
Bayesian Modeling for Practicing Ecologists 

 

Page 1 

 

LAB 5. MARKOV CHAIN MONTE CARLO 

 

This exercise builds your confidence in R programming and helps you understand the 

concept of a Monte Carlo Markov chain using Metropolis steps implemented in a Gibbs 

sampler. The most effective ways to learn this stuff is to set up a problem where you know 

the answer and then see if you can find the answer using the concepts and methods that you 

seek to understand. This is what you will do in this lab—it is a very powerful way to learn 

new methods. So, it is really important that you keep your notes on the concepts in front of 

you when you are doing the coding. That way you can see if you can translate the concept 

into something more concrete. Please try hard to go back and forth between the concepts we 

covered in lecture and the coding you are doing in this lab—don’t get down in the R weeds 

and lose the big picture of MCMC. 

 

Here are some general tips for mastering a new method like MCMC. First, always work with 

a known answer—something you derive analytically (as in the lecture chrytid fungus 

example) or that you can estimate by another, proven method (as you will do in this lab).  

First, we will go through the simple chrytid fungus MCMC example. Recall that we are 

interested in estimating incidence (phi).  We have sampled 12 frogs of which 3 are infected. 

We’ll walk through the basic steps. 

 
Define a binomial likelihood function that takes 1 argument, the probability of success, phi 

and a prior uniform distribution. 

 
 # Define the binomial likelihood, assume 3 successes (i.e., infected) on 12 trials. 
n=12 
k=3 
L = function(phi)dbinom(3,size=12, prob=phi) 
 
# Define an uninformative distribution for the prior  
pr = function(z) dunif(z,0,1)   # a uniform prior 

 

Set up the chain, the proposal distribution, and the decision vector. These need to be the 

length of the chain. 

 
ni = 200000 # number of steps in chain 
x = numeric(ni) # vector to hold chain 
x[1] =0 .1  # initial value for chain 
z = runif(ni,0,1) # proposal distribution  
u = (runif(ni,0,1)) #decision vector 
 
for(j in 2:ni){ 
 #get ratio of likelihoods * priors 
 ratio = L(z[j]) *pr(z[j])  / L(x[j-1])*pr(x[j-1])   
  

#decide whether to keep propoal 
 if ( u[j] < ratio) x[j] = z[j] else x[j] = x[j-1] 
} 
 

Think about what the ratio is: if the new value of z is better, then the likelihood of observing 

your data given z will be higher than the one at step j-1 as well as the probability of z, so you 

will accept the proposal. The decision vector came from a uniform distribution so it is not 



Bayesian Modeling for Practicing Ecologists 

 

Page 2 

 

very conservative. You could make your chain more conservative by selecting high value for 

the decision vector so often it will be greater than the ratio. 

 
Plot results from the direct calculation of the posterior via the conjugate and the calculation 

from MCMC. Recall that the posterior estimate for a binomial likelihood with n trials and y 

successes is a beta distribution with parameters:  

 

))1,1()|( ynybetayP   

 
par(mfrow=c(1,1)) 
 
# calculate  posterior analytically assuming uninformative beta prior (i.e., beta(1,1) 
alpha = 3 + 1 
beta = 12 - 3 + 1 
 
# Set up a sequence of possible value for theta to be able to calculate and plot the posterior 
distribution. 
s = seq(0,1,.01) 
 
# calculate posterior density of theta directly 
b = dbeta(s,alpha,beta) 
 
# plot chain values stored in x as a density 
plot(density(x, adjust=1),col="red", main = paste("Simulated and Calculated Distribution, 
iterations = ",ni), xlab = expression(phi), ylab = expression(paste("P(", phi, "|data)")), 
cex.lab=1.2, cex.main=1.5, ylim=c(0,6)) 
 
# and overlay the theoretical distribution from the posterior estimation 
lines(s,b) 
 
# plot the rug (i.e., all sampled values of x (theta) at bottom curve 
rug(x) 
 
text = c("Calculated", "Simulated") 
colors = c("Black","Red") 
lines = c(1,1) 
legend(.4,5.0,text, lty = lines, col = colors, cex = 1.3) 

 
Exercise 1: Normal likelihood, uniform independent proposals, Metropolis algorithm, 

Gibbs Sampler 

 

We will start with a normal likelihood function, a uniform proposal distribution, and a 

Metropolis algorithm in a Gibbs sampler. You will move, step by step, to a more challenging 

problem, a beta log-likelihood function with a gamma proposal distribution. 

For this first problem, we will estimate the parameters for a model of exponential decay of 

leaf litter where we start with M0 litter in the first time step. These functions are used often in 

ecology.  Here are your steps. 

 

1) Simulate 50 data points from a normal distribution using the following model: 

 

μt= M0e
−kt

 

yt ~ normal(μt ,σ ) 



Bayesian Modeling for Practicing Ecologists 

 

Page 3 

 

 
Assume M0 =0.87, k =0.04, σ = 0.03 and t = 1 through 50. Make a nice plot of the simulated 

data and the model as a function of time (t). 

 

2) Use R’s nls() function to estimate means and standard deviations for M0 and k, realizing of 

course, that it is using a normal likelihood. The residual standard error corresponds roughly to 

your estimate of σ, below. 

 

3) Write a function to set up prior distributions for the parameters ((M0 , k, σ). You can make 

this informative or uninformative. For instance, here is a really uninformative prior: 

 
prior.k = function(k) 1 
prior.M0 = function(M0) 1 
prior.sigma=function(sigma) 1 

 

4) Write a normal likelihood function that takes 3 arguments (M0 , k, σ), and returns the total 

likelihood of the data conditional on the parameters. This will be very similar to the exercise 

for the hemlock trees we did last week.  

 

5) Now we will construct a Gibbs sampler using a Metropolis accept-reject step for each of 

the three parameters. Here are some hints. Most important, do the simple things first; get it 

working; test it; and then move to the next step. So the first thing to do is to write a likelihood 

function that takes arguments for the three parameters and the data and returns the product of 

the likelihoods across all data points. Test this function by plotting likelihood profile for each 

of the parameters, say k, holding the others constant at their known values (i.e., the ones you 

used to generate the data). If you proceed before you test this function thoroughly, I can 

promise you will suffer later.  

 

6) Next, estimate a single parameter using a Gibbs sampler, say, k, treating the other 

parameters as known in all steps—you know their values from the nls( ) analysis you did in 

step 2. Get this working first, then add a step for the second parameter and estimate the first 

and second parameter. Get this working, then add the third one. Follow the example from the 

hemlock trees we covered in lecture. 

 

7) To achieve this, you will need to create vectors of proposals of length = total number of 

simulations using uniform proposal distributions for each parameter. Store the values of the 

chain for each parameter in vectors of length = number of simulations. To save you some 

time (and suffering), I found that the following proposal distributions worked well: 

 
#set up parameters bounds for uniform proposal distributions 
k.low=0.01 
k.up = 0.1 
M0.low = 0.70 
M0.up = 0.95 
sigma.low = 0.01 
sigma.up = 0.06 
 
#create vectors of proposals for model parameters 
prop.k = runif(n.sim, k.low, k.up) 
prop.M0 = runif(n.sim,M0.low,M0.up) 
prop.sigma = runif(n.sim,sigma.low,sigma.up) 



Bayesian Modeling for Practicing Ecologists 

 

Page 4 

 

 

You can make them broader, but the broader they are, the more iterations you will need to get 

good estimates. You will also need to provide the first value of the chain for each parameter 

and vectors that store random draws from a uniform distribution for each of the parameters. 

See lecture notes for this. 

 

8)  The acceptance rule for Gibbs sampler with Metropolis algorithm for parameter M0 is: 

 
R = min(1, ratio) #prevents R from going above 1 
if(u.M0[j] < R) M0[j] = prop.M0[j] else M0[j] = M0[j-1] 

 

 

9) Think about how to deal with convergence. Think about throwing away some number of 

members of the chain to represent burn in. You can visually inspect this by plotting the 

running average of your iterations. Talk this over with you lab mates and write a brief 

description of your discussion. You will probably need 200,000 or more iterations to get a 

really good chain for your final estimates, one that will produce fairly smooth densities. 

However, when you are developing this code, you can use something more like 10,000 burn 

in + 25,000 iterations you keep. This is good practice---you can get a good sense of how the 

model is working using a relatively small number of iterations. Even if the plotted densities 

are jagged, you will find that the means and the standard errors are well estimated relative to 

the nls() estimates. This accelerates model development and debugging. When all is running 

well, then you can add multiple chains for each parameter and increase the number of 

iterations. 

 

10) Estimate the means of the parameters and their standard deviations based on Gibbs 

sampling and compare them with the estimated values from nls(). Talk with you lab mates 

about how to obtain these quantities. You will know you have succeeded when M0 and k are 

very close to the nls() estimates. Your estimate of σ using Gibbs will always be slightly 

greater than the estimate of the residual error from nls(). Why? 

 

11) Plot the chains for each parameter. Plot the posterior distributions of your estimates of 

each parameter.. Estimate 95% credible intervals on all parameters and quantities of interest 

(hint—use the R quantile() function with the vector that stores the parameters values that 

were kept (e.g., M0, k, or sigma). Write a brief description of the difference between a 

credible interval and a confidence interval. Plot a histogram of the chain and overlay the 

density representing the posterior distribution. What the density() function is doing is 

explained nicely at http://en.wikipedia.org/wiki/Kernel_density_estimation   

 

A technical note: The adjust = option for the density( ) function is a way to “smooth” the plot 

of the density. Alternatively, you can get a smoother plot with adjust = 1 if you do more 

iterations. Try playing with it. If you set adjust > 1 in a plot that you include in a publication 

you need to say something like: “A kernel estimator with a narrow bandwidth was used to 

smooth marginal posteriors produced by MCMC simulation.” 

 

Exercise 2: Beta log-likelihood, uniform proposal, Metropolis algorithm, Gibbs 

Sampler 

 

http://en.wikipedia.org/wiki/Kernel_density_estimation


Bayesian Modeling for Practicing Ecologists 

 

Page 5 

 

Now assume that the data (i.e., decomposition, think about it as a proportion) can only take 

on values between 0-1 such that a beta likelihood is a better choice than the normal. The 

model still takes the form: 

 

μt= M0e
−kt

 

yt ~ beta(a,b) 
 

but the y’s are bounded between 0 and 1.  

 

Begin by simulating data from a beta distribution using the same parameters as above and 

modify your code to use a beta distribution in your likelihood function. You will need to use 

the method of moments to come up with shape parameters for the beta distribution.  

 

Follow the steps outlined above to come up with functions for the prior distributions and the 

likelihoods.  For this to work, you will need to use log-likelihoods instead of likelihoods, but 

be careful about how you calculate the accept-reject ratio. With the beta, you will also need to 

pay attention to illegal operations—the beta is more fussy than the normal. So, the following 

lines of code will be useful: 

 
L.vector = dbeta(y,a,b, log=TRUE) 
like=sum(L.vector[is.finite(L.vector)]) 
 

Think about what is going on here. We first create a vector of likelihoods of the data (y), 

some of which turn out to be infinite, generating those NaN warnings. We exclude those from 

the sum using is.finite( ), which is analogous to the is.na( ) function.   

 

 


