P
R

O
P

1.
4

−
0.

2
−0

.0
0.

3
−0

.1
−0

.3
−

0.
7

0.
7

0.
14

(0
.2

)
(0

.2
)

(0
.2

)
(0

.2
)

(0
.2

)
(0

.3
)

(0
.3

)
(0

.2
)

(0
.0

1)
I P

P
R

IS
1.

7
−0

.1
0.

3
−

0.
3

−0
.1

−0
.2

−0
.1

0.
3

0.
29

(0
.1

)
(0

.1
)

(0
.1

)
(0

.1
)

(0
.1

)
(0

.2
)

(0
.2

)
(0

.1
)

(0
.0

1)
I T

R
IA

L
0.

7
−

0.
2

−0
.0

−0
.2

0.
1

0.
2

0.
1

0.
4

0.
09

(0
.2

)
(0

.2
)

(0
.2

)
(0

.2
)

(0
.2

)
(0

.3
)

(0
.3

)
(0

.2
)

(0
.0

2)

(C
on

ti
nu

ed
)



AVERAGE PREDICTIVE COMPARISONS FOR MODELS 45

T
A

B
L

E
1

(C
on

ti
nu

ed
) C
ou

nt
y

In
di

vi
du

al
C

C
R

IM
E

C
U

N
E

M
P

C
P

C
T

A
A

C
C

O
N

S
C

SO
U

T
H

C
G

U
ID

E
S.

D
.(
α

)
�̂

u

IM
A

L
E

0.
5

0.
0

−0
.0

0.
0

0.
0

0.
1

0.
1

0.
05

(0
.1

)
(0

.1
)

(0
.1

)
(0

.1
)

(0
.1

)
(0

.1
)

(0
.1

)
(0

.0
1)

I B
L

A
C

K
0.

0
0.

2
−0

.0
0.

1
0.

0
−0

.0
0.

1
0.

01
(0

.1
)

(0
.1

)
(0

.1
)

(0
.1

)
(0

.1
)

(0
.1

)
(0

.1
)

(0
.0

1)
I A

C
T

C
JS

0.
8

0.
0

0.
0

−0
.1

0.
1

0.
1

0.
2

0.
10

(0
.1

)
(0

.1
)

(0
.1

)
(0

.1
)

(0
.1

)
(0

.2
)

(0
.1

)
(0

.0
1)

I D
E

T
A

IN
1.

9
0.

1
−0

.2
−0

.1
0.

1
−

0.
5

0.
4

0.
23

(0
.1

)
(0

.2
)

(0
.2

)
(0

.1
)

(0
.2

)
(0

.2
)

(0
.1

)
(0

.0
1)

I R
E

V
O

K
E

1.
3

0.
1

0.
2

−0
.1

0.
2

−0
.2

0.
5

0.
16

(0
.2

)
(0

.2
)

(0
.2

)
(0

.2
)

(0
.2

)
(0

.3
)

(0
.2

)
(0

.0
1)

�̂
u

0.
04

−
0.

05
0.

01
0.

08
−

0.
12

0.
00

0.
32

(0
.0

3)
(0

.0
3)

(0
.0

3)
(0

.0
3)

(0
.0

7)
(0

.0
6)

(0
.0

5)

T
he

in
pu

t
va

ri
ab

le
s

ar
e

de
fi

ne
d

in
F

ig
ur

e
3;

st
an

da
rd

er
ro

rs
ar

e
pr

ov
id

ed
in

pa
re

nt
he

se
s.

T
he

fi
rs

t
ro

w
co

nt
ai

ns
th

e
re

gr
es

si
on

co
ef

fi
ci

en
ts

fo
r

th
e

co
un

ty
-l

ev
el

m
ai

n
ef

fe
ct

s,
th

e
fi

rs
tc

ol
um

n
co

nt
ai

ns
th

e
re

gr
es

si
on

co
ef

fi
ci

en
ts

fo
r

th
e

in
di

vi
du

al
-l

ev
el

m
ai

n
ef

fe
ct

s,
w

hi
le

th
e

en
tr

ie
s

at
in

te
rs

ec
ti

on
s

be
tw

ee
n

co
un

ty
-l

ev
el

in
pu

ts
an

d
in

di
vi

du
al

-l
ev

el
in

pu
ts

ar
e

in
te

ra
ct

io
ns

.
T

he
se

co
nd

-t
o-

la
st

co
lu

m
n

co
nt

ai
ns

es
ti

m
at

ed
st

an
da

rd
de

vi
at

io
ns

fo
r

th
e

va
ri

an
ce

co
m

po
ne

nt
s.

T
he

la
st

ro
w

co
nt

ai
ns

th
e

av
er

ag
e

pr
ed

ic
ti

ve
co

m
pa

ri
so

ns
fo

r
th

e
co

un
ty

-l
ev

el
in

pu
ts

,w
hi

le
th

e
la

st
co

lu
m

n
co

nt
ai

ns
th

e
av

er
ag

e
pr

ed
ic

ti
ve

co
m

pa
ri

so
ns

fo
r

th
e

in
di

vi
du

al
-l

ev
el

in
pu

ts
.B

ol
d

in
di

ca
te

s
th

at
th

e
ab

so
lu

te
va

lu
e

of
th

e
es

ti
m

at
e

is
la

rg
er

th
an

th
e

st
an

da
rd

er
ro

r.
W

e
do

no
t

in
ge

ne
ra

lr
ec

om
m

en
d

di
sp

la
yi

ng
th

e
re

su
lt

s
in

th
is

so
rt

of
ta

bl
e,

pr
ef

er
ri

ng
gr

ap
hs

su
ch

as
in

F
ig

ur
es

3
an

d
4.

H
ow

ev
er

,w
e

fi
nd

th
is

ta
bl

e
he

lp
fu

l
in

ex
pl

ai
ni

ng
ou

r
m

et
ho

d,
by

sh
ow

in
g

th
e

in
fo

rm
at

io
n

th
at

is
be

in
g

su
m

m
ar

iz
ed

an
d

co
m

pr
es

se
d

in
de

fi
ni

ng
av

er
ag

e
pr

ed
ic

ti
ve

co
m

pa
ri

so
ns

in
th

is
ex

am
pl

e
of

a
m

ul
ti

le
ve

lm
od

el
w

it
h

it
er

ac
ti

on
s.



46 GELMAN AND PARDOE

Predictive comparisons for the continuous input variables cor-
respond to one standard deviation change. Standard deviations for
the four variables (CCONS, CCRIME, CBLPCT, and CUNEMP) are
13.3%, 220 per 10,000, 12.4%, and 1.8% respectively. The positive av-
erage predictive comparisons for CCONS and CCRIME suggest that,
comparing otherwise-similar cases, those in counties with higher con-
servative populations or higher crime rates have slightly higher proba-
bilities of receiving a prison sentence. Conversely, the negative average
predictive comparison for CUNEMP suggests lessened sentence sever-
ity in high-unemployment counties, with all other inputs fixed. Taking
into account all other factors, the proportion of the county’s popula-
tion that is African American (CBLPCT) has little bearing by itself on
sentence severity. (However, this factor does play a role in reducing or
increasing the effects of various individual-level variables; see Pardoe
and Weidner 2006.)

The random county average predictive comparison differs from
the other average predictive comparisons in this example in that it con-
siders just the magnitude, rather than the sign, of the comparisons. This
is because “county” is the only unordered categorical variable in the
model. To understand its average predictive comparison, consider the
expected probabilities of receiving a prison sentence for two individuals
who are identical in all respects except that they are in different counties.
So, the two individuals will share the same values for individual-level
variables but have different values for county-level variables (and county
random effects). The random county average predictive comparison of
0.32 represents the root mean square of the difference in the probability
of receiving a prison sentence between a randomly chosen individual in
one county and a similar individual in another county.

6.2. Applying Average Predictive Comparisons to Compare Models

The hierarchical logistic regression model (10) has varying coefficients
for the within-county intercepts as well as for each individual predictor.
We also fit a hierarchical model with varying intercepts only, as well as a
nonhierarchical model that ignores the multilevel nature of the data and
excludes random effects. Whereas the regression coefficients have dif-
ferent interpretations for the different models, predictive comparisons
allow for direct comparison.
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FIGURE 4. Estimated average predictive comparisons for the probability of a prison sentence
for each input variable across three models in the prison example. Horizontal
lines show ±1 standard-error bounds. Effects and standard errors are very similar
across the two hierarchical models. However, although the individual-level effects
are similar for the nonhierarchical model, the county-level effects tend to be
smaller in magnitude and have smaller standard errors.

Figure 4 displays the average predictive comparison for each
variable across all three models. The average predictive comparisons
and standard errors are very similar across the two hierarchical mod-
els, perhaps suggesting that the additional variation for each individ-
ual predictor may be redundant. The individual-level comparisons are
also very similar for the nonhierarchical model. However, the county-
level comparisons tend to be smaller in magnitude and have smaller
standard errors for the nonhierarchical model; the average predictive
comparison for unemployment, CUNEMP, even has the opposite sign.
As demonstrated in Pardoe (2004), the nonhierarchical model fits this
data set poorly, and the average predictive comparisons displayed here
suggest that while individual-level comparisons may be robust to model
misspecification of this nature, higher-level comparisons can clearly be
adversely affected.

7. DISCUSSION

We recommend that predictive comparisons automatically be supplied
with all fits of regression-type models that use a vector of inputs. A
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natural display would be a table or graph of average predictive com-
parisons, along with standard errors, for each predictive input and each
batch of varying coefficients. For linear models with no interactions,
this is identical to the coefficient estimates (for standardized predic-
tors) and estimated variance components. For generalized linear mod-
els, there would seem to be no conceptual barrier to automating the
computation and display of average predictive comparisons. For all-
positive outcomes, it might also be appropriate to examine predictive
comparisons on the logarithmic scale. For models with interactions, an
additional step is required to isolate the vector of inputs from the vector
of linear predictors. This could be done in parallel with summaries of
marginal predictive effects (Pardoe 2001; Pardoe and Cook 2002).

It might be argued that predictive comparisons, like any other
automatic summary of a model, cannot be universally applicable, be-
cause the best approach in any problem must be tailored to the specifics
of the application. We agree with this point, of course, but note that the
overwhelming current practice in applied statistics of regression mod-
els is simply to report coefficient estimates (and standard errors), with
no sense of their implications on the original scale of the data. We do
not intend our approach to be a replacement for regression coefficients
but rather a summary of predictive comparisons that can complement
the coefficient estimates in order to make their scale more interpretable.
Thus, we agree that there is no such thing as a “one size fits all” method—
but that is what the current standard approach implicitly assumes. The
“automaticity” of our approach has the important virtue that it can be
used as an option in all sorts of problems, and thus it has a chance at
being automatically implemented and used alongside regression coeffi-
cients to allow better understanding of predictive models.

Some applications naturally lend themselves to calculation of an
average population effect, for example, in quantifying the average effect
of a policy on a group of people (see Dehejia and Wahba 1999 for a
study of the effectiveness of job training programs). At the same time,
we might be interested in explicit consideration of the functional rela-
tionship between predictive comparisons and values of inputs, where
questions are often about input effects and how other inputs impact
those effects. While this distinction lies beyond the scope of this article
(which merely aims to complement the usual list of regression coeffi-
cients with a more meaningful summary of predictor effects), it would
be appealing to go further and display these patterns graphically.
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The example in Section 6 illustrates the effectiveness and con-
venience of predictive comparisons. In this multilevel data set with a
binary outcome measure, they clarify the overall role of each individual
and group-level predictor in the presence of multiple interactions as well
as illustrate the relative size of the varying coefficients. They can also
be used to understand and compare models directly, in a way that is
difficult to do using logistic regression coefficients.

As discussed in Section 3, to define the average predictive com-
parison for an input u, we must specify distributions for the values u(1)

and u(2) for the comparison and the values of the other inputs v that will
be held constant. In this article, we set up a default structure based on
using the data {x1, . . . , xn} as an empirical distribution. But the idea
of a predictive comparison can be applied in settings where we do not
wish to consider the observed data to be a simple random sample from
a population. For example, the sample can be weighted to adjust for
stratification or poststratification (e.g., see Kish 1965 or Gelman and
Carlin 2001, for a model-based perspective). Or an entirely different
distribution can be chosen. Graubard and Korn (1999) discuss these
possibilities in detail in the sample survey context. When a regression
model has nonlinearity or interactions, predictive comparisons depend
on the distribution of inputs for which the model will be applied.
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