
0.1 Moment matching

The concept of shape parameters is unfamiliar to ecologists trained in statistics classes emphasizing

methods based on the normal distribution, which is to say, most ecologists. The two shape parame-

ters of the normal distribution are its first and second central moments, the mean and the variance,

motivating students and colleagues to ask us, “Why are shape parameters necessary? Why not

simply use the moments as parameters for distributions?”

The answer is important, if not obvious. For all distributions except the normal, multivariate

normal and the Poisson, the variance of the distribution is a function of the mean (Figure showing

mean / variance relationships ). Shape parameters for the binomial, multinomial, negative binomial,

beta, gamma, lognormal, exponential and Dirichlet are functions of the mean and the variance,

which allows the relationship between the mean and variance to change as the shape parameters

change. The only conditions that allow the moments to be used as shape parameters occur mean

and the variance are constant, as is the case for the normal, multivariate normal, and the Poisson.

This creates a problem for the ecologist who seeks to use the toolbox of distributions that

we described above, a problem that can be easily seen in the following example. Assume you

want to model the influence of growing season rainfall (xi) on the mean aboveground net primary

production in grasslands (µi). You might be inclined to reach for a simple linear model µi = γ0+γ1xi

to represent this relationship (e.g. Knapp paper). However, there are structural problems with a

linear model because it predicts values that can be negative, which makes no sense for production.

Moreover, it predicts that growth increases infinitely with increasing rainfall, which clearly isn’t

right on biological grounds. So, using your knowledge of deterministic models (section ), you

choose

µi =
κ exp (γ0 + γ1xi)

1 + exp (γ0 + γ1xi)
, (1)

thereby deftly assuring that the model’s estimate is non-negative and asymptotically approaches a

maximum, κ.

Equation 1 is purely deterministic. You would like to represent the uncertainty that arises

because the model isn’t perfect and because you fail to observe net primary production per-

fectly.1 Your first thought about modeling the uncertainty might be to use a normal distribution,

1In this case, these sources of uncertainty will be inseparable. Later, we will develop models that separate them.
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normal [yi|µi, σ]. So, your model predicts the mean (µi) of the distribution of of observations of

growth (yi) and the uncertainty surrounding that prediction depends σ. This is the traditional

framework for regression. It is convenient because the prediction of the model is the first argument

to the distribution.2.

However, informed by the section on continuous distributions, you decide that the normal is a

poor choice for your model for two reasons. First, the support is wrong – production cannot be

negative, so you need a distribution for data that are continuous and strictly positive. Moreover,

a plot of the data shows that the spread of the residuals increases with increasing production,

casting doubt on the assumption variance is constant. As an alternative, you choose the gamma

distribution because it is 3strictly non-negative and is parameterized such that the variance increases

in proportion to µ2.

This is entirely sensible, but now you have a problem. How do you get the prediction of your

model, the mean prediction of production at a given level of rainfall (µi), into the gamma probability

density function if the function doesn’t contain an argument for the mean? How do you represent

the uncertainty σ? The solution to this problem is moment matching. You need an equation for the

shape parameters in terms of the moments to allow you to use the gamma distribution to represent

the uncertainty in your model. Equations for moments as functions of the shape parameters can

be found in any mathematical statistics text. The converse is not true; it is uncommon to see the

shape parameters expressed as functions of the moments. However, obtaining these functions is

easy and useful. We simply solve two equations in two unknowns. Illustrating this solution using

the gamma distribution with shape parameters shape = α and rate = β:

µ =
α

β
(2)

σ2 =
α

β2
, (3)

2You are probably more familiar with the equivalent formulation, yi = γ0+γ1xi+εi, εi ∼ normal
(
0, σ2

)
. We avoid

this additive arrangement for representing stochasticity because it cannot be applied to distributions that cannon be
centered on zero.

3The lognormal would be another logical choice and it is unlikely that it would make any difference which of these
two distributions you chose.
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so,

α =
µ2

σ2
(4)

β =
µ

σ2
. (5)

You are now equipped to use the gamma distribution to represent the uncertainty in your model

of net primary production,

µi =
κ exp (γ0 + γ1xi)

1 + exp (γ0 + γ1xi)

αi =
µ2i
σ2

(6)

βi =
µi
σ2

(7)

[yi|µi, σ] = gamma

(
yi

∣∣∣∣ αi, βi) . (8)

As a second example, imagine that you wanted to model the probability of survival of juvenile

birds µi as a function of population density xi. Removing the κ term from equation 1 does the

trick for your deterministic model, which now makes predictions strictly between zero and 1, that

is µi = exp(γ0+γ1xi)
1+exp(γ0+γ1xi)

. But the gamma distribution is no longer appropriate for representing the

uncertainty because it applies to random variables that can exceed one. The normal is even worse

because it includes negative values and values that exceed 1. A far better choice is the beta, which

models continuous random variables with support over (0, 1). Solving for the shape parameters in

terms of the moments (using equations ?? and ??), we can now make a prediction of survival with

our deterministic model and properly represent uncertainty using the beta distribution,

αi =
µ2i − µ3i + µiσ

2

σi
(9)

βi =
µi − 2µ2i + µ3i − σ2 + µiσ

2

σ2
(10)

[yi|µi, σ] = beta(yi|αi, βi) (11)

Equations 4,5 and 9, 10 are examples of moment matching. We use the functional relationship

between the shape parameters and the moments to allow us to match the predictions of a model to
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the arguments of the distribution that is best suited to the model and the data. It is important to see

how moment matching allows us to specify characteristics of distributions for which the variance is

a function of the mean. These matching relationships are broadly useful for the ecological modeler

because they allow us to use all of the distributions we have described above to represent the

stochasticity regardless of the form of the arguments to those distributions. It is easy enough to

derive the moment matching relationships yourself, but we saved you the trouble in the distribution

cheat sheet.
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