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Abstract

Theoretical models for allometric relationships between organismal form and function

are typically tested by comparing a single predicted relationship with empirical data.

Several prominent models, however, predict more than one allometric relationship, and

comparisons among alternative models have not taken this into account. Here we

evaluate several different scaling models of plant morphology within a hierarchical

Bayesian framework that simultaneously fits multiple scaling relationships to three large

allometric datasets. The scaling models include: inflexible universal models derived from

biophysical assumptions (e.g. elastic similarity or fractal networks), a flexible variation of

a fractal network model, and a highly flexible model constrained only by basic algebraic

relationships. We demonstrate that variation in intraspecific allometric scaling exponents

is inconsistent with the universal models, and that more flexible approaches that allow

for biological variability at the species level outperform universal models, even when

accounting for relative increases in model complexity.
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I N T R O D U C T I O N

The past several decades have seen a resurgence of interest

in the field of biological scaling. The publication of several

compendia of allometric relationships for animals (Peters

1983; Calder 1984) and plants (Niklas 1994) have high-

lighted what appear to be recurrent scaling patterns within

and across taxa. Examples of allometric relationships that

address organismal form and function include: relationships

between morphological traits, such as tree diameter and tree

height (McMahon & Kronauer 1976; Niklas & Spatz 2004),

or relationships between organism size and physiology, such

as body mass and metabolic rate (Kleiber 1932; Heusner

1982; White & Seymour 2003; Savage et al. 2004).

The existence of such recurrent scaling patterns has

motivated attempts to model the scaling of biological

phenomena based on physical first principles. In the case of

plants, several scaling models have garnered significant

attention due to their proposed generality and because they

yield multiple, testable predictions (Table 1). These include

the biomechanical models for the scaling of �life�s dimen-

sions� first introduced by McMahon (1973) and McMahon

& Kronauer (1976) and more recent efforts invoking fractal

branching networks (West et al. 1997, 1999; Price & Enquist

2007; Price et al. 2007). Understanding how well these

models characterize allometric scaling behaviour provides

important insights into the processes underlying observed

allometries and the level of model complexity necessary for

addressing particular biological scaling questions.

Empirical tests of these scaling models typically rely on

traditional approaches that fit simple linear regressions to

bivariate plots of log-transformed data for a single predicted

relationship (i.e. for one particular property vs. another).

The confidence intervals for key parameters (e.g. slopes) are

examined to determine whether or not they contain a

particular scaling model�s predicted value. This approach

ignores the fact that many allometric models make

predictions for a suite of interconnected relationships

among multiple properties and does not allow for explo-

ration of varying degrees of model complexity. Another

issue is that classical methods for estimating the coefficients

describing how a particular property of an organism scales
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with another property either ignore uncertainty in one of the

variables (e.g. the �x-variable�) or employ relatively restrictive

assumptions about variance terms when accounting for

uncertainty in both variables (Warton et al. 2006). To

address these issues, we describe a hierarchical Bayesian

(HB) approach that simultaneously evaluates multiple

predicted scaling relationships and explicitly accounts for

uncertainty in all measured traits. This approach is applied

to compare intraspecific differences in allometric relation-

ships of plant morphology based on whole-plant and leaf

datasets.

The allometric models we considered can be divided into

three major categories: universal, constrained, and special-

ized (Table 1). Universal models are derived from physical

first principles and are expected to be universally applicable

both within and across species. These models yield specific

numerical predictions for a suite of allometric exponents,

and the numerical values are assumed to be the same across

all individuals and species. In constrained models, the scaling

exponents may take on a wide array of numerical values, but

these values are �constrained� by physical design principles.

That is, assumptions about biological limitations result in the

scaling exponents for one allometry to be expressed as a

function of the exponents describing other allometries. In

contrast, specialized models are highly flexible ones that do

not arise from underlying physical or biological assumptions.

In these models, the allometric exponents are only con-

strained by simple logical (i.e. algebraic) relationships such

that each species may take-on unique (or �specialized�)
exponent values. Our objective is to compare the predictive

power of different scaling models, representing different

levels of complexity, while accounting for the fact that

universal models inherently involve fewer free parameters

than constrained models, which involve fewer free param-

eters than specialized models. We utilize three large

allometric datasets of plant and leaf traits containing in total

2362 individuals from 110 species to evaluate the ability of

the universal, constrained, and specialized models to fit

observed data and to determine if the universal models

satisfactorily capture observed allometric patterns.

We first define the scaling models to be compared and

highlight the predictions made by each model. Next, we

describe an HB approach for evaluating the predictive

power of scaling models of varying complexity. We compare

the performance of the different scaling models in two

primary ways: (i) we compare the posterior distributions of

the population-level scaling exponents to predictions from

universal models, and (ii) we rigorously evaluate the ability

of each scaling model to predict the observed data via model

goodness-of-fit comparisons and estimates of posterior

predictive loss.

S C A L I N G M O D E L S

Allometric scaling models often make multiple predictions

about how aspects of organismal form or function vary with

some measure of size (e.g. length or mass). The models

considered here have all been applied to the study of plant

traits. However, both the theoretical models we test and the

HB framework we employ are more general and could be

applied to other taxa. To begin, consider the relationships

Table 1 Categorization of scaling exponents for six different

scaling models of allometric relationships among plant properties.

Every element of the table denotes an exponent, where r is basal

stem or petiole radius, l is the plant height or leaf length, A is the

surface area of an individual or of the leaves of a plant, and M is the

plant or leaf mass. The top row represents the independent

variable, e.g. the two-thirds in the upper left cell denote that under

elastic similarity l � r 2 ⁄ 3. The top four models predict universal

scaling exponents whereas the bottom two predict variable

exponents that are not restricted to particular numerical values

Model (category) r l M

Elastic similarity (universal)

r – – –

l 2 ⁄ 3 – –

M 8 ⁄ 3 4 –

A NA NA NA

Stress similarity (universal)

r – – –

l 1 ⁄ 2 – –

M 5 ⁄ 2 5 –

A NA NA NA

Geometric similarity (universal)

r – – –

l 1 – –

M 3 3 –

A 2 2 2 ⁄ 3
WBE (universal)

r – – –

l 2 ⁄ 3 – –

M 8 ⁄ 3 4 –

A 2 3 3 ⁄ 4
PES (constrained)

r – – –

l b ⁄ a – –

M (2a + b) ⁄ a (2a + b) ⁄ b –

A 1 ⁄ a 1 ⁄ b 1 ⁄ (2a + b)

SPAM (specialized)

r – – –

l g – –

M u u ⁄ g –

A k k ⁄ g k ⁄ u

Dashes denote the symmetric or isometric elements. NA indicates

that the model does not make specific predictions for the corre-

sponding scaling exponent.

WBE, model of West et al.; PES, model of Price et al.; SPAM,

specialized allometry model.

642 C. A. Price et al. Letter

� 2009 Blackwell Publishing Ltd/CNRS



between plant or leaf mass (M), whole-plant or individual

leaf surface area (A), plant height or leaf length (l), and basal

stem or petiole radius (r). Given these traits, we may be

interested in any of the six possible scaling relationships, e.g.

between r and l or between M and A and so on. If power-

law scaling is observed, only three of the six relationships

are independent. In a universal model, the three

independent scaling exponents take-on particular numerical

values that are applicable to all species. In a specialized

scaling model, each of the three scaling exponents is free to

vary at the species-level without any constraints. Finally,

constrained models represent an intermediate complexity

where some, but not all, of the exponents are constrained

relative to each other due to hypothesized biological

limitations. Table 1 lists the examples of each type of

scaling model.

Next, we outline the three groupings of scaling models:

four universal models, one constrained model, and one

specialized model. All six are classified as power-law models,

which predict relationships of the form log(y) = log (a) + b
log(x), where a is the normalizing constant and b is the

scaling exponent.

Universal models

Examples of models that predict universal scaling exponents

of plant form and function are stress similarity (STRESS;

McMahon & Kronauer 1976), elastic similarity (ELASTIC;

McMahon & Kronauer 1976), geometric similarity (GEOM;

Rubner 1883; Niklas 1994), and the fractal branching model

of West et al. (1999), hereafter WBE. In each model, some

physical optimization principle is invoked to explain the

origin of allometric exponents, and no free parameters are

needed in terms of species-specific scaling other than the

normalizing constants.

Stress and elastic similarity

STRESS assumes that a constant maximum biomechanical

stress level is maintained throughout the branches of the

trees. Similarly, ELASTIC assumes that the ratio of a

branch�s deflection to its length remains constant across

branches of different sizes (McMahon & Kronauer 1976).

Both models are derived from biophysical principles and

yield primary (biomechanical similarity, a testable assump-

tion) and ancillary (particular scaling exponents, Table 1)

predictions. These two models make different predictions

for the scaling exponents relating length, radius, and mass,

but neither makes explicit predictions for how total leaf area

should scale with other plant traits.

Geometric similarity

The biological application of this model (GEOM) was first

proposed by Galileo as a means for predicting the scaling of

animal limb bone dimensions (Calder 1984). Other appli-

cations include the scaling of energy use in dogs (Rubner

1883). GEOM assumes that length and radius scale

isometrically with each other. We treat GEOM as a null

model for scaling in plants without regard to the functional

arguments upon which it is based (Niklas 1994).

Fractal branching network

The fractal branching model (WBE) assumes that internal

resource delivery networks have been selected to minimize

resistance to flow (West et al. 1997, 1999). WBE assumes

that the structural components of plants (i.e. branches) are

elastically similar, thus for the scaling of plant dimensions

(height, stem diameter) with mass, the model makes

identical predictions to that of McMahon�s elastic similarity.

However, WBE also provides predictions about the scaling

of surface area and dynamic aspects of organismal metab-

olism (West et al. 1999). Thus, within our analysis, the

extended applicability of the WBE model is reflected in the

greater number of predicted scaling exponents compared

with the elastic and stress similarity models (see Table 1).

Constrained models

Models with constrained exponents are those that invoke

biological mechanisms to constrain the scaling exponents

relative to each other. This implies that values for the scaling

exponents cannot be established a priori, but relationships

among them can.

PES: Price et al. (2007) provide an example of a

constrained exponent model, which is referred to as PES.

In PES, the overall design is a fractal branching network

with the same underlying mathematical structure as WBE.

The PES model differs from WBE because it does not

assume a single optimal exponent. Instead, PES allows the

branch-length and branch-radii relationships to vary

between species. This results in a set of relations that

requires only two, potentially species-specific, scaling

parameters (a and b) to be estimated from data. All other

predicted exponents are explicit functions of a and b

(Table 1).

Specialized model

A specialized allometry model (SPAM) is one in which all

independent scaling exponents are free to vary, i.e. there are

no constraints among the three independent exponents (g,

u, and k; Table 1). The only assumption underlying the

SPAM model is that the relationships between the variables

are power laws and as such this is a purely empirical model.

Thus, knowing any three of the scaling relationships allows

one to determine the other three through algebraic

manipulation of the power law equations.
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M E T H O D S

Data sources

Three data sources were utilized in this study; these sources

were selected because they included observations for

multiple species for at least three of the four variables

considered here (l, r, A, M). The first describes the �average�
properties of whole trees and is from the Cannell (1982)

data compendium. Cannell reports stand-level mean tree

height (l, m), stem biomass (M, kg), leaf mass, and stem

diameter (2r, cm) for multiple, even-aged stands, providing

observations for 256 stands representing 14 species (Sup-

porting Information, Appendix S1, Table S1). To conform

to the predictions of the models invoking fractal similarity

(WBE and PES), we assumed isometric relationships

between whole-tree leaf surface area (A, cm2) and leaf

mass, and whole-tree and stem biomass (Price et al. 2007).

The second dataset is for plants from the Sonoran Desert

(Price et al. 2007). The dataset contains measurements of

plant height (l, m), basal stem diameter (2r, cm), and plant

mass (M, kg) for 1180 individual plants representing 49

species (Table S2).

The third dataset contains observations for leaves

representing 926 individual leaves from 47 species

(Table S3). Data were collected during the summer of

2007 from trees in the greater Atlanta region (Lat ⁄ Long

33�75¢, )84�38¢). The species were selected for collection

based on local availability. For each fresh leaf, major axis

length (l, mm) and petiole diameter (2r, mm, average of

minor and major axes) were measured with digital calipers.

Fresh leaves were digitally scanned and surface area (A,

mm2) was measured with image analysis software (Scion

Image Beta 4.0.2; http://www.scioncorp.com). All leaves

were dried in a drying oven until a constant dry mass (M, g)

was attained. These data were collected for as large a range

of leaf sizes as could be found for each species.

HB model

We chose to implement a HB framework (Ogle & Barber

2008) to simultaneously fit the scaling models to each

dataset for four primary reasons. First, it can easily

accommodate a multivariate likelihood that quantifies

correlations between different traits in addition to account-

ing for variation explained by the scaling model(s). Second,

we essentially treat r as the �independent� variable and

explicitly account for measurement errors in r. Third, for

scaling models that allow for species-specific exponents, we

specify a hierarchical parameter model that allows under-

represented species (i.e. those with few observations) to

�borrow strength� from well-represented species. Fourth, the

HB framework is based on a conditional probability model

that describes uncertainty in all stochastic components (e.g.

data and parameters) and quantifies relationships between

these components (Ogle & Barber 2008). This framework

yields the joint posterior distribution for all unknown

quantities, conditional on the data and the model structure,

and inferences based on the posterior are very straightfor-

ward (Carlin et al. 2006; Ogle & Barber 2008). Next, we

highlight the important elements of the HB model that we

implemented (see Appendix S2 for a detailed explanation of

the models and implementation procedures).

For observation i (i = 1, 2, 3, …, Nk for dataset k), we

employ a Berkson error-in-variables model (Dellaportas &

Stephens 1995) to account for measurement errors in ri,

which we assume are log-normally distributed:

log qið Þ � N log rið Þ; r2
r

� �
; ð1Þ

where qi is the �true� or latent radius and r2
r is the mea-

surement error variance. For a given dataset, all scaling

models use the same q values. On the log-scale, the multi-

variate normal likelihood for vector i containing the other

observed traits is:

logðliÞ
logðMiÞ
logðAiÞ

2
4

3
5 � N

al ;sðiÞ bl ;sðiÞ
aM ;sðiÞ bM ;sðiÞ
aA;sðiÞ bA;sðiÞ

2
4

3
5 1

logðqiÞ

� �
;R

0
@

1
A;
ð2Þ

where the as are the normalizing constants and the bs are

the scaling exponents for the relationships between l, M, or

A and q, S is a 3 · 3 covariance matrix, and s(i) indicates

�species s associated with observation i�. We employ a

hierarchical prior that models species-specific parameters as

coming from an overall (or �global�) population that is

defined by population-level parameters (e.g. Clark et al.

2005; Ogle & Barber 2008). For variable Y (Y = l, A, or M)

and species s:

aY ;s � N ~aY ; r
2
aY

� �
;

bY ;s � N ~bY ; r
2
bY

� �
;

ð3Þ

where ~aY and ~bY are the global normalizing constants and

scaling exponents, respectively, and r2
aY and r2

bY are the

variances that describe variability between species with

respect to these parameters. Equations 2 and 3 represent the

most flexible model (SPAM) where bl, bM, and bA are

equivalent to g, u, and k, respectively in Table 1. For all

scaling models, we allow the as to differ between species.

However, we may adjust the model for the bs such that, for

the universal models, we drop the s subscripts and assume

particular values for the bs (Table 1). For PES, we apply eqn

3 to bl and bA, and based on predictions in Table 1

involving parameters a and b, bM = bl + 2, a = 1 ⁄bA, and

b = bl ⁄ bA. We chose a relatively informative prior for

r2
r (eqn 1) and assigned non-informative priors to all

remaining parameters. We used Markov chain Monte Carlo
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methods to approximate the joint posterior distribution

associated with this likelihood and parameter models. We

implemented the models in WinBUGS (Lunn et al. 2000), a

general-purpose statistical software package for conducting

Bayesian analyses (code provided in Appendix S3).

R E S U L T S

Assessing universality of allometric scaling exponents

We evaluated the posterior distributions for the population-

level (or global) and species-specific exponents obtained

under the SPAM described by eqns 1–3. We compared the

95% Bayesian credible intervals (BCI) for the global

exponents (the ~bY s in eqn 3) in the SPAM model with

those predicted by each of the universal scaling models

(Fig. 1 and Table 2). None of the 95% BCI contained the

predicted exponent values of the GEOM model, but the

95% BCI did include the predicted values in three out of

twenty analyses for the WBE, ELASTIC, and STRESS

models (Table 2). Specifically, the 95% BCI for the global

scaling exponents obtained for the M vs. r relationship for

the Cannell data contained the exponent predicted by the

STRESS model. In addition, the posterior distribution for

the M vs. r scaling exponent for the leaf data overlaps the

values predicted by the WBE and ELASTIC models

(Fig. 1). To investigate whether the choice of independent

variable influenced our findings we repeated the HB

analyses using M as the independent variable (Fig. S1).

For brevity, we do not report the full results here, but a

similar story emerges: no universal model performs well

across all relationships and datasets.

To explore the variability of the species-specific scaling

exponents for each relationship (i.e. l vs. r, M vs. r, A vs. r),

we tallied the number of species-specific 95% BCI from the

SPAM model that contained any particular exponent value

(Fig. 2). We did not find a single case where a universal

scaling prediction was contained in the 95% BCI for all

species-specific exponents. Moreover, none of the universal

scaling models was consistent with all of the allometric

relationships in these datasets. For example, across all

Figure 1 Posterior distributions for the glo-

bal exponents in the specialized allometry

model (SPAM). The dashed vertical lines

represent exponent values predicted by the

universal models (Table 1). None of the

universal models enjoys strong support

across all allometries or all datasets. Bayesian

credible intervals (BCI) and the exponent

predictions from the universal models are

reported in Table 2. Note that the elastic

similarity model makes the same predictions

as the model of West et al. (1999) for the

scaling of mass and length. In addition,

stress and elastic similarity models do not

make predictions for the scaling of surface

area.
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Table 2 Posterior mean, SD, and 95% Bayesian credible interval (BCI) limits based on the lower 2.5th percentile (2.5%) and the upper 97.5th

percentile (97.5%) for the global scaling exponents associated with the most flexible model, i.e. specialized allometry model or SPAM (see

Fig. 1). The predicted numerical values for the exponents in the universal models are in the middle four data columns (�Model predictions�).
Shaded gray cells indicate predicted values that were contained in the 95% BCI for the SPAM model. The rightmost four columns (�Per cent

contained�) contain the percentage of species-level exponent BCI that contained a given model�s predicted exponent value. For example, for

the l vs. r relationship within the Cannell dataset, 14.3% of the species-level BCI included the WBE model�s predicted exponent value (or

equivalently the elastic model)

Data

Dependent

variable Model Mean SD 2.50% 97.50%

Model predictions Per cent contained

WBE ELAS GEOM STRESS WBE ELAS GEOM STRESS

Cannell Length SPAM 0.768 0.031 0.708 0.828 0.66 0.66 1.00 0.50 14.3 14.3 0.0 0.0

Cannell Mass SPAM 2.364 0.085 2.201 2.533 2.66 2.66 3.00 2.50 50.0 50.0 0.0 57.1

Cannell Surface area SPAM 1.540 0.079 1.387 1.699 2.00 NA 2.00 NA 7.1 NA 7.1 NA

Sonoran Length SPAM 0.745 0.031 0.683 0.808 0.66 0.66 1.00 0.50 74.5 74.5 31.9 0.0

Sonoran Mass SPAM 2.399 0.048 2.305 2.495 2.66 2.66 3.00 2.50 55.3 55.3 10.6 80.9

Leaves Length SPAM 1.356 0.061 1.236 1.477 0.66 0.66 1.00 0.50 6.1 6.1 32.7 0.0

Leaves Mass SPAM 2.774 0.109 2.563 2.994 2.66 2.66 3.00 2.50 46.9 46.9 53.1 44.9

Leaves Surface area SPAM 2.642 0.110 2.429 2.861 2.00 NA 2.00 NA 26.5 NA 26.5 NA

WBE, model by West et al.; ELAS, elastic model; GEOM, geometric model.

Figure 2 Smoothed frequency histograms

for the fraction of the Bayesian credible

intervals (BCI) for each species-specific

scaling exponent that include the exponent

value indicated on the x-axis. The predicted

exponent values from the universal models

are plotted for reference (horizontal dashed

lines). Note that the stress and elastic

similarity models do not make predictions

for the scaling of surface area.
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datasets, less than 50% of the length–radius exponents� BCI

contained the predicted values given by the STRESS, WBE,

or GEOM models (Fig. 2a). The highest fraction was

observed for STRESS with the Sonoran plant dataset, for

which c. 75% of species-specific mass–radius exponents�
BCI contained the predicted STRESS values (Fig. 2b).

Detailed results for all three datasets are reported in

Tables S1–S3.

Comparing the predictive power of models of varying
complexity

We conducted two sets of analyses to compare how well

models of varying complexity captured the observed data.

First, we used eqn 1 to generate replicated data for each

dependent variable (Gelman et al. 2004), yielding posterior

predictive distributions for each observation in each dataset,

for each model. If a given model perfectly predicted the

data, all points would lie exactly on the 1 : 1 line in an

observed vs predicted plot. In general, the models fit the

data very well as the points were tightly clustered around the

1 : 1 lines (Fig. 3), but clustering around the 1 : 1 line was

higher for the SPAM model compared with the other

models. The greatest deviations occurred for the universal

models, and this was especially pronounced for the leaf data.

These goodness-of-fit differences are also reflected in the

variance (or SD) estimates for l, M, and A. That is, the

covariance matrix S in eqn 2 describes the residual

variability after having accounted for variation in l, M, and

A explained by the scaling models. Across all datasets and

traits, the residual variance was always smallest for the

SPAM model (Table S4).

Since more complex (i.e. parameter-rich) models are

expected to outperform simpler models in terms of

goodness-of-fit, we also computed the posterior predictive

loss (D), which penalizes for model complexity (Gelfand &

Ghosh 1998). D was always lowest for SPAM, typically

followed by PES, and the universal models generally had the

highest D values (Table 3). The rankings of the universal

models, with respect to D, varied depending on the dataset

and trait of interest. For nearly all dataset–trait combina-

tions, D was significantly lower for SPAM compared with

the universal models. The one exception occurred for length

(l) in the Cannell dataset, where D was lowest for SPAM,

but it was not significantly different from the D obtained for

ELASTIC and WBE. In many cases, D was also significantly

lower for SPAM compared with WBE, but there are

instances in which the smaller D values for SPAM were

contained in the 95% BCI for the associated WBE�s D value

(i.e. length for all datasets). Overall, comparisons of D

between models within each dataset indicate strong support

for species-specific exponents as represented by SPAM,

moderate support for PES, and providing comparatively

little support for the universal scaling models.

Finally, the estimates of the trait correlation coefficients

that describe the off-diagonals of the covariance matrix S in

eqn 2 indicate the importance of simultaneously considering

all traits within a multivariate modelling framework. These

correlation coefficients describe the residual correlation

between pairs of traits after accounting for variation

explained by the scaling models. Of the 34 possible

coefficients, 29 were significantly different than zero,

indicating the existence of strong residual trait correlations

(Table S4). Posterior estimates for the components of S and

for rr
2 are given in Table S4.

D I S C U S S I O N

The typical approach to evaluating models for allometric

scaling relationships is to compare a single prediction from a

single allometric model to data and determine whether or

not the model is consistent with the data (White & Seymour

2003; Bokma 2004; Glazier 2006). Several such studies to

date have indicated significant variability in both intraspe-

cific and interspecific allometric scaling patterns (Bokma

2004; Glazier 2006; Muller-Landau et al. 2006a). Even with

multiple scaling relationships, each is typically analysed in

isolation, so most analyses are equivalent to single relation-

ship comparisons presented together in the same study

(Savage et al. 2004; Anfodillo et al. 2006; Muller-Landau et al.

Figure 3 Illustration of the improvement in predictive power with more flexible scaling models. The predicted mass values are the posterior

means for replicated data. The black line in each figure is the 1 : 1 line. Note that the model of Price et al. (2007); PES) and the specialized

allometry model (SPAM) have less scatter about the 1 : 1 line compared with the universal models, WBE model of West et al. (1999) and the

geometric model (GEOM).
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2006b). Evaluating a scaling model based on a single

prediction has two major limitations. First, it ignores the fact

that most allometric models make predictions for a suite of

relationships. As a result, comparisons of singular relation-

ships ignore one of the strengths of these synthetic theories

and may therefore be biased towards rejecting universal

models or may provide reduced power for distinguishing

among models. Second, single scaling predictions have been

used to evaluate mechanistic scaling models against null

models that do not fit data well and that do not offer a

meaningful comparison in terms of competing biological

theory. Thus, when comparing different models with one

another it can often be difficult to reject either model (if

they make similar predictions) based on simple regression

analyses, making it difficult to draw inferences about the

underlying biological processes.

The approach we have presented here differs from

traditional approaches to fitting and evaluating scaling

models in that this is only the second study that we are

aware of to examine multiple predictions simultaneously

(Dietze et al. 2008). Moreover, this study presents the first

rigorous intermodel comparison of multiple scaling models.

We also expand the breadth of taxonomic and functional

groups explored compared with the previous work (Dietze

et al. 2008), including 2362 individuals from 110 species.

These species represent a broad array of phylogenetic,

morphological, functional, and life history groups including:

angiosperms and gymnosperms; annuals and perennials;

monocots and dicots; C3, C4, and CAM (crassulacean acid

metabolism) photosynthetic pathways; and herbaceous,

succulent, and woody species. The HB framework that we

employed was able to accommodate this diversity by

allowing each species to potentially be described by a

species-specific allometry that can be thought of as arising

from a global �plant� allometry. In addition, this approach

allows the explicit incorporation of important sources of

variability that are typically ignored. Finally, we utilize a

number of different model comparison criteria, providing a

Table 3 Posterior predictive loss (D; mean) and its 95% Bayesian credible interval (BCI; lower 2.5th and upper 97.5th percentiles) for the six

models for length, mass, area, length and mass together, and all three traits combined. Lower values of D indicate greater support for the

corresponding model; model-trait D-values may be considered different if the 95% BCI for one model–trait combination does not contain

the posterior mean for another model–trait�s D (only applicable to comparisons within a given trait category)

Model Trait

Cannell Sonoran Leaves

Mean 2.50% 97.50% Mean 2.50% 97.50% Mean 2.50% 97.50%

ELASTIC Length 5.369 4.369 6.511 91.28 83.82 99.37 45.47 41.03 50.12

STRESS Length 7.522 6.179 9.041 107.6 98.74 117 61.61 55.77 67.63

GEOMETRIC Length 6.78 5.558 8.191 116.2 106.9 126.2 25.12 22.39 28.14

WBE Length 5.374 4.395 6.503 91.32 84.2 99.31 45.54 41.19 50.25

PES Length 5.791 4.633 7.158 75.69 69.29 82.41 9.989 8.369 11.9

SPAM Length 4.902 3.982 5.957 75.6 69.07 82.59 8.567 7.111 10.26

ELASTIC Mass 16.61 13.77 19.87 273.2 249.4 297.6 60.57 52.66 68.96

STRESS Mass 13.23 10.91 15.85 245.6 223.8 267.4 58.92 51.3 67.13

GEOMETRIC Mass 29.04 24.15 34.76 386.2 354.5 420.2 75.71 66.36 85.76

WBE Mass 16.59 13.72 19.87 273.4 249.9 298 60.91 53.19 69.22

PES Mass 14.77 11.86 18.11 260 235.4 285.5 60.01 50.36 70.68

SPAM Mass 7.464 6.014 9.132 204.6 185.7 224.2 18.8 14.95 23.29

GEOMETRIC Area 21.6 17.87 25.84 NA NA NA 72.62 64.35 81.76

WBE Area 21.62 17.91 25.8 NA NA NA 72.71 64.35 81.75

PES Area 13.61 10.42 17.33 NA NA NA 22.62 17.49 28.67

SPAM Area 9.6 7.734 11.8 NA NA NA 19.36 15.19 24.19

ELASTIC Length and mass 21.98 18.91 25.44 364.5 337.6 391.6 106 96.22 116.3

STRESS Length and mass 20.76 18.12 23.73 353.2 328 378.5 120.5 109.9 131.6

GEOMETRIC Length and mass 35.82 30.52 41.95 502.4 465.2 542.3 100.8 90.39 111.8

WBE Length and mass 21.97 18.93 25.46 364.7 338.2 392.3 106.5 96.64 116.8

PES Length and mass 20.56 17.6 23.88 335.7 309.1 363.3 70 60.42 80.69

SPAM Length and mass 12.37 10.6 14.32 280.2 257.9 303 27.37 22.52 33

GEOMETRIC Length, mass, and area 57.43 49.54 66.29 NA NA NA 173.5 157.1 191.3

WBE Length, mass, and area 43.59 37.77 50.02 NA NA NA 179.2 162.3 197.3

PES Length, mass, and area 34.18 29.39 39.58 NA NA NA 92.62 79.14 108.1

SPAM Length, mass, and area 21.97 19.2 25.15 NA NA NA 46.73 38.24 56.78

WBE, model of West et al.; PES, model of Price et al.; SPAM, specialized allometry model; NA, not applicable.

648 C. A. Price et al. Letter

� 2009 Blackwell Publishing Ltd/CNRS



more complete evaluation than simply evaluating confidence

intervals for slope estimates obtained from regression

analyses that do not explicitly incorporate multiple sources

of uncertainty.

Our analysis shows that the maximally flexible empirical

models provide better fits to the data than the comparatively

restrictive mechanistic models, even after considering

differences in the number of parameters, or model

complexity. The posterior intervals for the global exponents

from the SPAM model did not consistently contain

theoretical predictions for any of the universal models. In

one case, the predicted scaling exponent for a single

relationship was well supported by the data (M vs. r in leaves

was consistent with the WBE and ELASTIC models), but

the predictions of these two models for the other two

scaling relationships failed to describe the overall pattern in

the data (Fig. 1). As such, the scaling behaviour of the four

plant properties considered here were not captured by any

of the universal models that we evaluated in any of the our

datasets. However, when only considering plants, the

posterior distributions for the l vs. r and M vs. r scaling

exponents strongly overlap for the Cannell and Sonoran

datasets (Fig. 1). This agreement occurred despite the fact

that these datasets differ significantly in their collection

methods, taxonomic coverage, and functional group com-

position. The strong overlap in their global distributions

suggests that there may exist a tendency towards a particular

scaling allometry that applies across species, but this �global�
allometry differs from those predicted by existing scaling

theories.

The BCI for the species-specific scaling exponents also

suggest that no universal model is supported consistently

across species, allometric relationships, and datasets. Some

models enjoy support for particular combinations of dataset

and allometric relationships. For example, the WBE and

ELASTIC models perform well for Sonoran species, with

75% of the credible intervals for the l vs. r relationship and

55% of the credible intervals for the M vs. r relationship

containing the WBE and ELASTIC model predictions. The

greater agreement at the species vs. the global levels

occurred because the posterior intervals for the species-

specific exponents were broader, spanning a wider range of

values. Species-level estimates based on the Cannell data

somewhat agree with the STRESS, WBE, and ELASTIC

exponents for the M vs. r relationship, but they generally do

not agree with the l vs. r and A vs. r scaling relationships

predicted by these models. Moreover, the posterior distri-

butions for the scaling exponents varied greatly across

species, datasets, and allometric relationships; thus, any

model that predicts a single universal exponent will not

explain this variability.

As expected, the more flexible models (e.g. PES and

SPAM) explained more variation in the observed plant

data than the less flexible models (e.g. WBE, GEOM,

ELASTIC, and STRESS). The universal models we

considered did perform reasonably well in predicting the

scaling of plant form when looking at the data for all taxa

combined (Fig. 3); however, some systematic error was

produced by each of these models. For example, for a

given radius, both the GEOM and WBE models tend to

overpredict mass at large sizes, particularly among the

Sonoran Desert species. Similarly, PES tends to under-

predict mass for leaves at small sizes. Thus, caution

should be used when assuming universal exponents in

ecological studies.

Of the mechanistic models we explored, PES consistently

outperformed the universal models. This improved fit could

result simply from the increase in model parameters.

However, as seen in Table 3, despite penalizing for model

complexity, the posterior predictive loss for PES was

consistently lower than for any of the universal models. This

suggests that the PES model performs better because it

allows for variability in network or morphological design

that is more consistent with the growth and architecture of

real plants. This also highlights the need to test model

assumptions in addition to model predictions; in this

example, the underlying assumptions could be evaluated

by directly testing the scaling of vascular elements (e.g.

McCulloh et al. 2003; Anfodillo et al. 2006; Weitz et al. 2006;

Mencuccini & Holtta 2007).

Although we present several summary statistics in our

analysis, we caution against over-reliance on any one metric.

By considering all of the statistics and patterns evaluated

here, a consistent story emerges: more flexible models

perform better than those with fixed parameters. This

improved performance appears to be robust to increases in

the number of fitted parameters, suggesting that intraspe-

cific allometric modelling efforts would benefit by explicitly

acknowledging important sources of variability between

species. Differences between mechanistic universal models

and species-specific empirical models of plant growth and

form may be addressed by incorporating additional influ-

ences on scaling relationships (Muller-Landau et al. 2006a),

addressing potential departures from power law behaviour

(Savage et al. 2008), or grouping plants into functional

groups that are under similar constraints and therefore share

similar allometric relationships. While the assumption of

universal allometric behaviour may be a useful first

approximation for some broad-scale comparisons, account-

ing for the variability observed in these biologically relevant

phenomena will ultimately lead to more realistic models of

plant form and function.

It should be noted that our application of some of these

models to leaves (in particular, WBE) extends beyond their

intended scope. However, extensions of WBE have

successfully predicted the scaling of leaf morphology (Price
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& Enquist 2007). Thus, it is within the context of comparing

the original WBE model with a subsequent extension (PES)

that we include the WBE model in our analysis of the leaf

data. Moreover, the mechanistic arguments underlying the

other universal models (STRESS, ELASTIC, or GEOM)

apply to leaves in principle. Additionally, the predictions

from WBE that we use are only strictly valid in the limit of a

large number of branching generations (Enquist et al. 2007;

Savage et al. 2008). This would be consistent with the fact

that WBE performs best for trees in the Cannell dataset.

Finally, and perhaps most importantly, all of our analyses are

of intraspecific allometric relationships in plants. While

these certainly provide valid tests of the universal plant

models, our results do not apply directly to other types of

interspecific scaling relationships, such as the scaling of

adult metabolic rate in determinately growing mammals

(Kleiber 1932).

We also note that the HB framework has a number of

benefits for analyses of allometric scaling. First, it allows the

explicit incorporation of uncertainty in both dependent and

independent variables. Second, as noted before, it facilitates

estimation of multiple allometric exponents and normalizing

constants within a unified statistical framework. Third, it

allows direct linkages between multiple traits across multiple

species, thus accounting for correlations between traits that

are not completely explained by the scaling models. Finally,

this approach allows the simultaneous fitting of all

allometric scaling models, enabling a rigorous evaluation

of the different scaling models via comparisons of multiple

model fit indices.

In sum, there is little support for any of the universal

scaling models as descriptions of plant morphology at the

intraspecific level. Estimated allometric exponents exhibit

a fairly broad range, and while all of the scaling patterns

that we analysed do exhibit some degree of central

tendency, this is not adequately captured by any one of

the universal scaling models. As such, our analyses

suggest that scaling models could benefit by attempting

to incorporate more complexity in order to more

accurately capture biological variability. Determining the

principal axes of variation governing the scaling of plant

form will be important for these efforts. Finally, we have

demonstrated that a HB framework is well suited for

performing analyses of this type due to its inherent

flexibility, hierarchical structure, and explicit integration of

multiple levels of variability.
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1 

SUPPORTING INFORMATION  
 
Appendix S2  Hierarchical Bayes model and results 
 
 
Methods: Hierarchical Bayesian model 
 
 
We employed a hierarchical Bayesian (HB) framework to simultaneously fit the different scaling 

models to each dataset (Dietze et al. 2008). We choose this method for four primary reasons. First, 

the HB framework can easily accommodate a multivariate likelihood that explicitly quantifies 

correlations between observations of different plant characteristics (e.g., l, r, A, M) in addition to 

accounting for variation explained by a particular scaling model (e.g., Ogle & Barber 2008). Second, 

although we essentially treat r as the “independent” variable, we explicitly account for observation 

errors in r  via a Berkson type error-in-variables model (Dellaportas & Stephens 1995). As noted by 

Dellaportas and Stephens (1995), the Bayesian approach to accounting for errors in the 

“independent” variable is preferred over classical approaches such as reduced major axis (RMA) 

regression because we are “able to make inferences under a truly representative model 

specification;” conversely, classical approaches employ restrictive assumptions about the variances 

terms and often encounter problems with numerical stability in non-linear models.  Third, for 

scaling models that allow for species-specific exponents, a hierarchical parameter model for the 

exponents allows under-represented species (i.e., those with few observations) to “borrow strength” 

from well-represented species. That is, the exponent values for under-represented species will be 

partly informed by the values predicted for well-represented species. Fourth, the HB framework 

treats all observations and unknown quantities (e.g., scaling exponents, intercepts, (co)variance 

terms, latent variables) as stochastic variables, and a conditional probability model describes 

uncertainty in these components and how they are related to each other (Ogle & Barber 2008). This 

framework yields the joint posterior probability distribution for all unknown quantities, conditional 



2 

on the data and the model structure, and inferences based on the posterior are very straightforward 

(Carlin et al. 2006; Ogle & Barber 2008). For example, we can directly compare the posteriors for the 

scaling exponents to those predicted by the different scaling models to evaluate whether or not the 

data support a particular model or group of models. 

 There are essentially two components that we must specify in the HB model: the likelihood (i.e., 

the data model) and all prior distributions for the unknown quantities (i.e., the parameter model). In 

some applications, one may also specify a probabilistic process model to account for “process 

error,” which describes additional variation not explained by measurement error and the mean 

model (e.g., in this case, the mean model is given by one of the scaling models). However, we do not 

explicitly separate process error from measurement error because the data do not facilitate 

separation of these two error terms; separation would be enabled by, for example, repeated 

measurements on at least a subset of individuals (Ogle & Barber 2008). Thus, we estimate the 

combined measurement and process variance and focus on the parameter model and its ability to 

explain the variation in the data. That is, each scaling model (Table 1) results in a different parameter 

model, but the likelihood part remains unchanged. The HB model gives the joint posterior 

distribution for all unknown quantities, which is proportional to the likelihood multiplied by the 

prior(s) (Gelman et al. 2004). 

 

Defining the likelihood 

 

 We define the likelihood based on the following assumptions. For observation i in dataset k with 

Nk observations, (i = 1, 2, 3, …, Nk), without loss of generality, we let ri serve as the independent 

variable. A Berkson type model accounts for potential errors in ri (Dellaportas & Stephens 1995), 

and based on exploratory analyses, we assume that the errors are log-normally distributed: 
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 ( ) ( )( )2log ~ log ,ρ σ
i i r

N r  (1) 

ρi is the “true” or latent radius and
2
r

σ is the observation or measurement variance. For a given 

dataset, we only allow the most flexible model or the “full” model (i.e., SPAM) to inform the latent 

radii values. Thus, all models utilize the same ρi values, thereby eliminating potential differences 

between models that could be solely due to different estimates of the latent radii.   

Next, we allow for the possibility that observation (and process) errors associated with the 

other variables (l, A, M) are correlated, and we also assume that each is log-normally distributed. On 

the log-scale, the multivariate normal likelihood for observation vector i is: 
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The α’s are the normalizing constants, and the β’s are the scaling exponents for the relationships 

between l, M, or A (as per the subscripts) and the latent radius. S is a 3×3 covariance matrix.  The 

subscript s(i) indicates “species s associated with observation i,” and thus Eqn. 2 represents the most 

flexible model (i.e., SPAM; see Dietze et al. 2008 for a similar approach). For all scaling models, we 

allow the α’s to differ between species. We may modify the model with respect to the β’s such that 

we may drop the s(i) subscript for models that assume that the exponents do not differ between 

species and we may also assume that the β’s take-on specific values (e.g., see the universal models; 

Table 1). Such modifications would reduce the complexity of the model by reducing the number of 

free parameters. Note also that the three different β ’s (i.e., βl, βM, and βA) relate to the predicted 

exponents in Table 1 associated with the r column. Together, Eqns. 1 and 2 define a component of 

the likelihood. The likelihood (of all data) is obtained by taking the product of all components across 

all observations by assuming conditional independence; i.e., each observed vector is assumed 



4 

independent of the other observed vectors given the true values (i.e., the latent, predicted, or mean 

values).  

 Next we define the parameter model. Consider the most flexible model, as depicted by Eqn. 2. 

We employ a hierarchical prior that essentially treats species as random effects whereby we model 

species-specific parameters as coming from an overall population (or “global” distribution) that is 

defined by population-level parameters (or hyperparameters) (e.g., Clark et al. 2005; Ogle & Barber 

2008). For example, for variable Y (Y = l, A, or M) and species s: 
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,
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~ ,

α

β

α α σ

β β σ

%

%

Y s Y Y

Y s Y Y

N
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α%
Y
 and β%

Y
 are the overall, population-level intercepts and scaling exponents, respectively, for the 

relationship between variable Y and the latent radius (ρ). The variances, 2
ασ Y

 and 2
βσ Y

, describe 

variability between species with respect to the species-specific intercepts and scaling exponents. If 

these variances are “small” then this implies that species have relatively “similar” parameter values, 

and the parameter values for under-represented species will be partially constrained by the values 

estimated for the well-represented species, resulting in “borrowing of strength” between species. If 

the variances are “large” then species potentially differ in their parameter values, and the under-

represented species will not be informed by well-represented species, resulting in wide posterior 

interval estimates for the under-represented species’ parameters. 

 

Specifying Prior Distributions 

 Finally, we conclude the HB model by specifying prior distributions for all remaining 

parameters, including all (co)variance terms (e.g., the σ2’s in Eqns. (1) and (3) and Σ in Eqn. (2) and 

all hyperparameters (e.g., the α%
Y
’s and β%

Y
’s in Eqn. (3)). Because repeated measurements were not 
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available for r, which would help to inform the estimate of 2
r

σ in Eqn. (1), we specified a relatively 

informative prior for 2
r

σ  based on reports that the coefficient of variation (cv) of tree diameter 

measurement errors is generally less than 5% (Elzinga et al. 2005). Since r is modeled on the log-

scale, σr is approximately equal to the coefficient of variation (cv) on the regular, non-log scale for 

small cv (i.e., for cv < 0.5). The log-normal prior that we chose resulted in a prior mean or expected 

value of σr equal to 0.021 and the prior probability that σr exceeds 0.05 is equal to 0.054. We 

specified standard, non-informative (diffuse) priors for all other parameters, including: diffuse 

gamma densities for the remaining precisions terms (i.e., 1/σ2); a non-informative Wishart 

distribution for the precision matrix (i.e., Σ–1); and diffuse normal densities (mean of zero and large 

variances) for the α%
Y
’s and β%

Y
’s (for a discussion of these “standard” priors, see Gelman et al. 

2004). 

 Note that the above parameter model describes the SPAM model whereby 
 
β
l
, 
 
β
M
, and 

 
β
A
in 

Eqns. (2) and (3) are equivalent to the scaling exponents h, j, and l, respectively in Table 1. The 

parameter model was adjusted slightly to accommodate the other scaling models. For all models, the 

parameter model for the α’s, α%
Y
’s, and 2

ασ Y  
remained unchanged, but we may modify the parts 

related to the scaling exponents (i.e., the β’s, β%
Y
’s, and 2

βσ Y
). For example, for the universal scaling 

models, we do not have a stochastic parameter model for the scaling exponents because the β’s are 

fixed according to the predicted values in Table 1. For the constrained exponents models (e.g., PES, 

Table 1), the parameter model for the β’s is reduced to a model for two exponents. That is, we 

modeled 
 
β
l
and
 
β
A
 according to Eqn. (3), and based on the relationships among the exponents and 

the parameters a and b in Table 1, 
 
β
M
=
 
β
l
+ 2, a = 1/

 
β
A
, and b =

 
β
l
/
 
β
A
. 
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Mass-based analysis 

 As indicated by Eqns. (1) and (2), we chose radius (r) to serve as the independent variable, but 

we could have chosen one of the other variables such as mass (M) or length (l). The choice of which 

variable to use as the independent variable should not matter because (1) we account for uncertainty 

(or error) in all variables and all are linked via their latent (mean or predicted) values through the 

scaling models, and (2) we assume that the errors are additive on the log scale. To verify that our 

choice of r as the independent variable did not bias our results, we performed a parallel analysis with 

M as the independent variable. The results from this analysis did not differ qualitatively from those 

with radius as the independent variable, and are presented in Figure S1. 

 

Implementation 

 We used Markov chain Monte Carlo (MCMC) methods to approximate the joint posterior 

distribution associated with the above likelihood and parameter models. We implemented the 

models in WinBUGS (Lunn et al. 2000), a general-purpose statistical software package for 

conducting Bayesian analyses. The procedure for obtaining the posterior distributions associated 

with each of the candidate models was applied to all of the plant and leaf datasets as follows.  For a 

given dataset, all models were simultaneously implemented because they shared the same latent radii. 

In all cases, we ran three parallel MCMC chains; starting values for each chain were based on initial 

runs where we specified widely dispersed values for global parameters and precision terms and used 

WinBUGS to generate starting values for other parameters based on the priors. All chains converged 

by iteration 5,000, and we discarded these initial 5,000 samples as the burn-in period. Convergence 

was confirmed using the Brooks-Gelman-Rubin convergence statistic (Brooks & Gelman 1998). The 

remaining (converged) MCMC samples were thinned to reduce or eliminate within chain 

autocorrelation, thereby yielding an independent or nearly independent sample from the joint 
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posterior. For the MCMC simulations that used the Cannell data, 220,000 iterations were run per 

chain and the chains were thinned every 100, yielding a posterior sample size of 6,450. For the 

Sonoran and leaf datasets, 165,000 iterations were run per chain, chains were thinned every 50, and 

the total sample size was 9,600. 

 We compared the abilities of the different scaling models to fit the observed data by computing 

the posterior predictive loss (D) for each model/dependent variable combination (Gelfand & Ghosh 

1998). D provides an index of a model’s predictive ability by comparing observed data (e.g., 

observations of l, M, or A) to “replicated data” (Gelman et al. 2004) that are generated from the 

same sampling distribution (i.e., from Eqn. (2)). The computation of D is based on a squared-error 

loss function that penalizes for departure from the observed data (a measure of goodness-of-fit) and 

for model “smoothness” (a measure of model complexity) (Gelfand & Ghosh 1998). D can be 

partitioned into these two components, but we simply report the overall value of D for each model, 

variable (l, M, and A), and combinations of variables (e.g., l and M or l, M, and A). The D values 

were computed for the log-scale variables. The model with a smaller D is preferred over models with 

larger D values. 

We also evaluated model goodness-of-fit by creating observed vs. predicted plots for each 

measured plant characteristic. The predicted values that we used were the posterior means and 95% 

Bayesian credible intervals (BCIs) for replicated data (Gelman et al. 2004). We also evaluated whether 

or not each model was, or was not, consistent with the observed data by determining if the 

hypothesized scaling coefficients for each model (Table 1) were contained within the 95% BCIs for 

the species-specific and/or population-level scaling exponents associated with the most flexible 

model (i.e., as described above; also the same as the SPAM model, Table 1). 

We applied the HB models and ran the MCMC simulations separately for each dataset. In 

theory, one could combine the Sonoran and Cannell datasets into one analysis because both provide 
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data representative of whole plants. However, the methods used to obtain the measurements in each 

dataset differed, each contained completely different groups of species, and each represents different 

biological scales. That is, the Cannell dataset represents the “average tree” based on averaging 

information across entire stands while the Sonoran dataset provides raw data on individual plants. 

Thus, we elected to analyze the datasets separately. 
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Figure S1: Posterior distributions for the global exponents in the SPAM model. The dashed vertical 

lines represent exponent values predicted by the universal models (Table 1). None of the universal 

models enjoys strong support across all allometries or all datasets. Note that the elastic similarity 
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model makes the same predictions as WBE for the scaling of mass and length.  In addition, stress 

and elastic similarity models do not make predictions for the scaling of surface area. 
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Model Dataset sd(l) sd(M) sd(A) cor(l,A) cor(l,M) cor(M,A) 

ELASTIC Cannell 0.112 0.129 NA NA 0.035 NA 

STRESS Cannell 0.186 0.167 NA NA -0.022 NA 

GEOM Cannell 0.123 0.242 0.210 0.475 0.134 0.686 

WBE Cannell 0.112 0.185 0.210 0.034 -0.307 0.623 

PES Cannell 0.115 0.176 0.169 -0.031 -0.312 0.515 

SPAM Cannell 0.107 0.128 0.144 0.209 -0.199 0.290 

ELASTIC Sonoran 0.199 0.344 NA NA 0.475 NA 

STRESS Sonoran 0.216 0.326 NA NA 0.428 NA 

GEOM Sonoran 0.225 0.408 NA NA 0.679 NA 

WBE Sonoran 0.199 0.344 NA NA 0.476 NA 

PES Sonoran 0.182 0.335 NA NA 0.432 NA 

SPAM Sonoran 0.182 0.298 NA NA 0.535 NA 

ELASTIC Leaves 0.158 0.182 NA NA 0.332 NA 

STRESS Leaves 0.184 0.180 NA NA 0.408 NA 

GEOM Leaves 0.119 0.204 0.199 0.339 0.809 0.453 

WBE Leaves 0.159 0.183 0.199 0.334 0.781 0.658 

PES Leaves 0.077 0.181 0.113 -0.019 0.482 0.590 

SPAM Leaves 0.072 0.103 0.105 0.435 0.656 0.570 

 

Table S4. Posterior means for terms associated with the covariance matrix Σ in Eqn. (2); sd = 

standard deviation; cor = correlation coefficient, e.g., cor(x,y) is the correlation between trait x and y 

after accounting for covariation explained by the scaling model; bolded numbers indicated 

correlations that are significantly different from zero (i.e., their 95% BCIs did not contain zero); NA 

= not applicable. The correlation coefficients were particularly high for the Sonoran and leaf 

datasets, and the magnitude of the correlations did not vary systematically by scaling model. 



SUPPORTING INFORMATION 
 
Appendix S3 
 
Methods 
 
WinBUGS code used for the Cannell and leaf datasets (both contained data on all four traits: r, l, M, 
and A). The WinBUGS code used for the Sonoran data is a slightly modified (or simplified) version 
of the following code because the Sonora data only included data on three traits (r, l, and M). 
 
model 
{ 
 # Loop through each observation i in the dataset: 
 for(i in 1:N){ 
  # Create data matrix by repeating observed data 6 times, for each of the six models. 
  # The data are read-in in a file that contains the variables LogLength = log(l), LogMass = 
  # log(M), and logArea = log(A). Put all data in the data vector Y, which is equivalent to the 
  # observation vector for [log(l) log(M) log(A)] in eqn (2) in the main text. 
  for(m in 1:6){ 
   Y[i,m,1] <- LogLength[i] 
   Y[i,m,2] <- LogMass[i] 
   Y[i,m,3] <- LogArea[i] 
   }       
   
   # The likelihood (sampling distribution for loglength, logmass, logarea) is a 
   # multivariate normal distribution with mean mu and precision matrix Omega.  
   # Note, the text refers to the covariance matrix, Sigma, but WinBUGS parameterizes 
   # the normal distribution in terms of a precision matrix.The data are Y[,,1] = loglength;  
   # Y[,,2] = logmass; Y[,,3] = logarea. Allow the mean and precision to vary by model m.  
   # If models 1 (elastic) or 2 (stress), only use LogLength & LogArea, Y[i,m,1:2] and use 
   # the mean mu12 and precision matrix Omega12; for the other models, use all three 
   # variables, Y[i,m,1:3], and use the mean mu and the precision matrix Omega 
   for(m in 1:2){ 
    # Multivariate normal likelihood for first 2 scaling models:  
    Y[i,m,1:2] ~ dmnorm(mu12[i,m,1:2], Omega12[m,1:2,1:2]) 
    # Define replicated data, Yrep12, for each model 
    Yrep12[i,m,1:2] ~ dmnorm(mu12[i,m,1:2], Omega12[m,1:2,1:2]) 
    for(k in 1:2){ 
     # Compute squared difference (or squared error) for posterior 
     # predictive loss calculation: 
     sqdiff12[i,m,k] <- pow(Yrep12[i,m,k] - Y[i,m,k],2) 
     # Replicated data on regular, non-log scale 
     eYrep12[i,m,k] <- exp(Yrep12[i,m,k]) 
     } 
    } 
   # Now do the remaining models that involve area: 
   for(m in 3:6){ 
    # Multivariate normal likelihood for each scaling model: 



    Y[i,m,1:3] ~ dmnorm(mu[i,m-2,1:3], Omega[m-2,1:3,1:3]) 
    # mu & Omega are indexed by m-2 so that they have 1,..,4 "elements" for these 4 models 
  
    # Define replicated data, Yrep, for each model     
    Yrep[i,m-2,1:3] ~ dmnorm(mu[i,m-2,1:3], Omega[m-2,1:3,1:3]) 
    for(k in 1:3){ 
     # Compute squared difference (or squared error) for posterior 
     # predictive loss calculation: 
     sqdiff[i,m-2,k] <- pow(Yrep[i,m-2,k] - Y[i,m,k],2) 
     # Replicated data on regular, non-log scale 
     eYrep[i,m-2,k] <- exp(Yrep[i,m-2,k]) 
     } 
    } 
       
  # Define the mean vector (i.e., scaling model that relates the true or latent variables). 
  # alpha is the species-specific normalizing constant, and beta is the species-specific 
  # scaling exponent. 
  for(m in 1:2){ 
   for(k in 1:2){ 
    mu12[i,m,k] <- alpha[SP[i],m,k] + beta[SP[i],m,k]*Lrho[i,m] 
   } 
  } 
  for(m in 3:6){ 
   for(k in 1:3){ 
    mu[i,m-2,k] <- alpha[SP[i],m,k] + beta[SP[i],m,k]*Lrho[i,m] 
   } 
  } 
 
  # Berkson model for "true" or latent log diameter (Lrho). Note, the data are in terms of  
  # diameter, and the use of diameter vs radius will not affect the scaling exponents. 
  # Lrho varies about measured LogDiameter, and tauD is the precision (1/variance) that  
  # describes measurement errror. The Berkson model is for "LatentRho", which is used by  
  # and updated by SPAM-data (hence, Lrho[6,i] = LatentRho[i]). But, feedback from the other 
  # data-model combinations is severed by using the cut function. Thus, the SPAM model  
  # "drives" the estimates of the latent diameter (radius), and the same latent diameters (radii) 
  # are then used in the other models. 
  LatentRho[i] ~ dnorm(LogDiameter[i], tauD) 
  for(m in 1:5){ 
   # For use with models 1-5: 
   Lrho[i,m] <- cut(LatentRho[i]) 
   } 
  # For use with model 6 (SPAM) -- no cutting:    
  Lrho[i,6] <- LatentRho[i] 
   
  } # close observation (i) loop 
 
  # Compute posterior predictive loss for each trait & model, and combined for each model. 
  # For models 1 and 2 (don't involve area): 



  for(m in 1:2){ 
   for(k in 1:2){ 
    # Sum of squared diff for each model and trait variable (sum across observations): 
    Dsum12[m,k] <- sum(sqdiff12[,m,k]) 
    } 
   # Sum of squared diff for each model; sum across observations and traits (for length & mass) 
   DsumM12[m] <- sum(Dsum12[m,]) 
   } 
  # For models 3-6 (include area):    
  for(m in 3:6){ 
   for(k in 1:3){ 
    # Sum of squared diff for each model and trait variable (sum across observations): 
    Dsum[m-2,k] <- sum(sqdiff[,m-2,k]) 
    } 
   # Sum of squared diff for each model; sum across observations and across common traits 
   # (i.e., length & mass) 
   DsumM[m-2] <- sum(Dsum[m-2,1:2]) 
 
   # Sum of squared diff for each model; sum across obs and across all traits 
   # (i.e., length, mass, and area) 
   DsumM.all[m-2] <- sum(Dsum[m-2,]) 
   } 
   
  # Model specification for species-level scaling parameters, based on the scaling model. 
  # Scaling exponents are allowed to vary (independently) by model 
  for(j in 1:Nsp){ 
   # Scaling exponent (beta) model: 
   for(m in 1:6){ 
    for(k in 1:3){ 
     # Set scaling exponent to correct value according to the model (m) and 
     # trait (m) of interest: 
     beta[j,m,k] <- universal.part[j,m,k] + pes.part[j,m,k] + spam.part[j,m,k] 
     # Universal model specification (read in fixed values for associated constant.beta). 
     # universal.part = 0 if m > 4.5 (i.e., for m = 5 & 6); otherwise, equal to constant.beta 
     universal.part[j,m,k] <- step(4.5-m)*constant.beta[m,k] 
     # PES model specification, pes.part = beta.pes when m = 5; otherwise zero. 
     pes.part[j,m,k] <- equals(5,m)*beta.pes[j,k] 
     # SPAM model specification; spam.part = beta.spam when m=6, otherwise 0. 
     spam.part[j,m,k] <- equals(6,m)*beta.spam[j,k] 
     } 
    } 
 
  # Hierarchical priors for species-specific exponents in the PES and SPAM models:    
  for(k in 1:3){ 
   beta.spam[j,k] ~ dnorm(mu.beta.spam[k],tau.beta.spam[k]) 
   } 
  beta.pes[j,1] ~ dnorm(mu.beta.pes[1],tau.beta.pes[1]) 
  beta.pes[j,2] <- beta.pes[j,1] + 2 



  beta.pes[j,3] ~ dnorm(mu.beta.pes[3],tau.beta.pes[3])   
  # Compute PES parameters a and b in Table 1: 
  a.pes[j] <- 1/beta.pes[j,3] 
  b.pes[j] <- beta.pes[j,1]/beta.pes[j,3] 
   
  # Hierarchical priors for species-specific normalizing constants, for all models:      
  # For the first two models, only define the hierarchical priors for the l vs. r and  
  # M vs. r exponents: 
  for(m in 1:2){ 
   for(k in 1:2){ 
     alpha[j,m,k] ~ dnorm(mu.alpha[m,k], tau.alpha[m,k]) 
     }    
     # Since no area predictions for models 1 and 2, just fill in area-scaling parameters 
     # with zeros, which simply serve as "place holders" and do not feedback to model. 
     alpha[j,m,3] <-0 
    }  
  # For the remaining models, define hierarchical priors for all three scaling exponents:    
   for(m in 3:6){ 
    for(k in 1:3){ 
     alpha[j,m,k] ~ dnorm(mu.alpha[m,k], tau.alpha[m,k]) 
     } 
    } 
 
  } # close species (j) loop 
 
  # Hyperpriors for global parameters and priors for variance/precision terms: 
  # First define for the first 2 universal models that don't involve area: 
  for(m in 1:2){ 
   Omega12[m,1:2,1:2] ~ dwish(R12[1:2,1:2], 2) 
   Sigma12[m,1:2,1:2] <- inverse(Omega12[m,1:2,1:2]) 
   # Compute correlation between loglength & logmass errors: 
   rho12[m] <- Sigma12[m,1,2]/sqrt(Sigma12[m,1,1]*Sigma12[m,2,2]) 
   for(k in 1:2){ 
    # Prior for global normalizing constants and associated precisions 
    mu.alpha[m,k] ~ dnorm(0,0.00001) 
    tau.alpha[m,k] ~ dgamma(0.01,0.001) 
    # Compute standard deviation 
    sig.alpha[m,k] <- sqrt(1/tau.alpha[m,k]) 
    } 
   # Place holders for first two models that don't involve area (the 3rd trait) 
   mu.alpha[m,3] <- 0 
   tau.alpha[m,3] <- 1 
   sig.alpha[m,3] <- 1 
   } 
  # Then define for the remaining four models that involve area: 
  for(m in 3:6){ 
   Omega[m-2,1:3,1:3] ~ dwish(R[1:3,1:3], 3) 
   Sigma[m-2,1:3,1:3] <- inverse(Omega[m-2,1:3,1:3]) 



   # Compute correlations between loglength, logmass, and logarea errors: 
   rho[m-2,1] <- Sigma[m-2,1,2]/sqrt(Sigma[m-2,1,1]*Sigma[m-2,2,2])  # length/mass 
   rho[m-2,2] <- Sigma[m-2,1,3]/sqrt(Sigma[m-2,1,1]*Sigma[m-2,3,3]) # length/area 
   rho[m-2,3] <- Sigma[m-2,3,2]/sqrt(Sigma[m-2,3,3]*Sigma[m-2,2,2]) # mass/area 
   # Prior for global normalizing constants and associated precisions 
   for(k in 1:3){ 
    mu.alpha[m,k] ~ dnorm(0,0.00001) 
    tau.alpha[m,k] ~ dgamma(0.01,0.001) 
    # Compute standard deviation     
    sig.alpha[m,k] <- sqrt(1/tau.alpha[m,k])     
    } 
   } 
 
  # Priors for global scaling exponent parametes for PES and SPAM models:    
  mu.beta.pes[1] ~ dnorm(0, 0.00001) 
  mu.beta.pes[2] <- mu.beta.pes[1] + 2 
  mu.beta.pes[3] ~ dnorm(0, 0.00001) 
  mu.a.pes <- 1/mu.beta.pes[3] 
  mu.b.pes <- mu.beta.pes[1]/mu.beta.pes[3] 
  tau.beta.pes[1] ~ dgamma(0.01,0.001)  
  tau.beta.pes[3] ~ dgamma(0.01,0.001)   
  # Since beta2 = beta1 + 2, var(beta2) = var(beta1+2) = var(beta1); 
  # thus, precision(beta1) = precision(beta2): 
  tau.beta.pes[2] <- tau.beta.pes[1]    
  for(k in 1:3){ 
   sig.beta.pes[k] <- sqrt(1/tau.beta.pes[k]) 
   mu.beta.spam[k] ~ dnorm(0,0.00001) 
   tau.beta.spam[k]  ~ dgamma(0.01,0.001)  
   sig.beta.spam[k] <- sqrt(1/tau.beta.spam[k])     
   } 
    
  # Prior for precision of logRadius measurement error. Use fairly informative prior 
  # based on, for example, Elzinga et al. (2005), Observer variation in tree diameter 
  # measurements. Western Journal of Applied Forestry, 20:134-137, which says 
  # "Measurement error rates of 5% of tree diameter or greater may be expected 
  # in dbh measurements on as many as 5% of measured trees." Thus, choose  
  # lognormal prior for sigD that gives E(sigD) = 0.021 and P(sigD > 0.05) = 0.054; 
  # Note, sigD describes measurement error on the log-scale and thus can be 
  # interpretted as the "multiplicative" or "percent" error rate. 
  sigD ~ dlnorm(-4.135, 2) 
  tauD <- pow(sigD, -2)      
} 
 
# Read in sample size and R matrix (example for Cannell data): 
list(N=256, Nsp=14,R12=structure(.Data=c(1,0,0,1),.Dim=c(2,2)), 
R=structure(.Data=c(1,0,0,0,1,0,0,0,1),.Dim=c(3,3)), 
constant.beta=structure(.Data=c( 
0.666667, 2.666667, 0, 



0.5, 2.5, 0, 
1, 3, 2, 
0.666667, 2.666667, 2, 
0,0,0, 
0,0,0),.Dim=c(6,3))) 
# Note: just fill-in unused elements of constant.aphla with zeros (0). 
 
# Example of the trait data file (e.g., rectangular array format) based on 
# the Cannell dataset 
SP[] LogArea[] LogMass[] LogLength[] LogDiameter[] 
1 4.647250147 5.699649829 4.372912003 2.551887354 
1 4.379508906 5.286348221 4.238046103 2.461989937 
1 4.208543283 5.324708095 4.320146286 2.430819006 
..... 
14 4.68613278 6.128089617 4.437750563 2.685031953 
14 4.378131615 5.840529613 4.525044807 2.547205475 
14 4.359642807 5.835858338 4.536558443 2.527111664 
14 4.271375714 5.721624822 4.509202522 2.515391621 
END 
 
 
 
 
 
 
 
 
 



Species n      

Log Length v 

Log Radius  sd 2.50% median 97.50%

Log Mass v 

Log Radius  sd

Acer  palmatum  Thunb. 20 0.8308 0.11 0.621 0.8275 1.055 2.147 0.19

Acer  saccharum  Marsh. 18 1.029 0.11 0.814 1.025 1.267 2.582 0.21

Albizia  julibrissin  Durazz. 18 1.491 0.11 1.283 1.487 1.718 3.008 0.19

Betula  nigra  L. 19 1.117 0.13 0.885 1.115 1.375 2.396 0.21

Calycanthus  floridus  L. 16 1.141 0.11 0.932 1.137 1.37 2.218 0.19

Campsis  radicans  (L.) Seem. ex Bureau 20 2.385 0.14 2.128 2.381 2.674 4.431 0.24

Catalpa  speciosa  (Warder) Warder ex 

Engelm. 40 1.361 0.06 1.249 1.36 1.477 2.828 0.1

Cercis  canadensis  L. 17 0.9862 0.13 0.75 0.982 1.239 2.032 0.21

Chamaesyce  maculata  (L.) Small 18 1.028 0.14 0.758 1.025 1.315 2.081 0.24

Cornus  florida  L. 20 1.279 0.11 1.08 1.276 1.494 3.084 0.2

Cyclospermum  leptophyllum  (Pers.) 

Sprague ex Britton & P. Wilson 20 0.6137 0.04 0.532 0.6135 0.6947 1.122 0.06

Dioscorea  bulbifera  L. 19 1.534 0.14 1.263 1.53 1.831 4.539 0.32

Duchesnea  indica  (Andrews) Focke 19 1.411 0.12 1.184 1.406 1.668 3.123 0.23

Ginkgo  biloba  L. 20 2.21 0.18 1.869 2.205 2.587 3.988 0.3

Glechoma  hederacea  L. 20 1.3 0.09 1.136 1.3 1.475 2.719 0.15

Hedera  helix  L. 20 1.64 0.1 1.444 1.637 1.848 3.193 0.18

Hibiscus  syriacus  L. 19 1.63 0.15 1.357 1.624 1.933 3.796 0.29

Hydrocotyle  bonariensis  Comm. ex Lam. 20 0.8548 0.12 0.633 0.8536 1.09 3.029 0.23

lex  opaca  Aiton 19 0.9101 0.11 0.696 0.9051 1.144 2.039 0.19

Impatiens  capensis  Meerb. 19 1.238 0.08 1.085 1.236 1.405 1.878 0.12

Kalmia  latifolia  L. 20 1.264 0.14 1.006 1.259 1.548 3.566 0.28

Lagerstroemia  indica  L. 20 1.725 0.14 1.461 1.723 2.013 3.394 0.24

Lepidium  virginicum  L. 20 1.26 0.09 1.089 1.258 1.438 2.468 0.15

Ligustrum  sinense  Lour. 19 1.337 0.14 1.083 1.331 1.621 2.585 0.23

Lilium spp.              20 1.293 0.09 1.129 1.291 1.472 2.397 0.14

Magnolia  grandiflora  L. 20 1.647 0.13 1.41 1.645 1.905 2.879 0.2

Mahonia spp.             19 1.327 0.15 1.055 1.322 1.625 3.499 0.29

Modiola  caroliniana  (L.) G. Don 20 1.111 0.08 0.948 1.11 1.279 2.339 0.14

Nyssa  sylvatica  Marsh. 20 1.148 0.11 0.933 1.146 1.378 2.647 0.21

Oxalis  stricta  L. 18 1.411 0.22 0.996 1.406 1.853 2.618 0.36

Phytolacca  americana  L. 20 1.387 0.07 1.256 1.386 1.526 2.456 0.11

Pinus  taeda  L. 20 2.093 0.11 1.887 2.091 2.307 2.894 0.15

Pinus  virginiana  Mill. 20 1.526 0.21 1.134 1.522 1.944 2.755 0.34

Plantago  lanceolata  L. 20 0.9633 0.06 0.844 0.9624 1.09 1.648 0.09

Polygonum  cespitosum  Blume var. 

cespitosum 20 1.322 0.1 1.136 1.319 1.522 2.692 0.17

Pueraria  montana  (Lour.) Merr. 17 1.062 0.13 0.811 1.059 1.338 2.271 0.23

Quercus  acutissima  Carruthers 17 1.216 0.22 0.804 1.215 1.639 2.203 0.37

Quercus  falcata  Michx. 20 1.113 0.1 0.918 1.112 1.321 2.684 0.19

Quercus  nigra  L. 20 1.406 0.16 1.096 1.402 1.735 2.696 0.28

Rosmarinus  officinalis  L. 18 1.521 0.18 1.179 1.516 1.897 3.106 0.32

Salix  ×sepulcralis  Simonkai 19 1.204 0.14 0.93 1.2 1.497 2.512 0.24

Sesuvium  maritimum  (Walter) Britton, 

Sterns & Poggenb. 18 1.516 0.17 1.193 1.509 1.875 3.34 0.32

Solanum  sisymbriifolium  Lam. 20 1.598 0.1 1.415 1.596 1.796 3.152 0.17

Taraxacum  officinale  F.H. Wigg. 20 1.891 0.13 1.654 1.888 2.152 3.19 0.2

Tilia  americana  L. 20 1.328 0.09 1.159 1.325 1.508 2.783 0.16

Ulmus  parvifolia  Jacq. 20 1.822 0.14 1.559 1.817 2.112 3.084 0.23

Zelkova  serrata  (Thunb.) Makino 20 1.209 0.08 1.053 1.206 1.377 2.313 0.13



2.50% median 97.50%

Log Area v 

Log Radius  sd 2.50% median 97.50%

1.783 2.141 2.549 1.943 0.18 1.6 1.938 2.327

2.203 2.576 3.002 2.141 0.19 1.788 2.137 2.535

2.646 3.003 3.394 2.76 0.18 2.418 2.756 3.132

1.998 2.387 2.833 2.433 0.21 2.038 2.422 2.879

1.872 2.213 2.607 2.128 0.18 1.795 2.122 2.497

3.971 4.425 4.932 4.478 0.24 4.018 4.474 4.976

2.63 2.827 3.031 2.725 0.1 2.537 2.724 2.921

1.641 2.027 2.465 2.013 0.21 1.629 2.005 2.436

1.634 2.073 2.582 2.068 0.24 1.622 2.06 2.563

2.712 3.079 3.489 3.322 0.21 2.942 3.316 3.748

1.001 1.122 1.245 1.068 0.06 0.946 1.068 1.197

3.954 4.531 5.201 3.497 0.26 2.999 3.488 4.031

2.7 3.114 3.589 2.807 0.21 2.416 2.798 3.235

3.421 3.98 4.62 4.706 0.34 4.092 4.693 5.405

2.43 2.716 3.027 3.057 0.16 2.746 3.054 3.384

2.857 3.19 3.548 3.349 0.18 3.004 3.345 3.719

3.267 3.784 4.388 3.52 0.26 3.035 3.51 4.06

2.583 3.018 3.512 2.73 0.22 2.314 2.724 3.187

1.676 2.032 2.433 1.854 0.19 1.51 1.846 2.237

1.649 1.875 2.124 2.441 0.14 2.184 2.436 2.719

3.028 3.558 4.135 2.936 0.25 2.46 2.926 3.453

2.939 3.386 3.895 2.925 0.22 2.505 2.921 3.377

2.194 2.463 2.768 2.362 0.14 2.09 2.357 2.656

2.168 2.576 3.06 2.33 0.22 1.935 2.32 2.778

2.131 2.393 2.693 2.372 0.14 2.11 2.367 2.666

2.504 2.87 3.29 2.966 0.2 2.581 2.962 3.385

2.972 3.487 4.086 3.178 0.26 2.679 3.167 3.715

2.067 2.335 2.629 2.321 0.14 2.048 2.317 2.611

2.266 2.64 3.072 2.227 0.18 1.886 2.217 2.605

1.927 2.613 3.363 2.541 0.35 1.888 2.534 3.234

2.246 2.454 2.681 2.642 0.12 2.423 2.639 2.879

2.6 2.89 3.206 2.159 0.13 1.913 2.157 2.42

2.115 2.74 3.46 1.904 0.3 1.337 1.896 2.513

1.468 1.647 1.84 1.61 0.09 1.426 1.608 1.802

2.373 2.685 3.04 2.741 0.17 2.416 2.735 3.099

1.839 2.263 2.733 2.521 0.24 2.077 2.513 3.015

1.519 2.193 2.949 2.18 0.35 1.522 2.172 2.886

2.334 2.677 3.068 2.167 0.17 1.847 2.162 2.513

2.195 2.686 3.273 2.636 0.27 2.135 2.624 3.186

2.509 3.092 3.777 2.583 0.29 2.043 2.573 3.181

2.058 2.505 3.008 2.52 0.24 2.071 2.509 3.009

2.735 3.331 4.005 3.017 0.3 2.472 3.002 3.631

2.835 3.148 3.494 3.144 0.17 2.823 3.142 3.484

2.81 3.185 3.602 3.363 0.21 2.973 3.356 3.781

2.489 2.779 3.1 2.547 0.15 2.265 2.545 2.85

2.662 3.076 3.549 2.951 0.22 2.547 2.945 3.413

2.057 2.309 2.593 2.286 0.13 2.028 2.282 2.564




