
JAGS Version 2.2.0 user manual

Martyn Plummer

November 7, 2010

Chapter 6

Functions

Functions allow deterministic nodes to be defined using the <- (“gets”) operator. Most of the
functions in JAGS are scalar functions taking scalar arguments. However, JAGS also allows
arbitrary vector- and array-valued functions, such as the matrix multiplication operator %*%
and the transpose function t() defined in the bugs module, and the matrix exponential
function mexp() defined in the msm module. JAGS also uses an enriched dialect of the BUGS
language with a number of operators that are used in the S language.

Scalar functions taking scalar arguments are automatically vectorized. They can also be
called when the arguments are arrays with conforming dimensions, or scalars. So, for example,
the scalar c can be added to the matrix A using

B <- A + c

instead of the more verbose form

D <- dim(A)
for (i in 1:D[1])

for (j in 1:D[2]) {
B[i,j] <- A[i,j] + c

}
}

6.1 Base functions

The functions defined by the base module all appear as infix or prefix operators. The syntax
of these operators is built into the JAGS parser. They are therefore considered part of the
modelling language. Table 6.1 lists them in reverse order of precedence.

Logical operators convert numerical arguments to logical values: zero arguments are con-
verted to FALSE and non-zero arguments to TRUE. Logical and comparison operators return
the value 1 if the result is TRUE and 0 if the result is FALSE. Comparison operators are
non-associative: the expression x < y < z, for example, is syntactically incorrect.

The %special% function is an exception in table 6.1. It is not a function defined by the
base module, but is a place-holder for any function with a name starting and ending with
the character “%” Such functions are automatically recognized as infix operators by the JAGS
model parser, with precedence defined by table 6.1.

24

Type Usage Description
Logical x || y Or
operators x && y And

!x Not
Comparison x > y Greater than
operators x >= y Greater than or equal to

x < y Less than
x <= y Less than or equal to
x == y Equal

Arithmetic x + y Addition
operators x - y Subtraction

x * y Multiplication
x / y Division
x %special% y User-defined operators
-x Unary minus

Power function x^y

Table 6.1: Base functions listed in reverse order of precedence

6.2 Functions in the bugs module

6.2.1 Scalar functions

Table 6.2 lists the scalar-valued functions in the bugs module that also have scalar arguments.
These functions are automatically vectorized when they are given vector, matrix, or array
arguments with conforming dimensions.

Table 6.4 lists the link functions in the bugs module. These are smooth scalar-valued func-
tions that may be specified using an S-style replacement function notation. So, for example,
the log link

log(y) <- x

is equivalent to the more direct use of its inverse, the exponential function:

y <- exp(x)

This usage comes from the use of link functions in generalized linear models.
Table 6.3 shows functions to calculate the probability density, probability function, and

quantiles of some of the distributions provided by the bugs module. These functions are
parameterized in the same way as the corresponding distribution. For example, if x has a
normal distribution with mean µ and precision τ

x ~ dnorm(mu, tau)

Then the usage of the corresponding density, probability, and quantile functions is:

density.x <- dnorm(x, mu, tau) # Density of normal distribution at x
prob.x <- pnorm(x, mu, tau) # P(X <= x)
quantile90.x <- qnorm(0.9, mu, tau) # 90th percentile

For details of the parameterization of the other distributions, see tables 7.1 and 7.2.

25

Usage Description Value Restrictions on arguments
abs(x) Absolute value Real
acos(x) Arc-cosine Real −1 < x < 1
acosh(x) Hyperbolic arc-cosine Real 1 < x
asin(x) Arc-sine Real −1 < x < 1
asinh(x) Hyperbolic arc-sine Real
atan(x) Arc-tangent Real
atanh(x) Hyperbolic arc-tangent Real −1 < x < 1
cos(x) Cosine Real
cosh(x) Hyperbolic Cosine Real
cloglog(x) Complementary log log Real 0 < x < 1
equals(x,y) Test for equality Logical
exp(x) Exponential Real
icloglog(x) Inverse complementary Real

log log function
ilogit(x) Inverse logit Real
log(x) Log function Real x > 0
logfact(x) Log factorial Real x > −1
loggam(x) Log gamma Real x > 0
logit(x) Logit Real 0 < x < 1
phi(x) Standard normal cdf Real
pow(x,z) Power function Real If x < 0 then z is integer
probit(x) Probit Real 0 < x < 1
round(x) Round to integer Integer

away from zero
sin(x) Sine Real
sinh(x) Hyperbolic Sine Real
sqrt(x) Square-root Real x >= 0
step(x) Test for x ≥ 0 Logical
tan(x) Tangent Real
tanh(x) Hyperbolic Tangent Real
trunc(x) Round to integer Integer

towards zero

Table 6.2: Scalar functions in the bugs module

26

Distribution Density Distribution Quantile
Bernoulli dbern pbern qbern
Beta dbeta pbeta qbeta
Binomial dbin pbin qbin
Chi-square dchisqr pchisqr qchisqr
Double exponential ddexp pdexp qdexp
Exponential dexp pexp qexp
F df pf qf
Gamma dgamma pgamma qgamma
Generalized gamma dgengamma pgengamma qgengamma
Hypergeometric dhyper phyper qhyper
Log-normal dlnorm plnorm qlnorm
Negative binomial dnegbin pnegbin qnegbin
Normal dnorm pnorm qnorm
Pareto dpar ppar qpar
Poisson dpois ppois qpois
Student t dt pt qt
Weibull dweib pweib qweib

Table 6.3: Wrappers for the d-p-q functions from the Rmath library

Link function Description Range Inverse
cloglog(y) <- x Complementary log log 0 < y < 1 y <- icloglog(x)
log(y) <- x Log 0 < y y <- exp(x)
logit(y) <- x Logit 0 < y < 1 y <- ilogit(x)
probit(y) <- x Probit 0 < y < 1 y <- phi(x)

Table 6.4: Link functions in the bugs module

27

Function Description Restrictions
inprod(x1,x2) Inner product Dimensions of a, b conform
interp.lin(e,v1,v2) Linear Interpolation e scalar,

v1, v2 conforming vectors
logdet(a) Log determinant a is a square matrix
max(x1,x2,...) Maximum element among all arguments
mean(x) Mean of elements of a
min(x1,x2,...) Minimum element among all arguments
prod(x) Product of elements of a
sum(a) Sum of elements of a
sd(a) Standard deviation of elements of a

Table 6.5: Scalar-valued functions with general arguments in the bugs module

Usage Description Restrictions
inverse(a) Matrix inverse a is a symmetric positive definite matrix
mexp(a) Matrix exponential a is a square matrix
rank(v) Ranks of elements of v v is a vector
sort(v) Elements of v in order v is a vector
t(a) Transpose a is a matrix
a %*% b Matrix multiplication a, b conforming vector or matrices

Table 6.6: Vector- or matrix-valued functions in the bugs module

6.3 Scalar-valued functions with vector arguments

Table 6.5 lists the scalar-valued functions in the bugs module that take general arguments.
Unless otherwise stated in table 6.5, the arguments to these functions may be scalar, vector,
or higher-dimensional arrays.

The max() and min() functions work like the corresponding R functions. They take a
variable number of arguments and return the maximum/minimum element over all supplied
arguments. This usage is compatible with WinBUGS, although more general.

6.4 Vector- and array-valued functions

Table 6.6 lists vector- or matrix-valued functions in the bugs module.
The sort and rank functions behaves like their R namesakes: sort accepts a vector and

returns the same values sorted in ascending order; rank returns a vector of ranks. This is
distinct from WinBUGS, which has two scalar-valued functions rank and ranked.

28

Chapter 7

Distributions

Distributions are used to define stochastic nodes using the ~ operator. The distributions
defined in the bugs module are listed in table 7.1 (real-valued distributions), 7.2 (discrete-
valued distributions), and 7.3 (multivariate distributions).

Some distributions have restrictions on the valid parameter values, and these are indicated
in the tables. If a Distribution is given invalid parameter values when evaluating the log-
likelihood, it returns −∞. When a model is initialized, all stochastic nodes are checked to
ensure that the initial parameter values are valid for their distribution.

29

Name Usage Density Lower Upper
Beta dbeta(a,b) xa−1(1− x)b−1

β(a, b)
0 1

a > 0, b > 0
Chi-square dchisqr(k) x

k
2
−1 exp(−x/2)

2
k
2 Γ(k

2
)

0
k > 0

Double ddexp(mu,tau)
τ exp(−τ |x− µ|)/2

exponential τ > 0
Exponential dexp(lambda)

λ exp(−λx)
0

λ > 0
F df(n,m) Γ(n+m

2
)

Γ(n
2

)Γ(m
2

)

(
n
m

)n
2 x

n
2
−1
{

1 + nx
m

}− (n+m)
2

0
n > 0, m > 0

Gamma dgamma(r, mu) µrxr−1 exp(−µx)
Γ(r)

0
µ > 0, r > 0

Generalized dgen.gamma(r,mu,beta)
βµβrxβr−1 exp{−(µx)β} 0

gamma µ > 0, β > 0, r > 0
Log-normal dlnorm(mu,tau)

τ
1
2x−1 exp

{
−τ(log(x)− µ)2/2

} 0
τ > 0

Normal dnorm(mu,tau) (
τ

2π

) 1
2 exp{−(x− µ)2τ}τ > 0

Pareto dpar(alpha, c)
αcαx−(α+1) c

α > 0, c > 0
Student t dt(mu,tau,k) Γ(k+1

2
)

Γ(k
2

)

(
τ
kπ

) 1
2

{
1 + τ(x−µ)2

k

}− (k+1)
2

τ > 0, k > 0
Uniform dunif(a,b) 1

b− a
a b

a < b
Weibull dweib(v, lambda)

vλxv−1 exp(−λxv) 0
v > 0, λ > 0

Table 7.1: Univariate real-valued distributions in the bugs module

Name Usage Density Lower Upper
Bernoulli dbern(p)

px(1− p)1−x 0 1
0 < p < 1

Binomial dbin(p,n) (
n
x

)
px(1− p)n−x 0 n

0 < p < 1, n ∈ N∗
Categorical dcat(p) px∑

i pi
1 N

p ∈ (R+)N

Hypergeometric dhyper(n1,n2,m1,psi) (
n1

x

)(
n2

m1−x
)
ψx

max(0, n+ −m1) min(n1,m1)
0 ≤ ni, 0 < m1 ≤ n+

Negative dnegbin(p, r) (
x+r−1
x

)
pr(1− p)x 0

binomial 0 < p < 1, r ∈ N+

Poisson dpois(lambda) exp(−λ)λx
x!

0
λ > 0

Table 7.2: Discrete univariate distributions in the bugs module

30

Name Usage Density
Dirichlet p ~ ddirch(alpha)

Γ(
∑

i αi)
∏
j

p
αj−1
j

Γ(αj)αj ≥ 0

Multivariate x ~ dmnorm(mu,Omega) (
|Ω|
2π

) 1
2
exp{−(x− µ)TΩ(x− µ)/2}normal Ω positive definite

Wishart Omega ~ dwish(R,k) |Ω|(k−p−1)/2|R|k/2 exp{−Tr(RΩ/2)}
2pk/2Γp(k/2)R pos. def.

Multivariate x ~ dmt(mu,Omega,k) Γ{(k + p)/2}
Γ(k/2)(nπ)p/2

|Ω|1/2
{

1 + 1
k (x− µ)TΩ(x− µ)

}− (k+p)
2

Student t Ω pos. def.
Multinomial x ~ dmulti(p, n)

n!
∏
j

p
xj

j

xj !
∑

i xi = n

Table 7.3: Multivariate distributions in the bugs module

31

Chapter 8

Differences between JAGS and
WinBUGS

Although JAGS aims for the same functionality as WinBUGS, there are a number of important
differences.

8.0.1 Data format

There is no need to transpose matrices and arrays when transferring data between R and JAGS,
since JAGS stores the values of an array in “column major” order, like R and FORTRAN (i.e.
filling the left-hand index first).

If you have an S-style data file for WinBUGS and you wish to convert it for JAGS, then
use the command bugs2jags, which is supplied with the coda package.

8.0.2 Distributions

Structural zeros are allowed in the Dirichlet distribution. If

p ~ ddirch(alpha)

and some of the elements of alpha are zero, then the corresponding elements of p will be fixed
to zero.

The Multinomial (dmulti) and Categorical (dcat) distributions, which take a vector of
probabilities as a parameter, may use unnormalized probabilities. The probability vector is
normalized internally so that

pi →
pi∑
j pj

8.0.3 Observable Functions

Logical nodes in the BUGS language are a convenient way of describing the relationships
between observables (constant and stochastic nodes), but are not themselves observable. You
cannot supply data values for a logical node.

This restriction can occasionally be inconvenient, as there are important cases where the
data are a deterministic function of unobserved variables. Two important examples are

32

1. Censored data, which commonly occurs in survival analysis. In the most general case,
we know that unobserved failure time T lies in the interval (L,U].

2. Aggregate data when we observe the sum of two or more unobserved variables.

JAGS contains two novel distributions to handle these situations.

1. The dinterval distribution represents interval-censored data. It has two parameters:
t the original continuous variable, and c[], a vector of cut points of length M , say. If X
∼ dinterval(t, c) then
X = 0 if t ≤ c[1]
X = m if c[m] < t ≤ c[m+ 1] for 1 ≤ m < M
X = M if c[M] < t.

2. The dsum distribution represents the sum of two or more variables. It takes a variable
number of parameters. If Y ∼ dsum(x1,x2,x3) then Y = x1 + x2 + x3.

These distributions exist to give a likelihood to data that is, in fact, a deterministic function
of the parameters. The relation

Y ~ dsum(x1, x2)

is logically equivalent to

Y <- x1 + x2

But the latter form does not create a contribution to the likelihood, and does not allow you
to define Y as data. The likelihood function is trivial: it is 1 if the parameters are consistent
with the data and 0 otherwise. The dsum distribution also requires a special sampler, which
can currently only handle the case where the parameters of dsum are unobserved stochastic
nodes, and where the parameters are either all discrete-valued or all continuous-valued. A
node cannot be subject to more than one dsum constraint.

8.0.4 Data transformations

JAGS allows data transformations, but the syntax is different from BUGS. BUGS allows you
to put a stochastic node twice on the left hand side of a relation, as in this example taken
from the manual

for (i in 1:N) {
z[i] <- sqrt(y[i])
z[i] ~ dnorm(mu, tau)

}

This is forbidden in JAGS. You must put data transformations in a separate block of relations
preceded by the keyword data:

data {
for (i in 1:N) {

z[i] <- sqrt(y[i])
}

33

}
model {

for (i in 1:N) {
z[i] ~ dnorm(mu, tau)

}
...

}

This syntax preserves the declarative nature of the BUGS language. In effect, the data block
defines a distinct model, which describes how the data is generated. Each node in this model
is forward-sampled once, and then the node values are read back into the data table. The
data block is not limited to logical relations, but may also include stochastic relations. You
may therefore use it in simulations, generating data from a stochastic model that is different
from the one used to analyse the data in the model statement.

This example shows a simple location-scale problem in which the “true” values of the
parameters mu and tau are generated from a given prior in the data block, and the generated
data is analyzed in the model block.

data {
for (i in 1:N) {

y[i] ~ dnorm(mu.true, tau.true)
}
mu.true ~ dnorm(0,1);
tau.true ~ dgamma(1,3);

}
model {

for (i in 1:N) {
y[i] ~ dnorm(mu, tau)

}
mu ~ dnorm(0, 1.0E-3)
tau ~ dgamma(1.0E-3, 1.0E-3)

}

Beware, however, that every node in the data statement will be considered as data in the sub-
sequent model statement. This example, although superficially similar, has a quite different
interpretation.

data {
for (i in 1:N) {

y[i] ~ dnorm(mu, tau)
}
mu ~ dnorm(0,1);
tau ~ dgamma(1,3);

}
model {

for (i in 1:N) {
y[i] ~ dnorm(mu, tau)

}

34

	title page jags_user_manual-3
	Pages from jags_user_manual-1.pdf

