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ABSTRACT

We describe a hierarchical Bayesian (HB) approach to
fitting the Farquhar et al. model of photosynthesis to leaf
gas exchange data. We illustrate the utility of this approach
for estimating photosynthetic parameters using data from
desert shrubs. Unique to the HB method is its ability to
simultaneously estimate plant- and species-level para-
meters, adjust for peaked or non-peaked temperature
dependence of parameters, explicitly estimate the ‘critical’
intracellular [CO2] marking the transition between ribulose
1·5-bisphosphate carboxylase/oxygenase (Rubisco) and
ribulose-1,5-bisphosphate (RuBP) limitations, and use both
light response and CO2 response curve data to better inform
parameter estimates. The model successfully predicted
observed photosynthesis and yielded estimates of photosyn-
thetic parameters and their uncertainty. The model with
peaked temperature responses fit the data best, and inclu-
sion of light response data improved estimates for day
respiration (Rd). Species differed in Rd25 (Rd at 25 °C),
maximum rate of electron transport (Jmax25), a Michaelis–
Menten constant (Kc25) and a temperature dependence
parameter (DS). Such differences could potentially reflect
differential physiological adaptations to environmental
variation. Plants differed in Rd25, Jmax25, mesophyll conduc-
tance (gm25) and maximum rate of Rubisco carboxylation
(Vcmax25). These results suggest that plant- and species-level
variation should be accounted for when applying the Farqu-
har et al. model in an inferential or predictive framework.

Key-words: Artemisia tridentata; Dasylirion leiophyllum;
Larrea tridentata; Purshia tridentata; A–Ci curve; A–Q
curve; Farquhar et al. model; Jmax; photosynthesis; Vcmax.

INTRODUCTION

Mechanistic photosynthetic models based on phenomeno-
logical descriptions of the underlying biochemical reactions
have broad applications in the field of plant ecophysiology.
These models may be used to determine the impact

of varying environmental conditions – including those
predicted to be affected by climate change – on the bio-
chemistry of photosynthesis and carbon acquisition at the
leaf and plant levels (e.g. Wohlfahrt, Bahn & Cernusca
1999a). Further, mechanistic photosynthetic models are
often used to parameterize vegetation components in
process models applied at scales ranging from plant cano-
pies (Baldocchi & Harley 1995; dePury & Farquhar 1997) to
landscapes (Kimball et al. 2000; Williams et al. 2001) to con-
tinents (Sellers et al. 1996; Foley et al. 1998; Pitman 2003).
As such, photosynthetic parameters associated with leaf-
level models provide valuable, mechanistic information for
predicting large-scale effects of future climate change on
terrestrial ecosystems.

In the most commonly used mechanistic model of C3

photosynthesis,carbon assimilation is limited by one of three
biochemical processes (Farquhar, von Caemmerer & Berry
1980). That is, the rate of photosynthesis is modelled as the
minimum of three functions: (1) the saturation of ribulose
1·5-bisphosphate carboxylase/oxygenase (Rubisco) with
respect to carboxylation; (2) electron transport limiting the
regeneration of ribulose-1,5-bisphosphate (RuBP); and (3)
the amount of triose phosphate exported from the chloro-
plast. Through fitting this ‘Farquhar et al.’ model (Farquhar
et al. 1980) to photosynthetic gas exchange measurements
(e.g. photosynthetic responses to changes in intercellular
CO2 concentrations; A–Ci curve), the following parameters
can be estimated: the maximum Rubisco carboxylation rate
(Vcmax), the maximum rate of electron transport (Jmax), mito-
chondrial respiration in the light (Rd) and mesophyll con-
ductance (gm). Because of the crucial role these parameters
play in scaling photosynthesis, it is essential that accurate
estimates of these parameters are obtained when fitting
mechanistic photosynthetic models to leaf-level empirical
data.

Importantly, estimates of the photosynthetic parameters
of interest (e.g. Vcmax, Jmax) are sensitive to the statistical
estimation methods used to fit the Farquhar et al. model
(Manter & Kerrigan 2004; Dubois et al. 2007; Miao et al.
2009). These fitting methods are not yet consistent in the
literature and can be categorized into six distinct methods
(see Miao et al. 2009 for a comprehensive review). The
primary difference among these methods is the statistical
approach used to determine the transition Ci value (Ccrit; the
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value of Ci used to differentiate between Rubisco and
RuBP limitations). In addition to the statistical fitting
approach, the accuracy of fitting the Farquhar et al. model
also relies on: (1) correct representation of the kinetic prop-
erties of Rubisco (Sharkey et al. 2007), often assumed to be
relatively conserved in C3 plants (von Caemmerer 2000); (2)
incorporation of temperature dependencies of parameters,
which are described by either exponential or peaked expo-
nential functions (Leuning 1997, 2002; Wohlfahrt et al.
1999b; Medlyn, Loustau & Delzon 2002; Kattge & Knorr
2007); (3) incorporation of gm (Niinemets et al. 2009a; Pons
et al. 2009); and (4) accounting for species- and plant-level
differences in both fixed parameters (e.g. kinetic constants),
estimated parameters (e.g. Vcmax, Jmax) and temperature
dependencies.

Indeed, empirical studies have shown that model
parameters do vary by plant and species as a result of
genetic or environmental variation. For example, meso-
phyll conductance (gm), which partially controls the trans-
fer of CO2 from the mesophyll intercellular space to the
site of carboxylation, has been shown to respond to light
and leaf anatomy (Evans & von Caemmerer 1996; Tholen
et al. 2008; Warren 2008; Loreto, Tsonev & Centritto 2009).
This variability is important to recognize, because varia-
tion in gm has been linked to changes in photosynthetic
capacity (von Caemmerer & Evans 1991; Lloyd et al. 1992;
Loreto et al. 1992; Niinemets et al. 2009b). Rubisco kinetic
constants (e.g. Kc, Ko) also change across diverse species
and environmental conditions (Tcherkez, Farquhar &
Andrews 2006). Paradoxically, while variability in such
model parameters has been widely documented, many
studies have not yet incorporated intra- and interspecific
parameter variability into procedures for fitting the Far-
quhar et al. model. Subsequently, application of this model
may incorrectly conclude that significant differences exist
in parameter estimates for plants, species or treatments,
thereby limiting the accuracy of this popular photosyn-
thetic model.

In light of the need for accurate plant- and species-level
estimates of photosynthetic parameters under varying envi-
ronmental conditions, we describe a statistically rigorous
method to estimate C3 photosynthetic parameters. Specifi-
cally, we implemented a hierarchical Bayesian (HB) frame-
work that couples the Farquhar et al. model with multiple
photosynthetic data sets, allowing estimation of plant-
and/or species-level variability of kinetic constants and bio-
chemical parameters. While other gas exchange data (e.g.
A–Q; light response curves) are often collected in conjunc-
tion with A–Ci curves, these data are rarely incorporated
into the fitting procedure, although they may help to inform
the biochemical processes regulating photosynthesis (von
Caemmerer 2000). Here, we use both A–Ci and A–Q data to
simultaneously estimate all photosynthetic parameters,
including a Ccrit value specific to each curve.Another attrac-
tive feature of the HB approach is that we can explicitly
accommodate the nested sampling design such that the
photosynthetic parameters are modelled hierarchically (e.g.
curves/plants nested in species).

To illustrate and evaluate the HB approach, we used field
data collected from four species of common North Ameri-
can desert shrubs. Desert plants were chosen because their
photosynthetic responses differ greatly from temperate
forest and agricultural species – which are most commonly
studied with respect to parameterizing the Farquhar et al.
photosynthetic model – based on sensitivity to water limi-
tation and temperature (Ogle & Reynolds 2002). By com-
paring HB model parameter estimates for desert plants
with estimates in the literature from temperate forest and
crop plants, we highlight the potential importance of incor-
porating: (1) flexibility in defining kinetic and biochemical
parameter values; (2) plant- and species-specific parameter
variability when estimating photosynthetic parameters; and
(3) more rigorous statistical methods for analyzing photo-
synthetic data in the context of mechanistic models such as
the Farquhar et al. model.

METHODS

Study sites, plants and field measurements

Photosynthetic data for shrub species used in this study
were collected at three study sites, each within a distinct
North American desert ecosystem. In the Great Basin
Desert, the field site was located near the Sierra Nevada
Aquatic Research Laboratory (SNARL) of the Valentine
Eastern Sierra UC (University of California) Natural
Reserve, in eastern California near the city of Mammoth
Lakes (37°37′N, 118°50′W, elevation 2100 m). Mean annual
precipitation (MAP) is approximately 386 mm, most of
which is received between October and March as snow or
convective rainstorms. For more detailed SNARL site char-
acteristics, see Gillespie & Loik (2004) and Loik (2007). In
the Mojave Desert, data were collected at the Mojave
Global Change Facility (MGCF) located on the Nevada
Test Site (36°49′N, 115°55′W, elevation 970 m). MAP at the
MGCF is about 138 mm, occurring primarily during the
winter months (Hunter 1995), with highly episodic summer
precipitation and a low relative frequency of large rainfall
events. For a more detailed MGCF site description, see
Barker et al. (2006). In the Chihuahuan Desert, the study
site was located in a sotol grassland ecosystem within the
Pine Canyon Watershed in Big Bend National Park
(BIBE), Texas (29°5′N, 103°10′W, elevation 1526 m). MAP
is about 370 mm, with the majority of annual precipitation
occurring during the summer months and arriving as mon-
soonal rains. For a more detailed BIBE site description, see
Patrick et al. (2007, 2009) and Robertson et al. (2009).

At SNARL, measurements were collected on Artemisia
tridentata (ARTR; Asteraceae, n = 5 plants) and Purshia
tridentata (PUTR; Rosaceae, n = 5 plants), two native C3

woody shrubs in the sagebrush scrub ecosystem. These
species are codominant in the ecosystem, representing
about 80% of the plant cover (Loik 2007). At MGCF, mea-
surements were made on the native, dominant C3 evergreen
shrub, Larrea tridentata (LATR; Zygophyllaceae, n = 4
plants). At BIBE, measurements were made on the
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dominant C3 perennial shrub, Dasylirion leiophyllum
(DALE; Liliaceae, n = 3 plants).

During the 2005 growing season (May–August), A–Q
curves (Supporting Information Fig. S1) were measured on
each study plant at each site using a portable photosyn-
thetic system (model Li-6400; Li-Cor, Lincoln, NE, USA).
During the 2006 growing season (May–August), both A–Ci

and A–Q curves were measured on the same study plants as
the previous year. A–Ci curves were measured at saturating
irradiance (1500 mmol m-2 s-1) for 12 CO2 concentrations in
the following order (first to last measurement): 0, 50, 100,
150, 200, 250, 380, 500, 700, 900, 1200 and 1500 mmol mol-1.
To ensure steady-state conditions, the plants were allowed
to acclimate to ambient CO2 (380 mmol mol-1) in the gas
exchange chamber for approximately 5 min before begin-
ning each A–Ci curve, and then logged. This logged mea-
surement was then compared to the measurement at
identical [CO2] in the middle of the curve sequence to
confirm full enzyme activation. It took approximately
45 min to complete a single A–Ci curve. A–Q curves were
measured at ambient [CO2] (400 mmol mol-1) for 12 light
levels in the following order (first to last): 2000, 1500, 1000,
800, 600, 400, 300, 200, 100, 70, 40 and 0 mmol m-2 s-1. The
plants were allowed to acclimate to changes in light inten-
sity for approximately 2–3 min before measurements were
logged; it took about 35 min to complete an entire A–Q
curve.

Across all plants and curve types, leaf temperature and
relative humidity were recorded and set to ambient values.
Average temperature and relative humidity were 26.1 °C
and 48.9%, respectively, and ranged from 11.2 to 44.4 °C,
and from 7.2 to 94.1%, respectively. All curves were mea-
sured from the early morning to the early afternoon when
day-time air temperature was near its daily minimum,
vapour pressure deficit was relatively low and stomata were
responsive to changes in CO2 and light. All measurements
of photosynthesis and stomatal conductance were corrected
for leaf area. A total of 17 A–Ci curves and 37 A–Q curves
were measured across all species, providing 696 observa-
tions of photosynthesis.

HB model of photosynthesis

Plant photosynthetic data were analysed within an HB
framework (Clark 2005; Clark & Gelfand 2006). This
approach has been successfully used to synthesize ecologi-
cal data (e.g. Clark & LaDeau 2006; Ogle & Barber 2008),
and it has proven to be exceptionally useful for making
inferences about ecosystem and plant physiological
responses (Cable et al. 2008, 2009; Ogle et al. 2009; Patrick
et al. 2009). We propose that the HB approach is advanta-
geous for modelling photosynthesis because it can: (1)
simultaneously estimate unknown parameters – related
to biochemical limitations of photosynthesis – while also
accounting for uncertainty in measurements and param-
eters (Carlin, Clark & Gelfand 2006; Ogle & Barber 2008);
(2) accurately estimate common photosynthetic parameters
without the need for subjective determination of thresholds

for limiting biochemical processes [e.g. it allows us to avoid
setting a fixed and potentially arbitrary transition intracel-
lular CO2 (Ccrit) value to separately estimate Vcmax and Jmax];
(3) simultaneously incorporate a variety of data types (e.g.
A–Ci and A–Q curve data) to arrive at parameter estimates
and parameter variability; (4) allow for borrowing of
strength between curves to help estimate population-level
parameters of interest (e.g. species-specific biochemical
parameters); and (5) incorporate prior information for bio-
chemical parameters that may not be well informed by the
A–Ci and A–Q response curve data, but that reflect appro-
priate levels of uncertainty based on variation in these
parameters as reported in the literature. We emphasize that
the HB model provides the statistical framework for fitting
a process-based model such as the Farquhar et al. model to
observational data. That is, we do not present modifications
to the Farquhar et al. model, but describe a rigorous and
statistically consistent methodology for confronting such a
model with diverse data.

The HB model has three primary components: (1) the
observation equation that describes the likelihood of
observed photosynthesis data; (2) the process equation that
describes the ‘true’ or mean photosynthetic response, based
on the Farquhar et al. model of C3 photosynthesis, as well
as process uncertainty associated with random effects;
and (3) prior distributions for process model parameters
(e.g. species effects) and variance terms. These three
parts are combined to generate posterior distributions
of all unknown parameters (see Wikle 2003; Clark 2005),
including photosynthesis-related parameters and all
variance/covariance terms. All probability distributions are
parameterized according to Gelman et al. (2004). Table 1
includes a list of abbreviations and units for parameters used
in the model. The model was run with two different photo-
synthetic data sets: (1) observations for A–Ci curves only
(n = 207); and (2) observations from both A–Q and A–Ci

curves (n = 696) to determine if A–Q curve data can improve
estimates of photosynthetic parameters.

The observation equation
The likelihood of all leaf-level photosynthesis data is based
on the likelihood of individual observations of photosyn-
thesis obtained from the Li-6400 (i.e. Aobs; mmol m-2 s-1).
We assumed that the photosynthetic measurements could
be described by a normal distribution, such that for obser-
vation i (i = 1, 2, . . . , N):

Aobs Ai i∼ Normal , τ( ) (1)

where Ai is the mean or predicted photosynthesis rate, and
t is the precision (1/variance) parameter that describes the
variability in the photosynthetic observation or measure-
ment errors.

The process model
The process model describes the predicted photosynthesis
rate (Ai), which was specified according to the Farquhar
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et al. model of C3 photosynthesis (Farquhar et al. 1980).
The dependence of potential electron transport rate on
absorbed irradiance was specified according to Farquhar &
Wong (1984). Triose phosphate limitation was not consid-
ered here because this process is expected to rarely limit
photosynthesis and is not commonly included in models
to estimate photosynthetic parameters (Wohlfahrt et al.
1999b; Medlyn et al. 2002; Dubois et al. 2007). Modifications
for mesophyll conductance (gm) were included using qua-
dratic equations as described by von Caemmerer & Evans
(1991), von Caemmerer (2000) and Niinemets et al. (2009a).
In addition, when values of Ci and internal oxygen concen-
tration (O) were converted from mmol mol-1 to Pa, they
were also corrected for pressure, because the pressure
among measurement sites was different from standard pres-
sure (range: 77.3–97.5 kPa). When both the A–Ci and A–Q
data sets were included, the Farquhar et al. model was still
used to model the expected photosynthetic rate, and thus
both data sets simultaneously informed parameters in the

photosynthetic model. See Table 2 for a list of model equa-
tions and parameters used to describe Ai in Eqn 1.

Temperature dependencies of Rubisco’s carboxylation
and oxygenation rates affect photosynthesis (Bjorkman,
Badger & Armond 1980), as do the temperature dependen-
cies of Vcmax and Jmax (von Caemmerer 2000).Thus, tempera-
ture dependencies for all parameters (i.e. Kc, Ko, G*, gm, Rd,
Vcmax and Jmax; Table 1) were chosen to follow an Arrhenius
function (von Caemmerer 2000; Leuning 2002; Medlyn et al.
2002; Kattge & Knorr 2007) standardized to 25 °C. The
general form of the Arrhenius function for parameter Y
(where Y = Kc, Ko, G*, gm, Rd, Vcmax or Jmax) is:

Y f Y E Tobs Y
E Tobs

R Tobs
i

i

i

= ( ) = −( )
⋅ ⋅( )

⎡
⎣⎢

⎤
⎦⎥

1 25 25
298

298
, , expY

Y (2)

where Y25 is the parameter at 25 °C, EY is the activation
energy of Y, Tobs is the leaf temperature (K) measured
by the Li-6400 and R is the universal gas constant

Table 1. List of abbreviations used in the coupled hierarchical Bayesian (HB)–photosynthetic model, their definitions and units

Abbreviation Definition Units

Observed data for model input
Aobs Rate of CO2 assimilation measured by the Li-Cor 6400 mmol m-2 s-1

Ciobs Intercellular airspace CO2 partial pressure measured by the Li-Cor 6400 Pa
Qobs Photosynthetically active radiation measured by the Li-Cor 6400 mmol m-2 s-1

Tobs Leaf temperature measured by the Li-Cor 6400 °C
Pobs Pressure measured by the Li-Cor 6400 Pa

HB model parameters associated with process model
A Predicted rate of CO2 assimilation (see Eqn 1) mmol m-2 s-1

Ac Rubisco-limited rate of CO2 assimilation mmol m-2 s-1

Aj Electron transport limited rate of CO2 assimilation mmol m-2 s-1

E (Eg, Em, Er, Ekc, Eko, Ev, Ej) Activation energy used in Arrhenius temperature function kJ mol-1

f Spectral light quality factor
gm Conductance for CO2 diffusion from intercellular airspace to site of carboxylation mmol m-2 s-1 Pa-1

H (Hgm, Hv, Hj) Deactivation factor used in Arrhenius temperature function kJ mol-1

J Rate of electron transport mmol m-2 s-1

Jmax (Jmax25) Maximal electron transport rate (standardized to 25 °C) mmol m-2 s-1

Kc (Kc25) Michaelis–Menten constant for Rubisco for CO2 (standardized to 25 °C) Pa
Ko (Ko25) Michaelis–Menten constant for Rubisco for O2 (standardized to 25 °C) kPa
O Partial pressure of O2 Pa
Q2 Photosynthetically active radiation absorbed by PSII mmol m-2 s-1

R Universal gas constant (8.314 J K-1 mol-1) J K-1 mol-1

Rd (Rd25) Mitochondrial respiration in the light (standardized to 25 °C) mmol m-2 s-1

DS (DSgm, DSv, DSj) Entropy factor used in Arrhenius temperature function J mol-1 K-1

T Leaf temperature K
Topt Optimum temperature K (°C)
Vcmax (Vcmax25) Maximum rate of Rubisco carboxylation (standardized to 25 °C) mmol m-2 s-1

a Fraction of PSII activity in the bundle sheath
G* (G*25) Chloroplastic CO2 photocompensation point (standardized to 25 °C) Pa
q Empirical curvature factor

HB parameters associated with hierarchical priors and hyperpriors
Y25 Plant-level mean of any parameter (Y) standardized to 25 °C
mY25 Species-level mean of any parameter (Y) standardized to 25 °C
m*Y25 Population-level mean of any parameter (Y) standardized to 25 °C
t Precision (1/variance) parameter describing observation and measurement error
tYplant Precision (1/variance) parameter describing plant-to-plant variation within species
tYspp Precision (1/variance) parameter describing species-to-species variability
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(8.314 J mol-1 K-1). To include plant-level variation in the
gm, Rd, Vcmax and Jmax parameters at 25 °C (i.e. the Y25s),
these parameters were allowed to vary by curve (or plant).
To account for potential species-level differences in tem-
perature dependencies, the activation energies associated
with the gm, Rd, Vcmax and Jmax parameters (Em, Er, Ev and Ej,
respectively) were allowed to vary by species, such that for
observation i, plant p and species s:

g f g E Tobs

R f R E Tobs

V

i

i

i

i

i

m m m

d d r

cmax

p s p

p s p

= ( )
= ( )

( )

( )

1

1

25

25

, ,

, ,

== ( )
= ( )

( )

( )

f V E Tobs

J f J E Tobs

i

ii

1

1

25

25

cmax v

j

p s p

p s p

, ,

, ,max max

(3)

The notation s(p) is read as ‘s of p’, which represents the
species identity associated with each plant (i.e. plant is
‘nested’ in species). Because the Rubisco kinetic properties
at 25 °C (G*25, Kc25 and Ko25) and their associated activation
energies (Eg, Ekc, Eko) have only been shown to vary by
species (von Caemmerer 2000) and are generally not well
informed by A–Ci or A–Q data, we assume that these
parameters vary at the species level such that:

Γ Γ* * s p g

c c kc

s p

s p s p

i i

i

f E Tobs

K f K E Tobsi

= ( )
= (

( ) ( )

( ) ( )

1 25

1 25

, ,

, , ))
= ( )( ) ( )K f K E Tobsi io o kos p s p1 25 , ,

(4)

While Eqns 2 and 3 were used for analyses of both data sets,
it was also recognized that temperature response functions
for gm, Vcmax and Jmax are commonly modelled (von Caem-
merer 2000; Leuning 2002; Medlyn et al. 2002; Kattge &
Knorr 2007) using the peaked Arrhenius function (Johnson,
Eyring & Williams 1942). As such, we also ran the model
using the combined A–Ci and A–Q data set with the peaked
Arrhenius functions to determine if model fit and param-
eter estimation were improved by incorporating this more
flexible temperature response compared to the non-peaked
function in Eqn 2. For this analysis, f1 in Eqn 2 was replaced
with:

Y f Y E Tobs S H

Y
E Tobs

R Tobs

i

i

i
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= −( )
⋅ ⋅

⎡
⎣

2 25
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1
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1
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Δ

Δ
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R

Tobs S H
R Tobs

i

i

Y Y

Y Y

(5)

Table 2. List of equations used in the
photosynthesis process modelEqn no. Equation

2.1 A Ai i= c , if Ciobs Ci < crit

A Ai i= j , if Ciobs Ci > crit

2.2
A

b b ac
aic = − + −2 4

2

a
g i

= − 1
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b
V R

g
Ciobs K
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K
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⎞
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⎤
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a
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2.4
J

Q J Q J Q J
i

i i ii i i= + − +( ) −2 2
2

24
2
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θ

where q = 0.7 (Evans 1989)

2.5 Q Qobs fi i2 1 2= ⋅ −( )α ,

where a = 0.85 (von Caemmerer 2000) and f = 0.15 (Evans 1987)

All equations are from Farquhar et al. (1980), Farquhar & Wong (1984) and von Caemmerer
(2000). See Table 1 for abbreviations, definitions and units.
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where EY is the activation energy, HY is the deactivation
energy describing the rate of decrease for temperatures
above the optimum temperature and DSY is an entropy
factor. Once again, gm25, Vcmax25 and Jmax25 parameters were
allowed to vary by plant, and because species-level varia-
tion has been observed in the temperature response param-
eters (i.e. E, H, DS) (Kattge & Knorr 2007), the associated
parameters for gm (Em, DSgm, Hgm), Vcmax (Ev, DSv, Hv) and
Jmax (Ej, DSj, Hj) also were allowed to vary between species,
such that:

g f g E S H Tobs

V f V
i

i

im m m m m

cmax cmax

p s p s p s p

p

= ( )
=

( ) ( ) ( )2

2

25

25

, , , ,Δ

,, , , ,

, ,max max

E S H Tobs

J f J E S

i

i

v v v

j j

s p s p s p

p s p s

( ) ( ) ( )

( )

( )
=

Δ

Δ2 25 pp s pj( ) ( )( ), ,H Tobsi

(6)

The prior model
The final stage in the HB modelling approach was the
specification of the priors for the unknown parameters.
Because many model parameters varied on a plant and/or
species level, nested, hierarchical priors were chosen. The
ability to have nested priors is another major advantage of
the HB approach because it allows parameters within a
given level (e.g. across plants within species or across
species) to inform or ‘borrow strength’ from each other
(Carlin et al. 2006). Moreover, the nesting of plants within
species within an overall population of desert shrubs
describes a natural hierarchy that reflects the sampling
design. Thus, under this framework, plant-level parameters
– which are directly related to individual curve data – are
assumed to be nested within species, such that for any
plant-level parameter at 25 °C (Y25 = gm25, Rd25, Vcmax25 and
Jmax25):

Y Y25 25p s p YplantNormal∼ μ τ( )( ), (7)

where mY25s(p) is the species-level mean, and tYplant is the
precision (1/variance) parameter that describes plant-to-
plant variability within a species. The species-level param-
eters were then assumed to be nested within an overall
population, such that:

μ μ τY Y25 25s YsppNormal *∼ ,( ) (8)

where m*Y25 is the population-level mean, and tYspp is the
precision parameter that describes species-to-species vari-
ability within the desert shrubs studied here. Standard,
independent and relatively non-informative (diffuse) priors
were employed for the population-level mean parameters
(the m*Y25); that is, we used normal densities with large
variances (small precisions). Folded-Cauchy (i.e. a Stu-
dent’s t-distribution with one degree of freedom) densities
were assigned as priors for all standard deviations (s = 1/
√t, where t is the precision parameter of interest) as sug-
gested by Gelman (2006). Another advantage of the HB
framework is that we were able to incorporate informative
priors for the Michaelis–Menten parameters (Kc and Ko),

CO2 compensation point (G*) and the Arrhenius tempera-
ture function parameters (E, DS, H); that is, we assigned
normal distributions centred on values reported in the
literature (von Caemmerer 2000) and used small pre-
cisions based on coefficients of variation (CV = standard
deviation/mean) around 15% (Supporting Information
Table S1).

Finally, another advantage of this HB approach is that
we were able to specify which parameters should be
informed by which data set. For example, we do not
expect the A–Q data to contain sufficient information
about Vcmax because the data were collected under
ambient CO2, and Ci was approximately constant. Thus,
within the HB model code (see WinBUGS implementa-
tion below), we employed the ‘cut’ function to sever the
feedback between, for example, the A–Q curve data and
Vcmax. This resulted in posterior distributions for param-
eters describing Vcmax that were solely informed by the
A–Ci data, but the uncertainty in the Vcmax values was
propagated to the predicted photosynthetic values associ-
ated with the A–Q data. Using this approach, we assumed
that Kc, Ko, G*, gm, Vcmax and Jmax were solely informed by
the A–Ci data, and Rd, Ccrit and temperature dependence
parameters were informed by both data sets (i.e. did not
use the cut function with these parameters). Although
A–Ci curve data generally do not provide sufficient data
on Rd (i.e. all Aobs measurements were made under
constant, high light), we still allow the A–Ci data to inform
Rd because many studies may only measure A–Ci curves
in an effort to estimate photosynthetic parameters, includ-
ing Rd.

The HB model defined by Eqns 1–8 was implemented in
the Bayesian statistical software package WinBUGS (Lunn
et al. 2000). WinBUGS code for the HB model has been
provided as supplementary material.Three parallel Markov
chain Monte Carlo (MCMC) chains were run for 30 000
iterations each, and the BGR diagnostic tool was used to
evaluate convergence of the chains to the posterior distri-
bution (Brooks & Gelman 1998; Gelman 2004a). The
burn-in samples (first 4000) were discarded, and the
remaining samples (after convergence) were thinned every
20th iteration, yielding an independent sample of 3000
values for each parameter from the joint posterior distribu-
tion (Gelman 2004b; Gamerman & Hedibert 2006). Model
goodness-of-fit was evaluated by using Eqn 1 to generate
replicated data for the observed values (Aobsi) (Gelman
et al. 2004), yielding posterior predictive distributions for
each observation. If the model perfectly predicted the data,
all observed-versus-predicted (posterior means for repli-
cated data) points would lie exactly on the 1:1 line. We
compared models (e.g. A–Ci data model with non-peaked
temperature functions versus A–Ci data model with peaked
temperature functions) by computing the posterior predic-
tive loss (D) for each model (Gelfand & Ghosh 1998). D is
a model comparison statistic that accounts for model pre-
dictive ability (‘goodness-of-fit’) while penalizing for model
complexity, and the model with the lower D value is
preferred.
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RESULTS

Model goodness-of-fit and model comparison

The coupled HB–photosynthetic model fit the data well for
A–Ci data only and for the combined A–Ci and A–Q data
using both non-peaked and peaked temperature functions
(Table 3). For example, points in the plots of observed-
versus-predicted photosynthesis fell tightly along the 1:1
line (data not shown). When comparing among models (for
a particular data set or data set combination), models that
incorporated peaked temperature responses had lower D
values compared to models that used non-peaked tempera-
ture functions (Table 3). Thus, the results reported below,
unless otherwise specified, are from models that employed
peaked temperature functions for photosynthetic param-
eters of interest (gm, Rd, Vcmax and Jmax).

Utility of A–Q data for estimates of
biochemical parameters

While the model goodness-of-fit results were not statistically
different for both A–Ci data only, and A–Ci and A–Q data
combined (Table 3), the addition of A–Q data greatly
improved estimation of Rd25. Using both data sets, there was
a high frequency of positive posterior mean estimates of Rd25,
while in the model that used only A–Ci data, the lower
credible intervals and the posterior means for Rd25 were
often negative (Fig. 1).While we did not estimate Rd25 using
only A–Q data in this study, we expect that our model
estimates for A–Ci and A–Q data combined would be similar
to A–Q only estimates given that A–Ci data collected here
were not able to directly inform Rd25 because of measure-
ment at high light. The inclusion of A–Q data did not
improve estimates of Vcmax25 or Jmax25, but this is expected
because the A–Q data were not allowed to inform these
parameters. Importantly, the ability of A–Q data to inform
biochemical parameters other than Rd25 was limited by our
A–Q measurements at ambient [CO2]. By measuring A–Q

curves at above or saturating [CO2], A–Q data could be used
to inform additional biochemical parameters of interest (e.g.
Jmax25). However, because both data sets did inform a subset
of parameters, the inclusion of A–Q data had a slight impact
on parameter uncertainty such that the posterior estimates
for Vcmax25 or Jmax25 varied more between plant/species and
their credible intervals were smaller when using only A–Ci

data (Fig. 2; Supporting Information Fig. S2). The use of
A–Q data produced more variability in posterior mean esti-
mates and slightly wider posterior credible intervals for Ccrit,
but the range of Ccrit values was similar using either data set
(Fig. 2; Supporting Information Fig. S2).

Parameters poorly informed by
photosynthetic data

While the HB model provided an updated estimate of the
Michaelis–Menten constant of Rubisco for O2 (Ko25) that
was informed by A–Ci data, this was not the case for all
energy of activation parameters (Ekc, Eko, Eg, Em, Er, Ev, Ej)
and the peaked temperature parameters (Hgm, Hv, Hj). That
is, the posterior means for the species-level E and H param-
eters were very similar to the means specified by their
informative prior distributions (Supporting Information
Tables S1 & S2). This indicates that these parameters were
poorly informed by the photosynthetic data used (Table 4),
or the data are in close agreement with the priors. The first
explanation is more likely because these parameters
became less identifiable under less informative priors.

Parameters well informed by
photosynthetic data

The HB model produced posteriors for curve-specific
Ccrit values (used to differentiate between Rubisco- and

Table 3. r2 Values for observed versus predicted photosynthesis,
posterior predictive loss (D) and estimates of the uncertainty in
the D values (i.e. approximate estimates of the 2.5th and 97.5th
percentiles) obtained from the hierarchical Bayesian (HB) model
using A–Ci data only and combined A–Ci and A–Q data with
either non-peaked or peaked temperature response functions for
photosynthetic parameters

Data/model combination r2 D 2.5% 97.5%

A–Ci only (non-peaked
temp.)

0.99 204.7 157.4 265.7

A–Ci only (peaked temp.) 0.99 199.3 150.3 261.4
A–Ci and A–Q (non-peaked

temp.)
0.76 31 960 22 820 41 250

A–Ci and A–Q (peaked
temp.)

0.87 22 150 13 510 32 750

Note that comparison of the D values is only relevant within a
given data set.
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Figure 1. Posterior mean estimates and 95% credible intervals
for the plant-level mitochondrial respiration rate standardized to
25 °C (Rd25) from the peaked temperature model using only A–Ci

data compared to estimates using both A–Ci and A–Q data. Rd25

estimates from the combined data sets are greater than zero,
while many of the Rd25 estimates for the ‘A–Ci only’ data are
negative.
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RuBP-limited rates) that were well informed by the data,
regardless of the data set used. These Ccrit posterior means
ranged from 11.9 to 22.1 Pa across all curves analysed
(Fig. 2; Supporting Information Fig. S2). On a plant level,
the HB model estimates of gm25, Rd25, Vcmax25 and Jmax25 were
also well informed by the photosynthetic data (Figs 1–3).

This was demonstrated by narrow credible intervals, poste-
rior means that were quite different from the corresponding
prior means, and species differences for some of the param-
eters (Rd25, Jmax25; Fig. 4). Moreover, many studies have
observed a strong, linear correlation between Vcmax25 and
Jmax25 (i.e. Jmax25 tends to be two times Vcmax25) (Wullschleger
1993; Leuning 1997; Medlyn et al. 2002; Kattge & Knorr
2007). We did not impose any restrictions on the relation-
ship between Vcmax25 and Jmax25 in our HB model, and we
used the model results to evaluate the relationship between
these two parameters. The average ratio between the pos-
terior means for plant-level Jmax25 and Vcmax25 was estimated
to be 1.74 � 0.37 across all species, and Vcmax25 and Jmax25

were strongly correlated when using A–Ci data only
(Fig. 5). This correlation, however, becomes weaker upon
incorporation of the A–Q data.

The potential for photosynthetic data to inform model
parameters, which are not typically allowed to vary on a
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Figure 2. Posterior mean estimates and 95% credible intervals
for the plant-level values (i.e. Y25p in Eqn 2) given by the
hierarchical Bayesian (HB) model that incorporated A–Ci data
only and that implemented the peaked temperature response
functions. Estimates are shown for (a) maximum rate of
carboxylation standardized to 25 °C (Vcmax25), (b) maximum rate
of electron transport standardized to 25 °C (Jmax25) and (c)
plant-level transition intercellular partial pressure of CO2 (Ccrit).
Plant-level estimates are grouped by species where
ARTR = Artemisia tridentata, PUTR = Purshia tridentata,
LATR = Larrea tridentata and DALE = Dasylirion leiophyllum.
Symbols correspond to species where � = A. tridentata, � = P.
tridentata, = L. tridentata, � = D. leiophyllum. Plants are
considered different if the posterior mean for one plant is not
contained in the 95% CI for another plant.

Table 4. Classification of posterior estimates for parameters
in the photosynthetic model obtained from the hierarchical
Bayesian (HB) analysis using both A–Ci and A–Q data, and
peaked temperature functions

Parameter
Well
informed

Poorly
informed

Species-level
differences

Plant-level
differences

Kc25 ¥ ¥ n/a
Ko25 ¥ n/a
G*25 ¥* n/a
Rd25 ¥ ¥ ¥
Vcmax25 ¥ ¥
Jmax25 ¥ ¥ ¥
Ekc ¥ n/a
Eko ¥ n/a
Eg ¥ n/a
Em ¥ n/a
Er ¥ n/a
Ev ¥ n/a
Ej ¥ n/a
gm ¥ ¥
DSgm ¥* n/a
Hgm ¥ n/a
DSv ¥ ¥ n/a
Hv ¥ n/a
DSj ¥ ¥ n/a
Hj ¥ n/a

Posterior means and credible intervals (CIs) were evaluated and
compared to the prior means and CIs to determine the degree to
which parameter estimates were informed by the photosynthetic
data. Estimated parameters were classified as well informed by
observed data if the posterior means were different from the prior
means, had narrow CIs and/or exhibited plant- or species-level
variation. Estimated parameters were poorly informed if the pos-
terior estimates were similar to the prior means and had wide CIs.
Parameter estimates were also evaluated to determine if they dif-
fered between species.An ¥ in a cell indicates how a parameter was
classified; an asterisk (*) indicates the parameter was constrained
by an informative prior distribution and may become well
informed if the priors are relaxed. (For example, although the prior
was informative, the posterior mean estimate was different from
the prior mean on a plant or species level.)
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plant and species level, was demonstrated by significant
species differences in posterior mean estimates (Kc25, DSv

and DSj) and variability in the width of their credible inter-
vals (Fig. 4; Supporting Information Fig. S3). Species-level
estimates of G*25 and DSgm were constrained by informative
prior distributions, but may become well informed if the
priors are relaxed. For example, species-level posterior
mean estimates of G*25 ranged from 4.7 to 5.9 Pa (Support-
ing Information Fig. S3), which is greater than the value
currently used in most photosynthetic models (3.86 Pa, von
Caemmerer et al. 1994). While the posterior credible inter-
vals for the two species-level estimates of G*25 did contain
the prior mean value of 3.86 Pa, estimates for the other two
species were significantly different, thus supporting the
potential for this parameter to become well informed with

relaxed priors. Interestingly, plant-level model estimates of
gm25 using the non-peaked temperature functions had nar-
rower credible intervals than model estimates of gm25 using
the peaked temperature functions (Fig. 3). All results are
summarized in Table 4.

DISCUSSION

We used an HB framework to couple the Farquhar et al.
model with photosynthetic data to estimate plant- and/or
species-level variability in kinetic constants, biochemical
and photosynthetic parameters. The HB approach was suc-
cessful in that it explicitly estimated the uncertainty or vari-
ability in the photosynthetic parameters, many of which are
often held constant in applications of the Farquhar et al.
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for another species.
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model. For example, variability in parameters associated
with temperature dependence (e.g. E) and Rubisco proper-
ties (e.g. Kc25) was accounted for and estimated in the HB
model (see Supporting Information Table S2), in addition
to estimating parameters more directly linked with photo-
synthesis (gm, Rd, Vcmax, Jmax).

These parameters could be estimated via the rigorous HB
statistical approach that accommodated multiple types of
response curve data and that incorporated simultaneous
plant-level estimates of Ccrit. Ccrit is a critical parameter in
the model because it dictates the value of Ci used to differ-
entiate between Rubisco and RuBP limitations. Usually,
Ccrit values are manually set at approximately 20–25 Pa
based on work with Phaesolus vulgaris (von Caemmerer &
Farquhar 1981; Wullschleger 1993; Wohlfahrt et al. 1999b;
Bunce 2000), but this relatively ad hoc approach to fitting
the Farquhar et al. model to gas exchange data and the
assumption of a fixed transition value across species has
been contested (Ethier & Livingston 2004; Dubois et al.
2007). The need for a plant- and/or species-specific Ccrit

value has been supported by recent studies on trees (e.g.
Douglas fir trees, Ethier & Livingston 2004), and was even
demonstrated by early studies that transformed relation-
ships between photosynthesis and chloroplastic CO2 (Cc)
into rates of RuBP regeneration or actual rates of electron
transport, and then plotted these values against Cc to deter-
mine Ccrit (von Caemmerer & Farquhar 1981; Kirschbaum
& Farquhar 1984). The HB approach described herein pro-
vides a feasible method for estimating this key parameter.

In addition to our statistical fitting approach, this study is
unique in its simultaneous use of both A–Ci and A–Q curve
data to inform estimates of photosynthetic parameters.With
the inclusion of A–Q data, estimates of Rd25 were positive
and therefore more biologically realistic. Other studies that
fit the Farquhar et al. model to A–Ci data have had difficulty
in obtaining accurate or biologically realistic estimates of
Rd25 (but see Dubois et al. 2007), and as such, Rd25 is some-
times not reported (Medlyn et al. 2002). Additionally, when
using the combined data set, species differences in Rd25 were
observed where A. tridentata had a significantly greater Rd25

(5.7 mmol m-2 s-1) than the other three species (1.5–
2.8 mmol m-2 s-1).Although knowledge about the regulation
of Rd is generally limited (Nunes-Nesi, Sweetlove & Fernie
2007), recent work using isotopic techniques has shown that
Rd plays a role in sustaining photorespiratory nitrogen
cycling and perhaps nitrate assimilation (Tcherkez et al.
2008). This implies that A. tridentata may differ in nitrogen-
use efficiency or ATP requirements for the sucrose synthesis
and tricarboxylic acid (TCA) cycle intermediates compared
to other desert species (Tcherkez et al. 2008). Furthermore,
in some photosynthetic models, Rd is modelled as a function
of Vcmax, where Rd set at 0.01–0.02 times Vcmax (von Caem-
merer 2000); this relationship has been invoked to account
for correlations between Rd and leaf nitrogen. At similar
temperatures, the posterior means for Rd25 were on average
0.03 times Vcmax25 and were within the range of reported
literature values from in vivo measurements (Bernacchi
et al. 2001; Warren & Dreyer 2006). By assimilating both
A–Ci and A–Q data, the HB approach estimated this ‘diffi-
cult’ parameter on both a species and plant level, and the
estimates were consistent with values reported in the litera-
ture based on direct measurements of Rd (Bernacchi et al.
2001; Warren & Dreyer 2006).

The type of temperature response function needed to
accurately fit the Farquhar et al. model to photosynthetic
data is often species dependent (e.g. Medlyn et al. 2002).
Subsequently, we compared model fit between the standard,
exponential Arrhenius function (Eqn 2) and the peaked
exponential function (Eqn 5), and model goodness-of-fit
improved with the peaked function model. Some studies
suggest that the peaked function is over-parameterized,
thereby increasing the difficulty in estimating photosyn-
thetic parameters (Harley et al. 1992; Dreyer et al. 2001;
June,Evans & Farquhar 2004).Conversely,we found that the
peaked function was best suited for our native desert plants,
which are often exposed to hot and highly variable tempera-
tures. However, it should be noted that posterior mean
estimates of gm25 had tighter credible intervals and more
plant-level variability using the non-peaked model com-
pared to the peaked model. Poor estimates of gm using the
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peaked model may be caused by incorporating prior knowl-
edge of gm temperature dependencies based on plants from
mesic ecosystems. While estimates of gm for C3 herbaceous
annuals and woody perennials in mesic ecosystems have
been shown to be affected by environmental conditions such
as soil water deficit (Flexas et al. 2002, 2009; Galle et al. 2009;
Perez-Martin et al. 2009), few studies report how tempera-
ture affects gm in desert species. Further study of the effect of
environmental variation on gm in desert plants is needed to
correctly parameterize temperature dependency functions
for these species.

Utilization of peaked temperature functions was further
supported in that species differences were observed for
estimates of the temperature function parameters DSv (with
the inclusion of A–Q data) and DSj (using A–Ci data only;
Supporting Information Fig. S3). Interestingly, both DSv and
DSj were given informative prior distributions (Supporting
Information Table S1), but the data resulted in posteriors
that differed from the priors and that varied among species.
To explore the implications of these differences for species-
specific temperature responses, we recognize that the
optimum temperature for Vcmax and Jmax (Topt) is inversely
proportional to DS (Medlyn et al. 2002; Kattge & Knorr
2007). For example, P. tridentata in the Great Basin Desert
had greater values for DSv (lower Toptv) than plants in the
Mojave Desert (L. tridentata) and Chihuahuan Desert (D.
leiophyllym). P. tridentata had significantly greater values
for DSj (lower Toptj) than all other species. Further, these
differences in Topt may reflect differences in plant growth
temperatures (Hikosaka, Murakami & Hirose 1999;
Medlyn et al. 2002; Bernacchi, Pimentel & Long 2003;
Onoda, Hikosaka & Hirose 2005). Because the Great Basin
Desert is a cold desert, and the Mojave and Chihuahuan
Deserts are hot deserts, the optimum temperature for
maximum carbon assimilation in our study species may be
related to growing season temperature. Indeed, in an analy-
sis of 36 species, Kattge & Knorr (2007) found that plant
growth temperature did not significantly affect Vcmax at a
given base rate temperature, but did affect Topt for Vcmax.

Species differences were also observed for model esti-
mates of Kc25 and Jmax25. Because Kc25 was assigned an infor-
mative prior distribution based on literature data that were
the same for all species (Supporting Information Table S1),
the photosynthetic curve data, and not the prior distri-
bution, were the primary determinants of the posterior
estimates of Kc25. Few modelling studies have estimated
Michaelis–Menten parameters (Kc25, Ko25) because of the
difficulty in collecting field data directly related to these
parameters (but see von Caemmerer 2000; Ethier & Living-
ston 2004); interestingly, observed data influenced the
posterior distributions for Kc25 in this study. While this
parameter describes intrinsic properties of Rubisco and is
generally assumed constant across species (von Caemmerer
2000), our results show that Kc25 should not be held constant
across plants, species and functional types when estimating
Vcmax and Jmax. Importantly, we did not assume constant
values for the kinetic constants or the temperature response
parameters, but rather used informative priors to account

for variability, thereby obtaining more accurate estimates
for parameters directly related to Vcmax and Jmax.

Posterior estimates of species-level Jmax25 showed that it
was significantly greater in P. tridentata compared to A.
tridentata and L. tridentata. Given that Jmax25 may be influ-
enced by environmental conditions (e.g. light, soil moisture),
these results suggest that P. tridentata may have compara-
tively greater access to resources compared to the other
species.This is partially supported by the observation that P.
tridentata has a bimodal rooting distribution (Loik 2007),
and thus it may utilize both stable (deep) and ephemeral
(near-surface) water sources. Its surface roots may also
facilitate uptake of nutrients from shallow soil layers.
Greater access to water and nutrients is expected to increase
the efficiency of electron transport. Because species have
varying strategies for adapting to different environments,we
suggest that photosynthesis should be measured under a
wide range of environmental conditions (e.g. rooting depth,
high-temperature stress, nutrient limitation, low soil mois-
ture) and subsequently analysed using the flexible HB
approach described herein. Using this approach, one can
explicitly acknowledge important sources of uncertainty and
accommodate variation in environmental drivers, existing
knowledge about the photosynthetic process and param-
eters and diverse data sets to obtain more accurate estimates
of species-level photosynthetic parameters (e.g. Vcmax25,
Jmax25).

In addition to accounting for species-level variability,
results from our HB fitting approach highlight the impor-
tance of recognizing plant-level variability when estimating
photosynthetic parameters using the Farquhar et al. model.
Significant plant-level variation was observed for gm, Rd,
Vcmax25 and Jmax25 (Figs 1–3). Because there was greater
plant-level variation observed than species-level variation,
this highlights the potential importance of small-scale varia-
tion in environmental variables for understanding photo-
synthetic responses in desert plants. Indeed, it has been well
documented that Vcmax25 exhibits high variation as a func-
tion of species identity, nutrient availability, season, leaf age
and leaf position within the canopy (Medlyn et al. 1999;
Wilson, Baldocchi & Hanson 2000; Misson et al. 2006). This
study also indicates that plant-level variation must be
accounted for when obtaining estimates of species-level
photosynthetic parameters. Otherwise, if variability among
plants is ignored, then the species-level parameter estimates
and their associated uncertainties will be compromised.

CONCLUSIONS

The HB approach presented herein allowed us to rigorously
fit fairly complicated photosynthetic models to fairly simple
data sets via a probabilistic modelling approach that: (1)
simultaneously analysed diverse data sources (both A–Ci

and A–Q curves) that informed the same underlying
physiological processes; (2) explicitly accounted for and
estimated parameter uncertainty for desert plant species,
thereby filling a gap in our understanding of plant photo-
synthetic responses as most empirical studies have focused
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on mesic temperate species; (3) avoided ad hoc model
tuning by incorporating informative prior information
derived from the literature to help constrain parameters
that are not well informed by the field data (e.g. activation
energies); and (4) did not require fixed parameter specifi-
cations, but rather was able to accommodate different
degrees of model flexibility and prior information, allowing
for a rigorous evaluation of photosynthetic parameters and
different sources of variability.As such, the HB model of C3

photosynthesis successfully predicted observed photosyn-
thesis. In addition, it yielded explicit plant-level estimates
for Ccrit, and plant- and species-level estimates for photo-
synthetic parameters (gm25, Rd25, Vcmax25 and Jmax25) for desert
plants. In summary, the HB approach has great potential to
improve the estimation of photosynthetic parameters
across a wide range of C3 species, thereby extending the
applicability and utility of process-based models such as
the Farquhar et al. model. The ease of implementation and
flexibility of the HB modelling approach make this an
important tool that may be applied to a variety of ecosys-
tems and experimental design settings.
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SUPPORTING INFORMATION

Additional Supporting Information may be found in the
online version of this article:

Figure S1. Examples of typical gas exchange data collected
from (a) a CO2 response curve (A–Ci) and (b) a light
response curve (A–Q).
Figure S2. Posterior mean estimates and 95% credible inter-
vals for the plant-level values (i.e. Y25p in Eqn 7) using the
HB model with both A–Ci and A–Q data, and peaked tem-
perature response functions for (a) maximum rate of car-
boxylation standardized to 25 °C (Vcmax25),(b) maximum rate
of electron transport standardized to 25 °C (Jmax25) and (c)
plant-level transition intercellular partial pressure of CO2

(Ccrit). Plant-level estimates are grouped by species where
ARTR = Artemisia tridentata, PUTR = Purshia tridentata,
LATR = Larrea tridentata and DALE = Dasylirion leiophyl-
lum. Symbols correspond to species where � = A. tridentata,
� = P. tridentata, = L. tridentata, � = D. leiophyllum.
Figure S3. Posterior mean estimates and 95% credible
intervals for the species-level values of the entropy factor
used in Arrhenius temperature function (DS) for (a) gm25

(using A–Ci data only), (b) Vcmax25 (using A–Ci and A–Q
data), (c) Jmax25 (using A–Ci data only), as well as (d) the
CO2 compensation point in the absence of day respiration
(G*25; using A–Ci data only) for the four study species using
the hierarchical Bayesian (HB) model with peaked tem-
perature functions (see Fig. S2 for species abbreviations
and symbol codes).
Table S1. Median and 95% empirical quantiles for photo-
synthetic parameter values derived from the literature, with
references provided; n/a indicates that information was not
available in the literature. Refer to Table 1 for units.
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Table S2. Posterior mean and 95% credible interval (CI)
estimates for Michaelis–Menten parameters standardized
to 25 °C (Kc25, Ko25), CO2 compensation point in the absence
of day respiration (G*25), activation energies (Es) and
peaked Arrhenius temperature variables (Hs, DSs), given by
the hierarchical Bayesian (HB) model for all four desert
shrub species, using A–Ci data only. Posterior 95% CIs that
do not contain the posterior mean of another species’s
parameter indicate significant differences between the two

parameter estimates; that is, there is at most a 5% chance
that the species have similar parameter values. Refer to
Table 1 for units.

Please note: Wiley-Blackwell are not responsible for the
content or functionality of any supporting materials
supplied by the authors. Any queries (other than missing
material) should be directed to the corresponding author
for the article.
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