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Abstract

A common feature of ecological data sets is their tendency to contain many zero values.

Statistical inference based on such data are likely to be inefficient or wrong unless careful

thought is given to how these zeros arose and how best to model them. In this paper, we

propose a framework for understanding how zero-inflated data sets originate and

deciding how best to model them. We define and classify the different kinds of zeros

that occur in ecological data and describe how they arise: either from �true zero� or �false
zero� observations. After reviewing recent developments in modelling zero-inflated data

sets, we use practical examples to demonstrate how failing to account for the source of

zero inflation can reduce our ability to detect relationships in ecological data and at worst

lead to incorrect inference. The adoption of methods that explicitly model the sources of

zero observations will sharpen insights and improve the robustness of ecological

analyses.
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I N TRODUCT ION

A distinguishing characteristic of many ecological data sets,

whether comprised of data measuring binary presence/

absence, counts of abundance, proportional occupancy rates

or continuous population densities, is their tendency to

contain a large proportion of zero values (Clarke & Green

1988, Fig. 1). When this number of zeros is so large that the

data do not readily fit standard distributions (e.g. normal,

Poisson, binomial, negative-binomial and beta), the data set

is referred to as �zero inflated� (Heilbron 1994; Tu 2002).

Zero inflation is often the result of a large number of �true

zero� observations caused by the real ecological effect of

interest. For example, the study of rare organisms or events

will often lead to the collection and analysis of data with a

high frequency at zero (Welsh et al. 1996). However, the

term can also be applied to data sets with excess zeros

caused by �false-zero� observations because of sampling or

observer errors in the course of data collection. Failure to

account for either source of zero inflation will cause bias in

parameter estimates and their associated measures of

uncertainty (Lambert 1992; MacKenzie et al. 2002).

The presence of zero inflation due to excess true zeros, a

special case of overdispersion (McCullagh & Nelder 1989;
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Hinde & Demétrio 1998; Poortema 1999), creates problems

with making sound statistical inference by violating basic

assumptions implicit in the use of standard distributions

(Mullahy 1986; Cameron & Trivedi 1998). One common

violation is a misrepresentation of the variance–mean

relationship of the error structure (Barry & Welsh 2002).

In ecology, transformations are often used to overcome

such problems. However, the difficulty with this approach

for zero-inflated data sets is that, while the transformation

may normalize the distribution of the non-zero values, no

transformation will spread out the zero values. The high

frequency of zero values is simply replaced by an equally

high frequency of the value to which zero is transformed

(Hall 2000).

The presence of zero inflation as a result of false zeros

may or may not violate the distributional assumptions, but

will lead to uncertainty regarding parameter estimates

because it is no longer possible to determine whether a

difference in the number of individuals surveyed over time

and space is because of a change in the size of the

population or because of a change in the detection

probability of the individuals (MacKenzie et al. 2002).

Zero inflated count data and the application of models

which cope with zero inflation are found in a wide range of

disciplines including epidemiology (Böhning et al. 1999;

Lewsey & Thomson 2004), medicine (Campbell et al. 1991;

Ghahramani et al. 2001; Cheung 2002), occupational health

(Lee et al. 2002; Carrivick et al. 2003; Wang et al. 2003; Yau

et al. 2004) and econometrics (Freund et al. 1999).

The ecological literature has seen a recent upsurge of

interest in techniques for dealing with excess zero values.

Zero-inflated models have been applied in a range of

ecological scenarios, including data sets with zero inflation

caused by true zero (Welsh et al. 1996, 2000; Barry & Welsh

2002; Podlich et al. 2002; Kuhnert et al. 2005; Martin et al.

2005) and false-zero observations (Kery 2002; MacKenzie

et al. 2002, 2003, 2004; Tyre et al. 2003; Wintle et al. 2004).

In this paper, we propose a framework for understanding

how zero-inflated data sets originate and to decide which of

the many available models to apply in any given case. In

doing so, we aim to bring these models to the attention of a

broader ecological readership and help ecologists navigate

the growing number of zero-inflated modelling approaches

at their disposal. First, we define the different kinds of zeros

that occur in ecological data and describe how they arise. We

then describe the approaches used to model the two types

of data typical of that collected in ecological studies;

presence/absence and count. The use of a selection of these

models is then illustrated through two detailed examples in

which the data are subject to different kinds of zero

inflation. Finally we discuss the potential gains in ecological

understanding made by applying such models.

Sources of zeros in ecological data

Zero values occur in one of four ways; two of which can be

defined as �true zero counts� and two as �false-zero counts�
(Table 1). The first kind of true zero arises from a low

frequency of occurrence, which can be the result of range of

ecological processes and life-history strategies (Gaston

1994) or the result of a strong ecological effect that leads

to sites having no organisms present. For example, a species

may be absent because of demographic processes, compe-

tition, or poor habitat quality (e.g. because of disturbances

or unsuitable vegetation structure). These zeros are true

zeros resulting from the real ecological effect that we are

trying to determine. Secondly, a zero may occur simply by

chance, because the species does not saturate its entire

suitable habitat (e.g. because of local extinctions caused by

demographic stochasticity).
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Figure 1 Example of a typical zero-inflated

data set. Frequency of counts for 31 bird

species across eight sites and three grazing

treatments (n ¼ 744) from Martin et al.

(2005). Over 70% of the data set is

represented by zero counts, which is more

than expected if a Poisson distribution is

assumed for the species� abundances.
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The first kind of false zero is caused by failing to record a

species that inhabits a site because, although it occupies the

site, it was not present at the time of the survey. This can be

caused by using a sampling area that is small and/or length

of visit that is short, relative to the temporal and spatial scale

of movements of the species (Tyre et al. 2003). The second

kind occurs when the species occupies a site and is present

at the time of sampling, but the observer does not detect the

species. These errors are common for cryptic or secretive

species (MacKenzie et al. 2002).

It is worth noting that the type of zero represented by a

particular observation depends on the study objective. For

example, in the case where a species may be temporarily

absent from a study site, if the aim is to quantify where the

species is instantaneously, its absence would not constitute a

false zero (i.e. the species really was not there when

surveyed). However, if we were interested in what areas

were being used by the species over a longer time frame,

then its absence would constitute a false zero.

Aside from the categories defined above, a large number

of zeros can arise in ecological data in other ways, when

observations are obtained from outside the environmental

range of a species, referred by Austin & Meyers (1996) as

�naughty naughts�. The solution to this problem involves a

reduction or filtering of data sets to exclude the �naughty

naughts� from outside the species� range (Austin & Meyers

1996; Elith & Burgman 2002) or to simply avoid their

collection through thoughtful sampling design.

Choosing an appropriate zero-inflated model

When considering how to model zero-inflated data sets, it is

important to take into account which kinds of zeros are

present (Table 1). In this section, we outline the recom-

mended modelling approaches when the data set are

dominated by either true zeros, false zeros or a combination

of the two for presence/absence and count data (Table 2).

Zero-inflated Poisson (ZIP) and binomial (ZIB) models

fitted to data without covariates have a long history

(Johnson & Kotz 1969). Lambert (1992) provides the

general form of ZIP regression with covariates to model

defects in a manufacturing process. Models specifically for

zero-inflated count data have been under development by

Heilbron (1994), Welsh et al. (1996, 2000), Faddy (1998),

Hall (2000), Dobbie & Welsh (2001), Barry & Welsh (2002)

and Wang (2003) and applied using a Bayesian philosophy

to statistical inference by Angers & Biswas (2003), Martin

et al. (2005) and Kuhnert et al. (2005). The development of

zero-inflated models for continuous data, such as fish stock

assessment has also received attention (i.e. log-normal, delta

log-normal and delta-Gamma models) (Aitchison 1955;

Stefansson 1996; Syrjala 2000) and has been developed

further by Fletcher et al. (2005).

No zero-inflation

In the absence of zero-inflation, a standard single distribution

model such as the binomial or Poisson is used. McCullagh &

Nelder (1989) provide a full discussion of the sampling

distributions and models for this type of data (Table 2).

Zero-inflation due to true zeros

When true zeros lead to an excess of zeros, zero-inflated

models such as two-part (also known as conditional or

hurdle models) or mixture models are recommended

(Lambert 1992; Welsh et al. 1996). The negative binomial

Table 1 Four ways zeros arise in ecological data

Type of zero Definition

True zero Species does not occur at a site because of the

ecological process, or effect under study (e.g.

habitat unsuitable)

Species does not saturate its entire suitable

habitat by chance

False zero Species occurs at a site, but is not present during

the survey period

Species occurs at a site and is present during the

survey period, but the observer fails to detect

it (particularly common for rare or cryptic

species)

Table 2 Four scenarios of zero occurrences

in ecological data and the modelling

approach recommended for presence/

absence and count data, where zero inflation

can be caused by false zeros, true zeros or a

combination of both

Zero inflation Modelling approach Key references

None Single distribution models (e.g. binomial) McCullagh & Nelder (1989)

True zeros Zero-inflated mixture models,

ZIB or ZIP with

point mass at zero, or hurdle models

Lambert (1992),

Welsh et al. (1996) and

Hall (2000)

False zeros Zero-inflated mixture models

(e.g. ZIB or ZIP)

MacKenzie et al. (2002, 2003)

and Tyre et al. (2003)

Both Mixture of two or more distributions None found

The zero-inflated models are based on the binomial distribution for presence/absence data,

and on the Poisson or negative-binomial model for count data.

ZIP, zero-inflated Poisson; ZIB, zero-inflated binomial.
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has also been advocated for modelling data sets with many

zeros because of its ability to account for overdispersion

(Warton 2005). However, Welsh et al. (1996) and Hall (2000)

demonstrated that the excess number of zeros often exceeds

those expected under a negative-binomial distribution.

For count data, a two-part modelling approach has

appeared in the ecological literature, whereby the first part is

a binary outcome model (i.e. Bernoulli), and the second part

is a truncated count model (e.g Poisson or negative

binomial) (Cameron & Trivedi 1998). This approach

assumes that zeros arise from a single process and a set of

covariates. One of its computational benefits is that it is

possible to fit these models in two parts, for example, fitting

zeros using a logistic regression separately from fitting non-

zeros using a truncated Poisson (e.g. Welsh et al. 1996;

Dobbie & Welsh 2001). Using this approach, one is able to

estimate the probability that a species is present and then

given it is present, estimate the relative mean number of

individuals.

Mixture models are combinations of probability distribu-

tions chosen for their ability to represent two or more real

ecological processes. The ZIP mixture model used to model

count data is a mixture of a point mass at zero and a Poisson

distribution. With this approach, zeros may arise from one

of two processes and their related covariates, a zero-process

from which only zero values are observed and a Poisson

process in which non-zero and a proportion of the zero

values, appropriate to the Poisson distribution are observed

(Lambert 1992). The interpretation of mixture model

parameters is less straight forward than the two-part model.

For example, to get the true estimate of relative mean

abundance from the ZIP one must multiply the estimated

relative mean number of individuals at a site by the

probability that the relative mean number of individuals at a

site is generated through a Poisson distribution.

Where there is zero inflation and overdispersion caused

by large counts of individuals (e.g. flocking birds), the use

of a zero-inflated negative binomial (ZINB) mixture

model has been shown to be appropriate (Welsh et al.

2000).

Zero inflation due to false zeros

If false zeros are present in the data a zero-inflated mixture

modelling approach is required (MacKenzie et al. 2002; Tyre

et al. 2003) because we are interested in modelling two

processes, a process leading to true zeros and a process

leading to false zeros.

A recent set of articles highlight the problem of false

zeros in ecological data sets that are collected for the

purpose of assessing site occupancy (Kery 2002; MacKenzie

et al. 2002) and making inferences about species–habitat

relationships, or the effects of anthropogenic activities, on

species distributions (e.g. Tyre et al. 2003; Gu & Swihart

2004). Failing to take account of false-zero observations in

analyses may have substantial impacts on the ability to

accurately infer relationships between site occupancy and

habitat attributes or management actions (MacKenzie et al.

2003; Field et al. 2005; Rhodes et al. 2005). The zero-inflated

binomial (ZIB) model and its extensions provide an

appropriate framework for analysing data that are collected

for these purposes and which are likely to contain false-zero

observation error (MacKenzie et al. 2002; Tyre et al. 2003;

Wintle et al. 2004, 2005).

Zero inflation due to both excess true zeros and false zeros

In the literature there has been no formal discussion of how

to model data sets that contain both excess true zeros and

false zeros. Using a Bayesian framework one approach

would be to incorporate information on the contribution of

false zeros to the data (e.g. detection probability) as an

informative prior in a zero-inflated model.

Uncertainty regarding the source of zero inflation

In some cases it is not possible to determine the source

of zero observations. One way of dealing with this

uncertainty is to use a truncated distribution whereby the

zeros are eliminated completely and only the occurrences

are modelled. For example, Baum & Myers (2004) were

unable to determine whether the absence of sharks in

bycatch data sets were a result of true zeros (e.g. there

were no sharks in the bycatch) or the fisherman’s failure

to record the sharks in the bycatch. They dealt with this

uncertainty by using a truncated negative-binomial model

to estimate trends in shark numbers from only the non-

zero shark catches.

Modelling zero inflation in ecological data

In this section, we present two examples that deal with zero

inflation: (i) generated by excessive numbers of true zeros in

count data and (ii) arising from false zeros in presence/

absence data. Both examples are illustrated through Baye-

sian inference using simulation-based Markov Chain Monte

Carlo (Ellison 2004).

In the first example, we illustrate the use of the ZIP and

ZINB mixture models and compare their performance with

standard Poisson and negative-binomial models, in an

examination of the impact of livestock grazing on the

relative mean abundance of four Australian woodland birds,

where zero inflation is a result of an ecological process

leading to an excess of true zeros. The second example

demonstrates the use of the ZIB mixture model in making

inferences about the suitability of habitat in a highly

fragmented landscape for four woodland bird species. It

specifically accounts for zero inflation resulting from false

zeros generated through the sampling process.
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Modelling the impact of grazing on bird assemblages with
zero-inflated count data caused by excess true zeros

Zero inflated mixture models

Using the mixture modelling approach, p(xi) represents the

probability that an observation i is generated through either

the Poisson distribution or the negative binomial, irrespect-

ive of whether the observation is a zero or non-zero value.

Equations 1 and 2 show expressions for the two models

under investigation.

ZIP mixture model

PrðYi ¼ 0jx;zÞ ¼ 1� pðxiÞþ pðxiÞexpð�kðziÞÞ;

PrðYi ¼ r jx;zÞ ¼ pðxiÞ
expð�kðziÞÞkðziÞr

r !
; r ¼ 1;2; . . . ;

ð1Þ
where

logitðpðxiÞÞ ¼ a0 þ b0ðxiÞ
logðkðziÞÞ ¼ a1 þ b1ðziÞ

:

In both equations, k(zi) represents the mean number of

individuals at site i and it can be expressed as a function of

the explanatory variables, z through a log transformation.

Similarly, p(xi) can be expressed as a function of the

explanatory variables, x, using a logit transformation where

x does not necessarily have to be the same set of covariates

as those represented by z. Here, the parameters a0 and a1
represent constant terms in each regression component and

b0 and b1 are vectors, representing the coefficients

estimated for each explanatory variable fitted in the model.

ZINB model

PrðYi ¼ 0jx; zÞ ¼ 1� pðxiÞ þ pðxiÞ
1

1þ /kðziÞ
1=/

;

PrðYi ¼ r jx; zÞ ¼ pðxiÞ
Cðr þ 1=/Þ
r !Cð1=/Þ

� /rkðziÞr

ð1þ /kðziÞÞr ð1þ /kðziÞÞ1=/
; r ¼ 1; 2; . . . ;

ð2Þ

where

logitðpðxiÞÞ ¼ a0 þ b0ðxiÞ
logðkðziÞÞ ¼ a1 þ b1ðziÞ

:

Equation 2 has an additional parameter, / which allows

estimation of an overdispersion parameter in situations

where large counts have been recorded or alternatively, a

large number of zeros have been observed. In both models,

if p(xi) is equal to 1, we default to the usual Poisson and

negative-binomial models for count data. See Lambert

(1992); Welsh et al. (1996) and Dalrymple et al. (2003) for

more details.

The species, study site and data collection

Martin et al. (2005) and Kuhnert et al. (2005) examined the

impact of livestock grazing on the relative abundance of 31

woodland birds in subtropical Australia. Bird count data was

collected across three broad levels of grazing (low, moderate

and high) in eucalypt woodland habitat. Eight replicate sites

of each grazing regime were sampled. Sites were visited on

two separate days and over two seasons, giving a total of 24

sites and 96 site visits.

For comparisons of relative mean abundance estimates to

be valid, detection or capture probabilities of individuals are

assumed to be equal (e.g. across different sites). In this study

this assumption was justified by the open vegetation

structure of the sites and conspicuous behaviour of the

birds examined (Martin et al. 2005).

Using data from four of the bird species investigated by

Martin et al. (2005) and Kuhnert et al. (2005), we compared

the relative mean abundance estimates and credible intervals

from fitting Poisson, negative-binomial, ZINB mixture and

a ZIP mixture models. To get an estimate of relative mean

abundance from the ZIP mixture that could be compared

with the relative mean abundance estimate from the Poisson

model, the ZIP mixing probability p(x), the probability that

the number of individuals at a site has a Poisson

distribution, was multiplied by k(z) the mean of the estimate

given that it was generated from a Poisson distribution.

Models were fitted using the Bayesian statistical modelling

freeware package, WinBUGs (Spiegelhalter et al. 2003). The

deviance information criterion (DIC) was calculated to

compare the fit of the four models (Spiegelhalter et al. 2002).

From a Bayesian perspective the DIC is analogous to

Akaike’s information criterion (Akaike 1973), in that its

intent is to assess the models in terms of their fit and

complexity (Burnham & Anderson 2002). The DICs

computed by WinBUGs were checked using the formula

recommended by Celeux et al. (2003).

We modelled four bird species separately treating grazing

as a fixed effect. Convergence was achieved after a burn-in

of 10 000 iterations and estimates were obtained after a

further 30 000 iterations. Convergence of the Markov chains

was examined using the CODA package (Best et al. 1995).

An examination of the frequency of counts for the four

bird species under investigation revealed that data for three

of the species (brown thornbill Acanthiza pusilla, noisy miner

Manorina melanocephala and superb fairy-wren Malurus cyaneus)

were zero inflated (Fig. 2). This zero-inflation was a result of

species showing strong preferences for particular grazing

levels and an avoidance of others.

Modelling excess zeros in ecology 1239
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On the contrary, the data for the rufous whistler

Pachycephala rufiventris was more consistent with properties

of the Poisson distribution.

For purpose of illustration, counts for each species

were pooled across visits and modelled across grazing

levels. Season was not a significant contributor to the

model and was not included as a factor. Although

informative priors were used in the full study (Martin

et al. 2005), here we considered non-informative normal

priors with a mean of zero and precision parameters

equal to 0.0001. In this example, the mixing probability

p(x) was fixed across grazing levels, however, one

could allow p(x) to vary by modelling grazing as a

covariate (see Appendix S1 for code). Full details on the

study design, data collection, analyses using both mixture

and two-part zero-inflated models and results for all

species are described in Martin et al. (2005) and Kuhnert

et al. (2005).

Results

Comparison of model fit as determined by the DIC of all

four models showed that the ZIP performed best for the

brown thornbill, which coincidentally was the most zero-

inflated species (Fig. 2). The negative binomial performed

best for the noisy miner, and the ZINB performed best

for the superb fairy-wren and rufous whistler (Table 3).

The standard Poisson had the poorest fit for all four bird

species. The DICs for the rufous whistler were only

marginally different amongst the four models. This is a

result of the data for this species exhibiting properties

more consistent to that of the Poisson distribution, i.e. the

mixing probability p(x) from the ZIP that an observation

came from a Poisson distribution was closer to 1 (Table 3).

Comparing the estimates from the negative-binomial,

ZINB and ZIP mixture with the Poisson model revealed that

the 95% credible intervals from the negative-binomial, ZINB

and ZIP mixture were much broader than those using the

0

10

20

30

40

0 1 2 4 5 9 10 11 15 18 19 25
Number of birds

(b)

(d)

0

10

20

30

40

0 2 3 6 8 11 17 18

Number of birds

(c)

F
re

q
u

en
cy

0

5

10

15

0 1 2 3 4 5 6 7 9

Number of birds

0

10

20

30

40

50

0 4 7 15
Number of birds

(a)

F
re

q
u

en
cy

Figure 2 Frequency of counts of four

woodland bird species: (a) brown thornbill,

(b) noisy miner, (c) superb fairy-wren and (d)

rufous whistler across 24 sites visited twice

in summer and twice winter.

Table 3 Deviance information criterion

(DIC) for the Poisson, negative-binomial,

zero-inflated negative binomial (ZINB) and

zero-inflated Poisson (ZIP) mixture models

for four woodland bird species

Model Brown thornbill Noisy miner Superb fairy-wren Rufous whistler

Poisson 123.5 245.1 267.1 195.4

Negative binomial 67.7 137.9 121.0 180.8

ZINB mixture – 141.1 105.9 177.0

ZIP mixture 60.8 167.3 120.9 189.6

ZIP p̂ 0.341 0.479 0.337 0.822

95% CI (0.132–0.586) (0.249–0.774) (0.185–0.513) (0.649–0.983)

Estimates of the mixing probability p̂ and 95% credible interval in brackets from the ZIP are

reported in the last row of the table, where p̂ is the probability that an observation is

generated through the Poisson distribution. A dash (–) denotes the model could not be fit.
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standard Poisson model for the three species whose

frequency were most zero inflated as illustrated for the

ZIP and Poisson in Fig. 3. The superb fairy-wren was

predicted to be significantly less abundant under high grazing

than either low or moderate under the Poisson model,

whereas under the negative-binomial, ZINB and ZIP model

there was no substantial difference in relative mean

abundance estimates across the three grazing levels. Con-

versely, estimates from the four models did not vary

substantially for the rufous whistler, the species whose

distribution was least zero inflated (Fig. 2). In general, the

Poisson model was over-confident regarding the uncertainty

(smaller credible intervals) and in the case of the superb fairy-

wren led to a significantly different conclusion regarding the

impact of high grazing on its relative mean abundance.

Modelling influences on woodland bird patch occupancy
when patch occupancy observations are subject to
false-zero errors

To illustrate the use of the ZIB model, we analyse site

occupancy data and investigate influences of habitat type

and landscape metrics (patch area and connectivity), on site

occupancy rates for four woodland bird species in the Mt

Lofty Ranges (MLR) in south-eastern Australia. We com-

pare the inference resulting from the application of the

standard logistic regression model with that resulting from

the use of a generalized ZIB model.

The ZIB model

Under imperfect detection, site occupancy data are best

thought of as realizations of two binomial processes acting

simultaneously at two different time scales (MacKenzie et al.

2002; Tyre et al. 2003). The first process influences p, the

probability of a site being occupied over a relatively long-

time period. The second process influences the detectability

q, the probability of observing the species in a particular visit

(or survey) at a site, given that it is present over the longer

time period. The survey period may be comprised of 1,

2, … , v visits. The outcome of the two processes is a finite

mixture distribution known as the ZIB mixture model (Hall

2000). Failure to detect the species can occur because the

species is absent (occurring with probability 1 ) p) or it is

present and remains undetected over the v visits [arising

with a probability p(1 ) q)v]. When the species is present at

the site and detected, the actual number of observations is

drawn from a binomial distribution. Thus, ignoring the

influence of covariates, the ZIB model is:

Pr½Y ¼ 0� ¼ 1� pþ pð1� qÞv; y ¼ 0

Pr½Y ¼ y� ¼ p
v

y

� �
qyð1� qÞv�y; y � 1;

ð3Þ

where y is the number of detections in v visits to a site, and p

and q are defined as above. The model may be easily gen-

eralized to allow covariates to influence p and q as in a

logistic regression. Tyre et al. (2003) presents a maximum

likelihood implementation of that extension in R (R

Development Core Team 2005) and MacKenzie et al. (2002)

do so in PRESENCE, and Wintle et al. (2005) present a

Bayesian version using WinBUGS (Spiegelhalter et al. 2003).

Note that the maximum likelihood version of the ZIB

model cannot be estimated unless two or more visits are

undertaken on at least some of the survey sites.

The species, study site and data collection

The MLR of South Australia is a highly fragmented

landscape with only 14% of its original 686 000 ha area

now covered by native vegetation. The MLR is an area of

national conservation significance with numerous bird

species threatened by loss and fragmentation of habitat

(Paton et al. 1994; Garnett & Crowley 2000). The bird

community is the subject of a multispecies recovery plan

and planning for large-scale reinstatement of habitat is a

high research priority for the region (Westphal et al. 2003).

In order to target management and restoration efforts most

effectively, it would be useful to investigate how occupancy

rates of various species depend on local habitat and

landscape characteristics.

To this end we modelled the effect of habitat type, patch

area and landscape connectivity on occupancy levels of four

MLR bird species of conservation concern: the scarlet robin,
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Figure 3 Estimates of relative abundance and 95% credible

interval of four woodland bird species across three grazing levels

(low, moderate and high) for the Poisson model and the zero-

inflated Poisson mixture model.
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Petroica multicolor, buff-rumped thornbill Acanthiza reguloides,

white-throated tree creeper, Cormobates leucophaeus, and

rufous whistler Pachycephala rufiventris. Three-repeat surveys

(20 min–2 ha active timed searches; Loyn 1986; Field et al.

2002) were conducted at each of 155 forest and woodland

sites during the main breeding season (September to

December) in 2003. To model the effect of habitat, sites

were classified by major habitat type as either �stringybark�
(canopy dominated by Eucalyptus obliqua, Eucalyptus baxteri)

or �gum� (Eucalyptus leucoxylon, Eucalyptus viminalis, Eucalyptus
fasciculosa, Eucalyptus goniocalyx). To model landscape charac-

teristics, the area of each patch containing a survey site was

obtained from a GIS, and connectivity was calculated

according to Moilanen & Nieminen (2002). A subset of

possible combinations of habitat, area and connectivity

variables yielded five candidate models (Table 4).

A generalized ZIB model for woodland bird occupancy data

The standard approach to modelling the influence of

landscape and habitat attributes on the probability of

occupancy (p) at a given site is to use a logistic regression

(McCullagh & Nelder 1989) such that:

p ¼ expðaþ b0X Þ
1þ expðaþ b0X Þ ; ð4Þ

where a and the vector b are the regression coefficients and

the vector X represents the values of the independent

environmental variables influencing p. This model assumes

that the observations, Y, are realizations of independent

Bernoulli trials with event probabilities p. However, because

our data contain multiple (3) visits to 155 sites in the model

fitting data set, it is possible to embed eqn 4 in eqn 3,

allowing simultaneous estimation of regression coefficients

b and the detection probability parameter q. The combina-

tion of eqns 3 and 4 may be thought of as a generalization of

the ZIB model that allows unbiased estimation of habitat

model coefficients b.
The generalized ZIB model and the standard logistic

regression model were fitted to each of the five candidate

models (Table 4) using WinBUGS. Non-informative normal

priors with a mean of zero and precision parameters equal

to 0.0001 were used (see Appendix S2 for code). DIC

statistics were calculated for each model and used to

compare the five competing models (Spiegelhalter et al.

2002). Convergence was achieved after a burn-in of 10 000

iterations. Estimates were obtained after a further 30 000

iterations. Convergence of the Markov chains was examined

using CODA package (Best et al. 1995). For the purpose of

this paper we were primarily interested in the difference in

inference obtained under the two types of model.

Results

The four bird species showed varying responses to woodland

vegetation types and landscape attributes. Best models,

determined on the basis of DIC included the variable

�Habitat�, with white-throated treecreepers strongly preferring
stringybark woodland, scarlet robins showing a similar but

weaker preference for stringybark and both buff-rumped

thornbills and rufous whistlers displaying a moderate prefer-

ence for gum woodland (Table 5). On the basis of our results,

only one of the species, the scarlet robin, was strongly

influenced by habitat area (Table 5 and Fig. 4a) and only one

species, the white-throated treecreeper, was strongly influ-

enced by patch connectivity (Table 5). Single visit detection

probabilities (q) for all species ranged from c. 0.24 (rufous

whistler) to 0.61 (white-throated tree creeper) (Table 5).

According to model DICs, the best standard logistic

model was always the same as the best generalized ZIB

model in terms of which variables were most important.

This may be the result of assuming �q� was equal across

covariates, hence the model likelihood for the ZIB was

proportional to the logistic regression likelihood. An

alternative approach is to model �q� as a function of

covariates, allowing factors that affect occupancy to be

teased apart from those that affect detectability (MacKenzie

2005).

Regardless, both the magnitude of the effect and their

credible intervals were always greater in the ZIB model

(Table 5). In other words, using the logistic regression failed

to account for the zeros generated by false absences,

Table 4 Five alternative models for explaining the probability of woodland bird species occurrence, where Habitat defines the type of

vegetation at the survey location, �Area� is the area of the patch in which the survey site is located and �Connectivity� is a connectivity measure

calculated according to Moilanen & Nieminen (2002, eqn 3a)

Model 1 logit[Pr(Y ¼ 1)] ¼ b0
Model 2 logit[Pr(Y ¼ 1)] ¼ b0 + b1 · Habitat

Model 3 logit[Pr(Y ¼ 1)] ¼ b0 + b2 · Habitat + b3 · Area

Model 4 logit[Pr(Y ¼ 1)] ¼ b0 + b2 · Habitat + b3 · Connectivity

Model 5 logit[Pr(Y ¼ 1)] ¼ b0 + b2 · Habitat + b3 · Area + b4 · Connectivity

The variable �Habitat� is a binary variable where a value of 0 indicates stringy-bark eucalyptus woodland vegetation and a 1 indicates gum-bark

eucalyptus woodland vegetation.
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resulting in a consistent underestimation of both the mean

and variance of model effects. This result corroborates the

findings of Tyre et al.�s (2003) simulation study. Inference

based on standard analyses could therefore be erroneous,

and, if used for conservation planning purposes, lead to

misdirected management actions. For example, if a set of

occupancy models were used to underpin multispecies

habitat reconstruction planning (e.g. Westphal et al. 2003),

mis-specification of the type, amount and connectivity of

habitat required for each species could result in suboptimal

allocation of reconstruction effort across the landscape.

CONCLUS ION

Understanding how zeros arise and what types of zeros

occur in ecological data are more than just semantics; failing

to model zeros correctly can lead to impaired ecological

understanding. In this paper, we have categorized the

different sources of zeros in ecological data and discussed

the statistical tools available for modelling zero inflated

presence/absence and count data. We have demonstrated

that failing to properly account for zero inflation as a result

of false-zero and excess true-zero observations can lead to

substantially different parameter and precision estimates.

Excess true zeros are a result of ecological processes. This

may be due to species rarity (Gaston 1994) or the result of

habitat condition. In our first example the number of birds

counted (i.e. abundance) is of direct interest and the mixture

component of the ZIP represents a trigger point in habitat

condition where the probability of the number of birds

present goes from zero to a Poisson distribution. The

ecological interpretation is subtly (but importantly) different

to the case where the entire zero-class was modelled

separately as in a two-part modelling approach.

In the second example, we are interested in the presence

or absence of the bird species. As this is simply a binary

response, it cannot be zero inflated as a result of �true zeros�
and the zero inflation occurs through the sampling process

of the number of times the species is not detected when it is

present, hence �false zeros�.
Situations where one may have both �true� and �false

zeros� occur when extra zeros may be included in the data

set from the ecological and sampling processes (e.g. there

may be a set of minimal conditions for any members of the

species to be present at the site, and then when the

population is surveyed, the number of individuals actually

present is undercounted because of imperfect detection).

Our worked examples show that the choice of modelling

approach influences the predictive performance and hence

ecological inference. The degree to which inference changes

necessarily depends on the amount of zero inflation present

in the data. In the examples presented here, the magnitude

of zero inflation for three of the four bird species examined

in the grazing effects study was substantial and not

accounting for zero inflation as a result of excess true zeros

led to an underestimation of the variance and hence

overconfidence in the certainty of the estimates or increased

risk of type I error. Similarly, in the habitat modelling bird

example, when the probability of detection is < 1, or in

other words when the data set contains false zeros, not

accounting for the resultant zero inflation leads to both an

underestimation of the size of effects and their variance or

increased risk of type II error (Tyre et al. 2003; Wintle et al.

2004).

To the extent that management decisions are made within

a hypothesis-centred statistical framework, higher type I and

type II error rates, respectively, could result in financial

losses because of erroneous interventions (type I) or failures

to take action (type II) (Mapstone 1995; Dayton 2001; Field

et al. 2004). Under a scientific framework that relies on

model-based inference (Burnham & Anderson 2002), biased

estimation of ecological effects can lead to erroneous model

selection, predictions and conclusions regarding ecological

effects. Given the considerable focus on modelling rare

species and/or rare events in ecology and conservation

biology it is imperative that the source of zero observations

Table 5 The favoured model (M) for each species with habitat and landscape coefficient posterior estimates and 95% credible interval (CI)

for the standard logistic (binomial) and generalized zero-inflated binomial (ZIB) model

Species M Variable

Posterior coefficient estimate and 95% CI

Standard logistic Generalized ZIB

Scarlet Robin (q ¼ 0.336) 3 Habitat )1.146 ()1.909 to 0.424) )1.61 ()3.218 to )0.061)
Area 0.180 (0.022 to 0.344) 0.258 (0.047 to 0.568)

Rufous whistler (q ¼ 0.243) 2 Habitat 0.909 (0.058 to 1.817) 1.133 (0.079 to 2.796)

White-throated treecreeper (q ¼ 0.611) 4 Connectivity 0.167 ()0.018 to 0.354) 0.189 ()0.059 to 0.449)

Habitat )2.932 ()3.903 to )2.066) )3.674 ()6.339 to )2.374)
Buff-rumped thornbill (q ¼ 0.311) 2 Habitat 1.438 (0.694 to 2.233) 1.876 (0.863 to 5.77)

The favoured model presented for each species is the best of the five competing models (Table 4) on the basis of deviance information

criterion values and q is the detection probability.
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be considered and modelled accordingly, or we risk making

incorrect inferences about the species and events that are of

greatest conservation concern.
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