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Dealing with uncertainty requires the proper tools, primary among them, the rules of probability575

and an understanding of probability distributions. Equipped with these, ecologists can see their576

way to revealing analysis, regardless of the idiosyncrasies of the particular research problem at577

hand. These analysis extend logically from first principles rather than from a particular statistical578

recipe. In the sections that follow we describe these vital tools. Our approach is to start with the579

definition of probability and develop a logical progression of concepts extending from this definition580

to a fully specified and implemented Bayesian analyses appropriate for a broad range of research581

problems in ecology.582

3.2 Rules of probability583

Ecological research requires learning about quantities that are unobserved from quantities that are584

observed. Any quantity that we fail to observe, including quantities that are observed imperfectly,585

involves uncertainty. The Bayesian approach treats all unobserved quantities as random variables586

to capture that uncertainty. A random variable is is a quantity that can take on values due to587

chance. A random variable does not have a single value, but instead can take on a range of values,588

with its “chance” governed by a probability distribution. 2
589

It follows that all random variables have probability distributions even though these distribu-590

tions may be unknown to us. The rules of probability determine how we gain insight about random591

variables from the distributions that govern their behavior. Understanding these rules lays a foun-592

dation for the remainder of the book. This material is not exactly gripping, but we urge you not to593

skip this section or rush through it unless you already well grounded in formal principles of prob-594

ability. Understanding these principles will serve you well. We summarize the rules of probability595

in Table and describe them below.596

We start with the idea of a sample space, S, consisting of a set of all possible outcomes of an597

experiment or a sample, shown graphically as a polygon with a specific area (Figure 3.2.1). One598

2There is some argument among statisticians about whether states of ecological systems and parameters governing
their behavior are truly random. Ecologists with traditional statistical training may object to viewing states and
parameters as random variables. These objections might proceed like this. Consider the state, “the average biomass
of trees in a hectare of Amazon rainforest.” It could be argued that there is nothing random about it, that at any
instant in time there is an average biomass that is fixed and knowable at that instant–it is determined, not random.
This is true, perhaps, but the practical fact is that if we were to attempt to know that biomass, which is changing by
the minute, we would obtain different values depending on when and how we measured it. These values would follow
a probability distribution. So, thinking of unknowns as a random variable is a scientifically useful abstraction with
enormous practical benefits, benefits we will demonstrate in later chapters. We will leave arguments about whether
states and parameters are “truly random” to metaphysics.
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of the possible outcomes of the experiment or sample is the random variable, “event A,” a set of599

outcomes, which we also depict as a polygon (Figure 3.2.1). The area of A is less than the area of600

S because there are possible outcomes that it does not include. The area of A is proportional to601

the size of the set of outcomes it does include. It follows that the probability of A is simply the602

area of A divided by the area of S.603

We now introduce a second event, B, to illustrate the concept of conditional, independent,604

and disjoint probabilities. Consider the case when we know that the polygon defining event B605

intersects with the A polygon (Figure 3.2.1 upper panel) and, moreover, we know that the event606

A has occurred. We ask, what is the probability of the new event B given our knowledge of the607

occurrence of A? The knowledge that A has occurred does two things. It shrinks the sample space608

from all of S to the area of A – if we know A has occurred, we know that everything outside of609

A has not occurred, so in essence we have a new, smaller space for defining the probability of A.610

Knowing that A has happened also affects what we know about B – we know that everything within611

B outside of A has not occurred (Figure 3.2.1). This means that612

Pr (B|A) =
area shared by A and B

area of A
=

Pr (A ∩B)

Pr (A)
=

Pr (A,B)

Pr (A)
. (3.2.1)

Using the same logic,613

Pr (A|B) =
area shared by A and B

area of B
=

Pr (A ∩B)

Pr (B)
=

Pr (A,B)

Pr (B)
. (3.2.2)

The expression Pr (A|B) reads “the probability of A conditional on knowing B has occurred.” The614

bar symbol (i.e., |) reads “conditional on” or “given”, expressing the dependence of event A on615

event B – if we know B our knowledge changes what we know about A. It is important to note616

that Pr (A|B) 6= Pr (B|A). The expression Pr (A,B) reads the joint probability of A and B and617

is interpreted as the probability that both occur. We will make important use of the algebraic618

rearrangement of equations 3.2.1, and 3.2.2 to expand their joint probability,619

Pr (A,B) = Pr (B|A) Pr (A) (3.2.3)

= Pr (A|B) Pr(B).
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Figure 3.2.1: Illustration of conditional, independent, and disjoint probabilities. The area S defines a sample
space including all of the possible outcomes of a sample or an experiment. There are two sets of realized
outcomes, A and B. The area of each event is proportional to the size of the set. The probability of A = A

S

and the probability of B = B
S . Knowledge that the event A has occurred influences our estimate of the

probability of B when the intersection of the two events gives us new information about the probability of
B. In this case, the probability of B is conditional on A and vice versa (upper panel). There are cases
where the events intersect, but there is no new information. In this case the probability of B given A is
the same as the probability of B because the B intersect with A

A = B
S . In this case, we say that A and B

are independent (middle panel, areas drawn approximately). If there is no intersection, then the events are
disjoint. Knowledge that A has occurred means that we know that B has not occurred..
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There will be cases when the area defining the two events overlaps but there is no new infor-620

mation given by the knowledge that either event has occurred (Figure 3.2.1 middle panel). In this621

case the events are independent. Events A and B are independent if and only if622

Pr (A|B) =
A shared by A and B

area of B
=

area of A

area of S
= Pr (A) (3.2.4)

or equivalently623

Pr (B|A) = Pr (B) . (3.2.5)

Using equation 3.2.1 and 3.2.2 we can substitute for the conditional expressions in 3.2.4 and 3.2.5.624

A little rearrangement gives us the joint probability of independent events:625

Pr (A,B) = Pr (A) Pr(B). (3.2.6)

It is important to throughly understand the difference between the definition of the joint probability626

of events that are independent (e.g., equation 3.2.6) and those that are not (i.e., equations 3.2.3).627

When events are disjoint, there is no intersection between them (Figure 3.2.1 lower panel). In628

this case, the knowledge that one event has occurred means that the other event has not occurred.629

We may also be interested in the probability that one event or the other occurs (Figure 3.2.1),630

which is the total area of A and B without the area they share, i.e.,631

Pr (A ∪B) = Pr (A) + Pr (B)− Pr(A,B). (3.2.7)

When A is independent of B,632

Pr (A ∪B) = Pr (A) + Pr (B)− Pr(A) Pr (B) , (3.2.8)

but if they are conditional,633

Pr (A ∪B) = Pr (A) + Pr (B)− Pr(A|B) Pr (B) (3.2.9)
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Figure 3.2.2: Illustration of the law of total probability.

or equivalently,634

Pr (A ∪B) = Pr (A) + Pr (B)− Pr(B|A) Pr (A) . (3.2.10)

If A and B are disjoint, then635

Pr (A ∪B) = Pr (A) + Pr (B) (3.2.11)

which is simply a special case of equation 3.2.7 where Pr (A,B) = 0.636

The final probability rule we consider applies to the case when can partition the sample space637

into several, non-overlapping events (Figure 3.2.2). We define a set of events {Bn : n = 1, 2, 3, . . .},638

which taken together, cover the entire sample space,
∑

nBn = S. We are interested in the event A639

that overlaps one or more of the Bn. The probability of A is640

Pr(A) =
∑

n

Pr(A | Bn) Pr(Bn). (3.2.12)

Equation 3.2.12 is called the law of total probability.641

3.3 Factoring joint probabilities642

It is hard to avoid a modicum of tedium in describing the rules of probability, but there is a very643

practical reason for understanding them. They allow us to deal with complexity. These rules permit644

us to take complicated joint distributions of random variables and break them down in manageable645

chunks that can be analyzed one at a time as if all of the other random variables were known and646
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constant. The importance of this idea and its implementation will be developed throughout the647

book. Here, we establish its graphical and mathematical foundation.648

Consider the networks shown in Figure 3.3.1. A Bayesian network (also called a directed acyclic649

graph) depicts dependencies among random variables. The random variables in the network are650

called nodes. The nodes at head of the arrows are charmingly called children and the tails, parents.651

Bayesian networks show how we factor the joint probability distribution of random variables into a652

series of conditional distributions, thereby representing an application of equation 3.2.3 to multiple653

variables (Figure 3.3.1). This factoring is how we simplify problems that would otherwise be654

intractably complex.655

Bayesian networks are great tools for thinking about relationships in ecology and for commu-656

nicating them A box with an example here? (e.g. Figure 1.2.1). They are useful for thinking657

because they allow us to visualize a complex set of relationships, encouraging careful consideration658

of how knowledge of one random variable informs us about the behavior of others. They lay plain659

our assumptions about dependence and independence. A properly constructed Bayesian network660

provides a detailed blueprint for writing out a joint distribution as a series of conditional distri-661

butions Nodes at the heads of arrows are on the left hand side of conditioning symbols, those at662

the tails of arrows are on on the right hand sides of conditioning symbols, and any node at the tail663

of an arrow without an arrow leading into it must be expressed unconditionally, e.g., P (A) . The664

network provides a graphical description of relationships that is easier to see than the corresponding665

mathematical description, facilitation communication of ecological ideas underlying the network3.666

The mathematics allowing factoring of joint distributions extend directly from the rules of667

probability we developed above. Given the vector of jointly distributed random variables z =668

(z1, . . . , zn), their joint probability satisfies:669

Pr (z1, . . . , zn) =

n∏

i=1

Pr (zi|{pi}) (3.3.1)

where {pi} is the set of parents of node zi and all of the terms in the product are independent.670

Independence of the terms in equation 3.3.1 is assured if the equation been properly constructed671

from a Bayesian network and the network shows relationships that are conditional and independent.672

3At least Hobbs thinks so. Hooten prefers the equations.
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A somewhat more formal way to say the same thing is to generalize the conditioning rule of673

probability for two random variables (equation 3.2.2) to factor the joint distribution of any number674

of random variables using675

Pr (z1,z2, ..., zn) = Pr (zn|zn−1, . . ., z1) .....Pr (z3|z2, z1) Pr (z2|z1) Pr(z1), (3.3.2)

where where the components zi may be scalars or sub-vectors of z and the sequence of the con-676

ditioning is arbitrary. It is important to see the pattern of conditioning in equation 3.3.2. 4. We677

can use the independence rule of probability (equation 3.2.4) to simplify conditional expressions in678

equation 3.3.2 for random variables known to be independent. For example, if z1 is independent of679

z2 then Pr (z1|z2) simplifies to Pr (z1). If z1 and z2 depend on z3 but not each other, then680

Pr (z1,z2, z3) = Pr(z1|z2,z3) Pr(z2|z3) Pr(z3) (3.3.3)

simplifies to681

Pr (z1,z2, z3) = Pr(z1|z3) Pr(z2|z3) Pr(z3). (3.3.4)

Another example of this kind of simplification is shown graphically and algebraically in Figure 3.3.1682

V and VI. Don’t let the formalism in this paragraph put you off. It is simply a compact way to683

say what have already shown graphically using Bayesian networks, which for many ecologists will684

be more transparent.685

3.4 Probability Distributions686

3.4.1 Mathematical foundation687

3.4.1.1 Probability mass and density functions688

The Bayesian approach to learning from data using models makes a fundamental simplifying as-689

sumption: we can divide the world into things that are observed and things that are unobserved.690

Distinguishing between the observable and unobservable is the starting point for all analyses. We691

4We say the sequence is arbitrary to communicate the idea that the ordering of the specific zi is not required for
equation 3.3.2 to be true. In other words, zn doesn’t need to come first. However, the word arbitrary should not be
takes to mean capricious. As we learn, it our understanding of the biology that determines what is conditional on
what, ultimately determining the sequence of conditioning.
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