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Summary

1. Linear regression models are an important statistical tool in evolutionary and ecological studies.

Unfortunately, these models often yield some uninterpretable estimates and hypothesis tests, espe-

cially when models contain interactions or polynomial terms. Furthermore, the standard errors for

treatment groups, although often of interest for including in a publication, are not directly available

in a standard linear model.

2. Centring and standardization of input variables are simple means to improve the interpretability

of regression coefficients. Further, refitting the model with a slightly modified model structure

allows extracting the appropriate standard errors for treatment groups directly from themodel.

3. Centring will make main effects biologically interpretable even when involved in interactions

and thus avoids the potential misinterpretation of main effects. This also applies to the estimation

of linear effects in the presence of polynomials. Categorical input variables can also be centred and

this sometimes assists interpretation.

4. Standardization (z-transformation) of input variables results in the estimation of standardized

slopes or standardized partial regression coefficients. Standardized slopes are comparable in magni-

tude within models as well as between studies. They have some advantages over partial correlation

coefficients and are often themore interesting standardized effect size.

5. The thoughtful removal of intercepts or main effects allows extracting treatment means or treat-

ment slopes and their appropriate standard errors directly from a linear model. This provides a sim-

ple alternative to the more complicated calculation of standard errors from contrasts and main

effects.

6. The simple methods presented here put the focus on parameter estimation (point estimates as

well as confidence intervals) rather than on significance thresholds. They allow fitting complex, but

meaningful models that can be concisely presented and interpreted. The presentedmethods can also

be applied to generalised linear models (GLM) and linear mixedmodels.

Key-words: confidence intervals, generalized linear models, interaction terms, null hypo-

thesis testing, partial correlation coefficients, partial regression coefficients, standard errors,

standardized effects sizes

Introduction

Data analysis in ecology and evolution is largely based on the

use of linear regression models such as anova, ancova, multiple

regression, GLM or mixed models (Quinn & Keough 2002;

Faraway 2005; Bolker et al. 2009). Linear models involve a

response of interest and a set of predictors, possibly including

some interactions among input variables. Such models can be

used to test null hypotheses about the significance of individual

predictors and to estimate effect sizes and their standard errors

(Nakagawa & Cuthill 2007; Stephens, Buskirk, & del Rio

2007; Garamszegi et al. 2009). In this article, I will advertise

the use of centred predictors as a simple means to greatly

improve the interpretability of parameter estimates. Further-

more, I will advocate looking at estimates for standardized

input variables that are valuable as standardized effect size esti-

mates for between-study comparisons. Standardized estimates

are frequently used in other fields but are not in widespread use

in ecology and evolution. For simplicity, I will introduce my

suggestions for general linear models, but the methods easily

generalize toGLMandmixedmodels (see ‘Extensions’).

Although the estimation and interpretation of at least some

of the estimates and associatedP values is possible on the origi-

nal scale and without centring, centring and scaling of input*Correspondence author. E-mail: holger.schielzeth@ebc.uu.se
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variables and responses has several advantages. First, in the

presence of interactions, it enables the interpretation of main

effects, which are biologically meaningless otherwise (Engqvist

2005). Second, it enables the estimation of curvature and syner-

gistic effects of continuous predictors that can be interpreted

independent of the main effects. Third, they facilitate the inter-

pretation and comparison of the relative importance of predic-

tors within models by looking at the estimates rather than the

P values (Gelman & Hill 2007). Fourth, they can serve as

standardizedeffectsizeestimatesforbetween-studycomparisons.

Furthermore, I will present an easily applied method to extract

group mean and group slope estimates and their appropriate

standard errors from linear models. Although these points are

not new and are well treated in the statistical literature (see, e.g.

Aiken&West 1991;Neter et al. 1996;Gelman&Hill 2007), they

are surprisingly little used in the study of ecology and evolution.

The aim of this paper is to encourage the use of standardizations

andtogiveaguideline forparameter interpretation.

Some of the points I raise are indeed amatter of convenience

and preference. Whether predictors are interpreted on the ori-

ginal scale or on the standardized scale will depend partly on

the system of study. In some contexts, unstandardized effect

size estimates may be more easily interpreted than standard-

ized effect size estimates, because the latter depend on the phe-

notypic variation in each study population. Other points, like

the centring of input variables that are involved in interactions,

are also not strictly necessary, but are very advisable, since they

safeguard against potential misinterpretations. Main effects

are not biologically interpretable if involved in interactions

without centring the input variables and the same is true for

linear terms in the presence of quadratic terms. In many cases,

centring will circumvent the need for model simplification,

since parameter estimates in complex models can be directly

interpreted. Therefore, centring of the input variables will

avoid several critical issues and will thus allow fitting complex,

but meaningful models. At the same time, it helps putting the

focus on parameter estimates rather thanP values.

Phenotypic standard deviations

Throughout the paper, I will make an important distinction

between input variables and predictors. Input variable are the

variables that were measured (possibly transformed), while

predictors are the terms that are entered in the model (Gelman

& Hill 2007). Hence, predictors encompass the main effects,

but also polynomials of input variables and interaction terms.

Note that one should always transform the input variables and

not the predictors (Gelman 2008).

I will refer to ‘centring’ as subtracting the sample mean from

all input variable values. The mean of the centred variable is

zero, but the units are still on the original scale. Centring input

variables will also result in centred polynomials and in centred

interaction terms if the data points are distributed symmetri-

cally around their mean. However, care should be taken in

cases of skewed distributions. I will refer to ‘scaling’ as dividing

the input variables by their sample standard deviations.

Although scaling can be done without centring, usually scaling

will be combined with centring. Hence, I will assume scaled

variables to be centred and will refer to these as scaled or stan-

dardized input variables.

Standardization converts the original units to units of

phenotypic standard deviations. If the sample is representative

for the population studied, this is a meaningful measure that

is comparable across studies. In the case of approximately

normal distributed input variables, c. 95% of the values will

be within ±2 units. Hence, standardized variables will

typically range from )3Æ0 to 3Æ0. Phenotypic standard

deviation (and estimates derived from models using them) can

easily be reconverted to original units if the means and

Table 1. An example for coding and centring of categorical predictors in a case with four groups and two units per group (A1-2, B1-2, C1-2, D1-2).

Columns I1, I2, I3 and I4 show indicator variables (often called dummy variables) that are used as predictors in the model, while the ‘Int’ columns

(zero for all indicators) are estimated as the intercept. (a) Coding that is implicit when fitting categorical predictors in a linear model with

treatment contrasts. Coding can also be done manually and the indicators can be fitted in the model without changing the parameter estimates.

The parameters are estimated as the mean of the references group (MA, estimated as the intercept) and three treatment contrasts to the reference

group (CB-A, CC-A, CD-A). (b) After manual coding and centring within indicators, the model estimates one intercept (at an imaginary mean

categoryM0) and three contrasts that are identical to the implicit codingmodel (CB-A, CC-A and CD-A). (c) When removing the intercept, implicit

coding results in four indicator variables and effects are estimated as four groups means (MA, MB, MC, MD). Note that the group means can

easily be retrieved from the intercept removed model, while the calculation of group means requires combining intercepts and contrasts in the

other twomodels

Unit

(a) Implicit coding (b) Centred coding (c) Intercept removed

Int I1 I2 I3 Int I1 I2 I3 I1 I2 I3 I4

A1 0 0 0 0 0 )0.25 )0.25 )0.25 1 0 0 0

A2 0 0 0 0 0 )0.25 )0.25 )0.25 1 0 0 0

B1 0 1 0 0 0 0.75 )0.25 )0.25 0 1 0 0

B2 0 1 0 0 0 0.75 )0.25 )0.25 0 1 0 0

C1 0 0 1 0 0 )0.25 0.75 )0.25 0 0 1 0

C2 0 0 1 0 0 )0.25 0.75 )0.25 0 0 1 0

D1 0 0 0 1 0 )0.25 )0.25 0.75 0 0 0 1

D2 0 0 0 1 0 )0.25 )0.25 0.75 0 0 0 1

Estimate MA CB-A CC-A CD-A M0 CB-A CC-A CD-A MA MB MC MD
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standard deviations of the original variables are known and

reported in a paper.

Categorical input variables

Often some input variables are categorical and at first glance it

seems impossible to transform them. However, coefficients of

categorical predictors are estimated as slopes in linear regres-

sion models and, with treatment contrasts, are thus implicitly

coded as 0 and 1 (Table 1). It is possible tomanually code cate-

gorical input variables without changing the results. Manual

coding is done by constructing k ) 1 indicator or dummy vari-

ables (where k is the number of levels of the categorical predic-

tor) that take a value of 1 if the record belongs to a specific

category and 0 otherwise (see, e.g. Quinn & Keough 2002;

Gelman & Hill 2007 for more details on indicator variables).

One category is set to 0 for all indicators and hence serves as a

reference category that is estimated as the intercept (hence

k ) 1 and not k indicator variables).

After coding, indicator variables can be centred like any

continuous predictor (Table 1). Whether are not centring of

indicators assists interpretation depends on the study design

and research interests (see ‘Estimating group means appropri-

ately’ for examples, where binary inputs are left uncentred).

Centring is particularly advantageous if the levels of categori-

cal input variables can be thought of as random selection from

a larger subset of possible categories. Centring indicators will

lead to other main effects and the intercept being estimated at

this predictor being zero, i.e. at an imaginary mean category

(Table 1, Gelman & Hill 2007). Although this seems inappro-

priate, since there are no observations at this value of the indi-

cator, this makes sense if we are interested in the average effect

across different levels of the categorical predictor (Gelman &

Hill 2007). For example, the breeding success of some bird spe-

ciesmight have beenmeasured under a few environmental con-

ditions that represent a sample of a larger number of possible

environments. In this case, the average breeding success might

be of more general interest than the estimate for a particular

environment. As long as the difference in values for the two

categories of an indicator is 1 (e.g. )0Æ25 and 0Æ75 as in

Table 1), the estimates for this indicator still express the

expected change in mean values compared with the reference

category (but not the difference to the intercept if the reference

category is not coded as zero).

Indicator variables should not be standardized, since this

would change the difference between the categories, which will

no longer be equal to unity. This would render the estimates

almost impossible to interpret. In the following, I will refer to

estimates for categorical input variables alternatively as treat-

ment effects.

Interactions between categorical and
continuous input variables

There are well-justified warnings against the interpretation of

main effects when the input variables are involved in interac-

tions (Aiken & West 1991; Engqvist 2005; Gelman & Hill

2007). This is becausemain effects are estimatedwhere all other

predictors are zero, but in many cases zero is not a meaningful

point that lies outside the range of the data (imagine testing for

sex differences at a body size of zero). In the presence of

interactions, treatment main effects and slopes are usually

negatively correlatedwith each other (if the range of the predic-

tor values is all-positive). This is why treatment main effects

often become either spuriously significant when involved in

significant interactions (Fig. 1a) or become non-significant

even though there is a clearmain effect (Fig. 1b).

It has sometimes been argued that the removal of interaction

terms is necessary to interpret main effects (Engqvist 2005).

However, centring of input variables offers an easy solution to

this issue: Centring effectively removes the correlation between

slopes and intercepts and makes treatment main effects mean-

ingful independent of the slopes (Fig. 1). This holds true for

the interpretation of the estimates and for the t or F tests (i.e.

statistical significance) on main effects and interaction. For

example, it is possible to conclude that some covariate affects

males and females differently and that males and females differ

on average in their response values. Note, however, that a sig-

nificant interaction means that main effects are not constant

across the whole range of the covariate. Thus, although it is

possible to conclude that groups differ on average, they do not

necessarily differ across the whole range of the covariate (the
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Fig. 1. Two examples of how the main effect

estimates for a categorical predictor (filled

and unfilled circles) dependent on the values

of the covariate x in a simple linear model

with an interaction term. The solid and

dashed vertical lines show where the main

effects are estimated with and without cen-

tring of the covariate, respectively. Note that

if the covariate is centred, the group main

effect becomes meaningful as it is estimated

at the average value of the covariate.
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Johnson–Neyman procedure can be used to identify regions

of significant differences, Johnson & Neyman 1936; Quinn &

Keough 2002). Further complications arise if groups differ

substantially in their mean covariate values.

Polynomials

Polynomials are interactions between continuous input vari-

ables and themselves (Aiken & West 1991). Unlike dedicated

functions that will return orthogonal polynomials, squaring

raw input variables will usually not result in uncorrelated pre-

dictors. The squared and non-squared values usually correlate

with each other and the correlation will be very strong if the

input variable is all-positive or all-negative (e.g. r = 0Æ99 for

an input variable drawn at random from a normal distribution

with mean = 12 and SD = 4). As a consequence, the linear

and the quadratic term will be confounded with each other (as

can be seen for example by a high variance inflation factor).

The estimate for the linear term is uninterpretable, since the

estimate tends to be correlated with the estimate for the qua-

dratic term (negatively so if the range of values is all-positive).

Furthermore, the collinearity between the two predictors pro-

duces unstable parameter estimates and large standard errors

for the linear term (Bowerman & O’Connell 1990; Quinn &

Keough 2002; Tabachnick&Fidell 2006).

With a focus on parameter estimation and inference, the

mainmotivation for including polynomials should be to test for

curvature in addition to linear effects and it is desirable to esti-

mate linear and curvature effects in the samemodel (seeArnold

& Wade 1984 for the analogous case of linear and nonlinear

selection differentials). Independence of the two terms can be

easilyachievedbycentring inputvariablesbeforesquaring them

(Gelman 2008; e.g. r = 0Æ04 after centring for the same input

variable as above). After centring, the estimate for the linear

term will express the linear effect (e.g. higher predictor values

yield higher response values), while the estimate for the qua-

dratic term estimates if extremes of the distribution elicit higher

(positive slopes) or lower (negative slopes) response values on

top of possible linear relationships (Fig. 2). Hence, both esti-

mates have a clear interpretation independent of each other. If

both termsarepositive, the estimatedbest-fittingcurve is a slope

that increases in steepness (Fig. 2c). Note, however, that a sig-

nificant quadratic term is indicative of curvature in the response

even without centring of the input variables. In fact, the esti-

mates and significance tests for the quadratic term are identical

for the two models (Fig. 2). Hence, it is the interpretability of

the linear term that benefits fromcentring the input variable.

Interactions between continuous input
variables

Interactions between continuous input variables are verymuch

like quadratic terms, because the interaction is estimated as the

slope of the product of the two input variables (Aiken &West

1991). This can be seen from the basic structure of a linear

model with an interaction

yi ¼ b0 þ b1x1i þ b2x2i þ b3x1ix2i þ ei;

where yi is the observed response value at the ith occa-

sion, x1i and x2i are the values of the two continuous
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Fig. 2. Three examples of slope estimates for

the linear and the quadratic term with and

without centring of the input variable. The

left column of plots shows the full models

with their best-fitting lines (that are identical

with and without centring). The middle and

right columns show estimates and fitted lines

frommodels without and with centring of the

input variables, respectively. Solid lines show

the predicted values based on the linear term

(b1), dashed lines those for the quadratic term

(b2). Note that without centring the linear

and quadratic term are often negatively cor-

related with each other (as in the middle row)

and the linear term is uninterpretable (e.g. it

does not capture the positive trend in the

lower row).
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explanatory input variables at the ith occasion, b0 is the

intercept, b1 and b2 are regression coefficients for the two

main effects, b3 is the regression coefficient for the interac-

tion and ei is the error associated with the ith measure-

ment.

Including two continuous input variables and their inter-

actions without centring the input variables will result in

an interaction predictors that is collinear with the main

effects (e.g. the correlation between raw input variables

and the interaction term were r = 0Æ70 and r = 0Æ54 for

two input variables drawn at random from normal distri-

butions with means = 12 and SD = 4). As in the case

of non-orthogonal polynomials, the collinearity produces

correlated estimates that are essentially meaningless for the

main effects, unstable parameter estimates and inflated

standard errors for the main effects (Quinn & Keough

2002; Tabachnick & Fidell 2006).

Centring the input variables before fitting the model will

largely remove this correlation (e.g. r = )0Æ12 and )0Æ05 for

the same input variables; Aiken & West 1991; Neter et al.

1996; Quinn & Keough 2002). This allows testing for interac-

tion effects, i.e. if combinations of extremes produce differen-

tial responses on top of what is explained by the sum of the

main effects. Purely additive effects will result in significant

main effects and a non-significant interaction term, while mul-

tiplicative effects will result in the interaction being significant

(possibly on top of significant additivemain effects). For exam-

ple, we might want to know if offspring growth in a species

with biparental care is influenced by the combination of male

and female traits within a pair. The estimate for the interaction

term will indicate if the combination of the parent’s traits mat-

ters for offspring growth on top of the individual effect of the

male’s and the female’s trait value that are estimated as main

effects. Without centring, a significant interaction term will

also indicate an interaction effect, but the two main effects will

not be interpretable, very similar to the non-interpretable

linear term in amodel with non-centring squared terms.

Comparing the importance of predictors

In linear models with multiple predictors, it is often of interest

to judge the importance of individual predictors (Healy 1990;

Chao et al. 2008). There has been some controversy about

how tomeasure the importance of parameters in linearmodels,

because with correlated predictors there is no unique way to

partition the variance in the response (Bring 1996; Johnson

2000). Among the several methods that have been proposed

are dominance analysis (Budescu 1993; Azen & Budescu 2003,

2006), Johnson’s relative weight (Johnson 2000) and the Pratt’s

product measure (see Chao et al. 2008 for a review). These

methods are advantageous if the predictors are correlated.

I will here propose standardization of input variables as a

simple, but efficient alternative to compare the unique explana-

tory value of predictors in a linear model that are often mea-

sured on different scales (see also Gelman 2008). This is clearly

advantageous to compare P values, since it puts the focus on

effect sizes rather than significance (Gelman 2005; Nakagawa

&Cuthill 2007). I will assume themodel structure to be known,

i.e. the fitted model will contain all influential effects and all

predictors included in the model are meaningful and of inter-

ested to the researcher. This is a necessary precondition, since

the estimates and their standard errors in a linear model are

always conditional on the fitted model (Burnham & Anderson

2002).

Regression coefficients in linear models are usually not com-

parable, because the estimates depend on the variances and

these usually differ between input variables. These differences

in variances arise for example from input variables being mea-

sured in very different units. Hence, given the same predictive

value, predictors with low variances (narrow range of values)

will have large absolute point estimates whereas predictors

with high variance (wide range of values) will have low abso-

lute estimates. A simple way to make continuous predictors

comparable within models is to standardize their units to units

of standard deviations by scaling all continuous input vari-

ables. The effect of every input variable is then measured in

units of phenotypic standard deviations of the input variable.

However, categorical indicator variables are not directly

comparable with continuous predictors even after standardiza-

tion of continuous input variables. Their effects will appear

large (in absolute values) comparedwith standardized continu-

ous input variables. This is because the standard deviation of a

binary input variable with equal numbers of observations in

both groups has a standard deviation of 0Æ5 (Gelman 2008),

whereas standardized continuous input variables have a stan-

dard deviation equal to unity. Therefore, Gelman (2008)

recommended to standardize continuous input variables

by dividing two standard deviations (instead of one) by

default. The estimates can then be compared directly between

standardized continuous and unstandardized categorical

predictors. The standard deviation of binary predictors is close

to 0Æ5 only if the two groups have roughly equal number of

observations. If one of the groups has far fewer number of

observations, the standard deviation of the binary predictor is

substantially less than 0Æ5, and the regression coefficient will

thus appear relatively large, emphasizing the effect of a rare

group (Gelman 2008). Nevertheless, the coefficient still has a

clear interpretation (change in mean values between the two

groups), although a direct comparison of the magnitude of

different effects is ambiguous and will depend on whether the

rare groups is naturally rare in the population or rare only in

the sample that is analysed.

Whether or not one wants to standardize continuous predic-

tors by one or two standard deviations will depend on personal

preference and whether or not binary predictors are involved.

Given the widespread use of standard deviations as a descrip-

tive statistic in ecology and evolution, I suggest a division by

one standard deviation, while keeping in mind that continuous

and binary input variables will not be directly comparable.

Notably, however, the coefficients for continuous predictors

are the same, if continuous input variable and the response are

standardized in the same way (by one or two standard devia-

tions). In contrast, the effect of indicators variables will express

the change in units of two standard deviations when Gelman’s
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transformation is applied to the response. Thismight be harder

to interpret than the more familiar unit of one standard devia-

tion.

Standardized slopes as standardized effect
sizes

Most textbooks on statistics make the important distinction

between correlation and regression (Zar 1999; Quinn &

Keough 2002). Correlations are expressed as correlation

coefficients r that take values between )1 and 1, while the

regression estimates are expressed as slopes b that can take

much larger or much smaller values. Importantly, the corre-

lation coefficient is scale-independent whereas the slope is

scale-dependent. The scale-independence of rmakes it a widely

used standardized effect size that can be compared across stud-

ies (Nakagawa&Cuthill 2007).

In the presence of multiple predictors, there are two alterna-

tive estimates that can be used as standardized effect sizes: the

partial correlations coefficient (PCC) rxy|z and the standardized

partial regression coefficient (SPRC) b�xyjy. They are both

conditional on the other predictors (hence the notation xy|z,

where z could be one or more covariates). The PCC has been

proposed as a standardized effect size for biological research

(Nakagawa & Cuthill 2007), whereas SPRCs are used as path

coefficients in path analysis (Wright 1918; Sokal &Rohlf 1995;

Shipley 2000). The two estimates PCC and SPRC are often

very similar and I will discuss the differences below. I argue

that the SPRC is often the more interesting value and is better

suited as a standardized effect sizes at least when the input

variables are uncorrelated with each other. However, before

discussing multiple regression analysis it is worth looking at a

simple linear regression with one continuous predictor to show

that the correlation coefficient r and regression coefficient

b can bemade numerically equivalent.

In simple linear regression, the slope is estimated as

b ¼ rxy �
ry

rx
;

where rxy is the correlation coefficient between predictor x

and response y and rx and ry are the standard deviations

of the predictor and the response, respectively. Therefore,

if rx = 1 and ry = 1 as in a regression with standardized

input variables and response then b equals r. Like

correlation coefficients they can take values between )1
and 1. Since the two estimates are identical, one is as

good as the other as a standardized effect size estimate.

This is also true for multiple regressions if the predictors

are uncorrelated (Bring 1996). In this case, standardized

slopes are equal to the bivariate correlation (but not to

the partial correlations, see below).

The situation is usually more complicated in the case of

multiple regressions. Standardized slopes estimate the effect of

the predictor of interest x on the response y, while all other pre-

dictors z in the model are being controlled for (i.e. statistically

held constant). The resultant estimates are the SPRC that are

sometimes called beta coefficients or beta weights and are

denoted b0xyjy or b
�
xyjy (Mayer & Younger 1976; Sokal & Rohlf
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Fig. 3. The absolute difference between

partial correlations coefficients (PCC) and

standardized partial regression coefficients

(SPRC) for the effect of predictor x on the

response y estimated from a multiple regres-

sion with two continuous predictors (x and a

confounding covariate z). Yellow areas show

regions in parameter space where the SPRC

are smaller (in absolute values), red areas

show regions in parameter space where

SPRC are larger (in absolute values) com-

pared with the PCC. Note that when x and z

are uncorrelated (central plot), SPRC are

similar to the PCC over a larger range of

values (but smaller when z has a large effect

on y), whereas the SPRC tend to be larger

than PCCwhen x and z are correlated.
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1995). SPRC are a special case of semi-partial correlation

coefficients (Nakagawa & Cuthill 2009) and are not numeri-

cally identical to PCC, although the difference between the two

estimates is often small. They can be converted into each other

by the formula (Sokal &Rohlf 1995) :

rxyjz ¼ b�xyjz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2xz

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2yz

q :

As can be seen from this equation, the difference between

the two estimates depends on the correlation rxz between the

predictor of interest x and confounding covariate z and on

the correlation ryz between the response y and z (Fig. 3). If the

predictor of interest x and the covariate z are independent (i.e.

uncorrelated with each other, hence rxz = 0), then the SPRC

are always smaller (or equal) in absolute values compared with

the PCC (Fig. 3, central plot). This is because the PCC

measures the effect of x on y after controlling for the effect of

z on x and of z on y (PCC can be calculated as the correlation

between the residuals of a regression of x on z and the residuals

of a regression of y on z, Nakagawa & Cuthill 2007). In

contrast, SPRC measures the effect of x on y, controlling for

the effect of z (i.e. statistically holding z constant), but does not

statistically remove variation in y explained by z. With corre-

lated predictors and for a given ryz, the PCC will be larger in

absolute values compared with the SPRC if |rxz| < |ryz| and

smaller in absolute values if |rxz| > |ryz|.

The fact that SPRC estimate the expected change in the

response in units of the full variation in the response consti-

tutes an advantage of SPRCover PCC. For example, wemight

be interested in the association between a bird’s condition

(measured as its body mass or body mass adjusted for body

size) and its chick rearing qualities (measured as the weight of

its chick). We know that the time of breeding also affects the

weight of chicks, but is unrelated to the parent’s condition.

A SPRC of 0Æ3 for body condition and 0Æ6 for time of breeding

tell us that changing parent condition by one population stan-

dard deviation increases offspring weight by 0Æ3 population

standard deviations and another 0Æ6 standard deviation for

every population standard deviation change in time of breed-

ing. These estimates are equivalent to the bivariate correlations

with chick weight (note that it is still worth to include time of

breeding in the model, since it reduces residual variation and

therefore the standard error for the estimate).

The equivalent PCC of 0Æ375 would tell us that the correla-

tion between parent condition and chick weight is 0Æ375 after

controlling for time of breeding (i.e. holding time of breeding

constant). But since in a natural population there will be varia-

tion in breeding time (also in a second population that we

might want to compare our results to), it seems more intuitive

to interpret the SPRC rather than the PCC. This might be dif-

ferent if variation was artificially induced, e.g. if we had

increased the variance in chick weights by offering a range of

different food supplies. In this case, another population will

not have experienced artificially increased variance in food

supply and therefore it will be more interesting to compare

PCC, i.e. the correlation after removing excess variation

caused by the food supply treatment.

Standardized slopes (used in the comprehensive sense

encompassing univariate standardized regression coefficients

and SPRC) can be easily converted to raw-scale slopes, if the

standard deviations of the raw input variables are known:

braw ¼ b� � ry

rx
;

where braw is the slope on the original scale, b* is the stan-

dardized slope and ry and rx are the raw standard devia-

tion of the input variables. This equation can be

rearranged to calculate standardized slopes from unstan-

dardized slopes. Since the standardization is a monotonic

transformation, hypothesis tests will be identical indepen-

dent of whether applied on standardized or unstandard-

ized predictors (Quinn & Keough 2002).

Some objections have been raised against standardized

slopes. One important criticism is that they are sample-specific

and differences between samples might arise because of differ-

ences in the strength of the relationship between x and y or

because of differences in the sampling variation (King 1986).

The sample-specificity of standardized estimates should not

hamper the used of standardized slopes, but should remind us

that the presentation of means and standard deviations is nec-

essary for all standardized input variables, since only this infor-

mation will allow reconverting the estimates to unstandardized

slopes. It is also be possible to standardize input variables not

by the sample standard deviation, but by some other standard

deviation that was estimates from another (larger) sample or

derived from theoretical considerations. Whether or not this is

sensible will depend on the specific research question asked.

The second major criticism was laid out by Bring (1994). He

criticized that the slope estimates in a linear model are condi-

tional on the other predictors in themodel, while the standardi-

zation is done by dividing by the sample standard deviation

that is unconditional on the predictors in the model. He pro-

posed to standardize by the conditional standard deviations,

which makes these standardized slopes very similar to PCC

(Bring 1994). As I have argued above, the expected change in

the response caused by some change in the predictor is often of

more interest with respect to the full (unconditional) variation

in the response rather than the conditional variation. There-

fore, it is an advantage of SPRC that they express the change

in the unconditional standard deviation of the response that

makes SPRC so easily interpretable.

Estimating group means appropriately

In a linear model with categorical predictors an initial purpose

is usually to test for differences between groups. For display,

however, we often want to show the individual group means

and their appropriate standard errors. This is straightforward

for a simple one-way anova, since themeans and their standard

errors can easily be calculated from the raw data. If we want at

the same time control for some confounding effects, we might
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want to get the estimates from a linearmodel (ancova-typewith

categorical predictors and one ormore covariates).

Since in a standard linear model with treatment con-

trasts, one factor level is used as a reference (and esti-

mated as the intercept), the other factor levels are

expressed as contrasts (or differences) to the reference cate-

gory (Table 1). It is easy to calculate the appropriate

group means by adding the contrasts to the intercept for

all non-reference groups. However, the standard errors for

the contrasts given by the model output are not the appro-

priate standard errors for the group means. Indeed they

are too large, since they depend on the uncertainty in the

estimate for the reference category and on the uncertainty

in estimating the contrast. The appropriate standard errors

for the group means should be calculated as (Sokal &

Rohlf 1995):

seðbjÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
seðbj � b1Þ2 � seðb1Þ2

q
;

where se(bj) is the desired standard error of the estimate

for category j, se(bj ) b1) is the standard error for the dif-

ference of non-reference category j to the references cate-

gory and se(b1) is the standard error of the reference

category (the intercept). The values for se(bj ) b1) and

se(b1) are given in the model output.

Alternatively to this calculation, one could fit a second

model, this time with the same set of predictors, but with

the intercept removed (Gelman & Hill 2007; in R syntax,

e.g. lm(y �x ) 1), R Development Core Team 2009). If

the intercept is removed from the model, standard software

will by default make k indicator variables instead of the

k ) 1 contrast indicators (Table 1). Therefore, we will get

the groups means and, importantly, the appropriate stan-

dard errors for the group means directly from the model

output (Table 2). Note, however, that the F test will be

meaningless in this case, since it is not testing if there are

differences in means between groups, but if the population

of group means differs from zero (which it usually will

unless the response is centring to zero).

This simple solution can also be used to extract slope esti-

mates and their appropriate standard errors for cases where a

categorical predictor interacts with a continuous predictor

(Table 2). In a linear model with the two main effects and an

interaction, we will get the slope estimate for one reference cat-

egory and the slope contrasts for the non-references groups.

Again, the standard error of the slope contrasts is not the same

as the standard error of the group slopes. By removing the

main effect of the covariate, we will get slope estimates for each

factor level of the categorical predictors and the appropriate

standard errors for these slopes (Gelman & Hill 2007). Evi-

dently, the F test for this interaction without the main effect

should not be interpreted, since it is testing if the population of

slopes differs from zero rather than if treatment groups differ

in their slopes.

Worked example

To illustrate the main points of this paper, I will use an

empirical data set on reproductive success of zebra finches

under aviary conditions with a focus on phenotypic selection

(caused by variation in fertilization success) on tarsus length

in males. The analysis is simplified for the sake of illustra-

tion, a more detailed analysis, including a separation into

genetic and environmental selection differentials is in prepa-

ration (E. Bolund et al. unpublished data). In short, zebra

finches were allowed to breed in nine aviaries for a period of

about 3 months. There were three sex ratio treatments (SR)

with three replicates of each treatment: a female-biased

Table 2. An simulated example for estimating groupmeans (upper row of tables) and group slopes (lower row of tables) from linear models. The

left column shows the standard model, with an estimate for a reference category (Group A) and two contrasts. The right column shows a

modified model without an intercept (for the groupmeans, upper right) or without the main effect of the covariate (for group slopes, lower right).

The data were generated with unequal sample sizes (n = 30 for Groups A and B, n = 20 for Group C). Note that point estimates and standard

errors in the left column estimate the difference to the reference group or reference slope (Group A) and the standard errors for the differences,

whereas point estimates and standard errors in the right column estimate the respective group values. Furthermore, note the larger standard

errors for the contrasts in the standardmodel comparedwith the standard errors of the groupmeans and slopes in themodifiedmodel

Standard model Modified model

Estimate SE t P Estimate SE t P

(Intercept) 9Æ86 0Æ40 24Æ86 <0Æ001 groupA 9Æ86 0Æ40 24Æ86 <0Æ001
groupB )1Æ18 0Æ56 )2Æ10 0Æ039 groupB 8Æ68 0Æ40 21Æ89 <0Æ001
groupC 0Æ92 0Æ63 1Æ47 0Æ145 groupC 10Æ78 0Æ49 22Æ20 <0Æ001

Estimate SE t P Estimate SE t P

(Intercept) 9Æ81 0Æ37 26Æ89 <0Æ001 (Intercept) 9Æ81 0Æ37 26Æ89 <0Æ001
groupB )0Æ82 0Æ51 )1Æ61 0Æ111 groupB )0Æ82 0Æ51 )1Æ61 0Æ111
groupC 1Æ80 0Æ58 3Æ11 0Æ003 groupC 1Æ80 0Æ58 3Æ11 0Æ003
covar 0Æ87 0Æ08 10Æ81 <0Æ001 groupA:covar 0Æ87 0Æ08 10Æ81 <0Æ001
groupB:covar 0Æ31 0Æ11 2Æ78 0Æ007 groupB:covar 1Æ18 0Æ08 15Æ73 <0Æ001
groupC:covar )0Æ24 0Æ12 )1Æ99 0Æ051 groupC:covar 0Æ63 0Æ09 7Æ17 <0Æ001
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treatment with nine females and six males in one aviary, an

equal sex ratio treatment with six females and six males and

a male-biased treatment with six females and nine males. I

will here focus on only one breeding season for simplicity

(Bolund et al., unpublished data, have analysed two breeding

seasons), where every male participated in only one sex ratio

treatment (randomly assigned, 63 males in total). Fertiliza-

tion success was measured as the number of eggs sired by a

male and was converted to relative fertilization success

(RFS) within aviaries to calculate selection differentials

(Arnold & Wade 1984; Brodie, Moore, & Janzen 1995). For

brevity, I will refer to tarsus length as TL and the treatment

by tarsus interaction as SR : TL. Models are described by

the simplified syntax response � predictor(s). I explicitly

include the intercept (I) whenever it is included in the model

and will refer to sex ratio treatment contrasts by SRC. Cen-

tring input variables are marked with a subscript C (TLC or

SRCC).

In a first step, we test for differences in linear selection dif-

ferentials between treatments. We fit three alternative mod-

els: (a) a standard model with TL and SR contrasts

uncentred (RFS � I + SRC + TL + TL : SRC), (b) a

model with TL centred, but SR contrasts uncentred (RFS �
I + SRC + TLC + TLC : SRC), and (c) a model with TL

and SR contrasts centred (RFS � I + SRCC + TLC +

TLC : SRCC). Table 3 shows the parameter estimates for

these models. Notably, the estimates and standard errors for

the interaction are identical in all models. They are all esti-

mating the change in the slope of RFS on TL from equal

sex ratio to male-biased and female-biased SR, respectively.

For models (a) and (b), the estimate for the TL main effect

refers to the SR reference level (equal SR in this case). This

is interpretable, since the equal SR treatment is a meaningful

level in the analysis. In model (a), however, the estimates for

the SR main effects are basically meaningless, since they refer

to the effects at TL = 0 (which is out of the range of the

data and out of the range of any tarsus length sample). In

model (b), the estimates for the main effects of SR are mean-

ingful, since they estimate the effects at a typical (average)

tarsus length. All estimates are close to unity, which is not

surprising, since RFS is standardized within aviaries. In

model (c), we learn something subtly different: the expected

change in RFS per millimetre change in TL is 0Æ53, which is

the expected change at an average SR. Note that the two

slope contrasts (interaction terms) still give the expected

change between equal SR and male-biased and female-biased

as before. Similarly, the intercept now estimates the effect at

an average SR, while the SR main effects still estimates the

change between equal SR and male-biased and female-

biased, respectively. The intercept and the tarsus main effect

estimates of model (c) are informative, if we consider the

three treatments as a (representative) subset of a larger num-

ber of possible treatments and are interested in the average

selection differentials. (In this particular example, it might be

sensible to centre the SRC at 1 ⁄3 rather than at their sample

standard deviations, if one wants to give all SR equal

weights.)

In a second step, we want to display the selection differen-

tials in a bar chart. The intuitive, but inappropriate way is to fit

amodel (a) or (b) and to add the contrast to the effects and dis-

play them together with their standard errors (Fig. 4a). The

Table 3. Three models (a, b, c) fitted to estimate linear selection differentials on tarsus length (caused by variation in relative fertilization success)

in zebra finches held under three different sex ratio (SR) treatments. Significance levels are shown as asterisks for illustration (†P < 0Æ1,
***P < 0Æ001). For details see text

(a) Tarsus length uncentred (b) Tarsus length centred

(c) Tarsus length and SR

treatment centred

Estimate SE Estimate SE Estimate SE

(Intercept) )7Æ29 8Æ59 1Æ08 0Æ23 *** 1Æ00 0Æ12 ***

SR (male-biased) )2Æ84 12Æ09 )0Æ12 0Æ29 )0Æ12 0Æ29
SR (female-biased) 0Æ72 11Æ79 )0Æ10 0Æ31 )0Æ10 0Æ31
Tarsus 0Æ48 0Æ50 0Æ48 0Æ50 0Æ53 0Æ28 †

SR (male-biased) : tarsus 0Æ16 0Æ69 0Æ16 0Æ69 0Æ16 0Æ69
SR (female-biased) : tarsus )0Æ05 0Æ68 )0Æ05 0Æ68 )0Æ05 0Æ68
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Fig. 4. Linear selection differentials on tarsus length in zebra finches

held under three sex ratio (SR) treatments. (a) Incorrect standard

errors as extracted from model fitting one main effect and two con-

trasts. (b) Correct standard errors as extracted from a model fitting

no tarsus lengthmain effects, but three tarsus length by sex ratio treat-

ment interaction terms. For details see text.
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appropriate alternative is to calculate the standard errors

according to the formula given above or to fit a model (d) with

the tarsus main effect removed (RFS � I + SRC + TL :

SRC). The estimates and standard errors can be directly used

for display (Fig. 4b). As can be easily seen from this compari-

son the standard errors are too large for the two contrast cate-

gories when model (a) is used without appropriate standard

error calculation.

In a third step, we want to calculate nonlinear selection

differentials in addition to the linear differentials. Nonlinear

selection differentials estimate curvature effects (Arnold &

Wade 1984; Brodie et al. 1995). I will illustrate this for the

female-biased treatment only. A simple model (e) will include

tarsus and tarsus squared (RFS � TL + TL2), while an

improved model (f) will include tarsus and tarsus squared after

centring (RFS � TLC + TLC
2). Table 4 shows the estimates

from these twomodel as well as from amodel (g) with only the

linear effect (RFS � TLC). Note that the two estimates for

the nonlinear effects are identical, but model (f) estimates for

the linear effect are not biologically interpretable, while the

estimates from model (g) and model (h) are very similar for

the linear effect. Hence, with prior centring it is possible to

estimate linear and nonlinear effects simultaneously, which is

also the standardmethod in selection analysis (Arnold&Wade

1984; Brodie et al. 1995).

Finally, standardization allows the estimation of standard-

ized selection differentials that are comparable across studies

(e.g. for species with different tarsus lengths). In this case, rela-

tive fertilization success is naturally standardized (though not

centred to zero), so that we standardize only TL. Table 5

shows the results of a comprehensive model that estimates

standardized linear and nonlinear selection differentials for all

SR treatment levels. This shows the overall very similar selec-

tion differentials in all treatments with linear selection differen-

tials estimated positive in all treatments (although large

standard errors show that they are not significantly different

from zero) and very low and non-significant nonlinear selec-

tion differentials.

Extensions

Most of the points made for general linear models generalize

easily to linear mixedmodels (LMM) andmostly also toGLM

andGLMM. These models differ from the general linear mod-

els addressed so far by their link functions and error distribu-

tions (GLM and GLMM) and ⁄or the presence of random

effects (LMM and GLMM). Centring remedies the issue of

interpreting main effects in the presence of interactions inde-

pendent of these changes and scaling of input variables also

makes the estimates comparable within models for GLM,

LMMandGLMM.

However, for LMM, the use of standardized slopes as stan-

dardized effect sizes might be slightly different from what I

have described above. This is because the SPRC expresses the

change in the response variable relative to the total variation in

the response. Depending on whether the predictor of interest is

a between-group or a within-group predictor (see van de Pol &

Verhulst 2006; van de Pol &Wright 2009 for methods to sepa-

rate between- and within-group variation), it might be more

interesting to rescale the variance in the response to the

between- or within-group variance. This can be done by first

fitting a model with only group-specific random intercepts.

The required between-group or within-group (residual) stan-

dard deviation (ra or re, respectively) can be extracted from

this model and can be used to rescale the response. In a second

step, a full model can be fitted with the response standardized

by its within-group standard deviation (within-group predic-

tor) or by its between-group standard deviation (between-

group predictor). Notably, the estimates are no longer

standardized partial regression coefficients but will appear

larger than SPRC, since the response is scaled to a standard

Table 4. Three models (e, f, g) fitted to estimate linear and nonlinear selection differentials on tarsus length in zebra finches held in a female-

biased sex ratio treatment. Significance levels are shown as asterisks for illustration (†P < 0Æ1, ***P < 0Æ001). For details see text

(e) Tarsus length uncentred (f) Tarsus length centred (g) Tarsus length uncentred

Estimate SE Estimate SE Estimate SE

(Intercept) )49Æ56 91Æ89 1Æ01 0Æ12 *** )6Æ57 3Æ70 †

Tarsus (linear) 5Æ38 10Æ57 0Æ41 0Æ22 † 0Æ43 0Æ21 †

Tarsus (non-linear) )0Æ14 0Æ30 )0Æ14 0Æ30

Table 5. A full model fitted to estimate linear and nonlinear selection

differentials on tarsus length in zebra finches held under three

different sex ratio (SR) treatments. For details see text

Tarsus length

standardized

Estimate SE t P

SR (equal) 1Æ07 0Æ27 3Æ94 0Æ0002
SR (male-biased) 1Æ00 0Æ24 4Æ24 0Æ0001
SR (female-biased) 1Æ01 0Æ27 3Æ76 0Æ0004
SR (equal) : tarsus (linear) 0Æ22 0Æ30 0Æ73 0Æ47
SR (male-biased) : tarsus

(linear)

0Æ27 0Æ21 1Æ28 0Æ21

SR (female-biased) : tarsus

(linear)

0Æ17 0Æ21 0Æ84 0Æ40

SR (equal) : tarsus (nonlinear) 0Æ01 0Æ19 0Æ07 0Æ95
SR (male-biased) : tarsus

(nonlinear)

)0Æ06 0Æ21 )0Æ30 0Æ76

SR (female-biased) : tarsus

(nonlinear)

)0Æ03 0Æ12 )0Æ21 0Æ83
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deviation larger than unity. However, slope estimates will be

qualitatively equivalent to SPRC calculated from groupmeans

(standardization by the between-group standard deviation) or

deviations from group means (standardization by the residual

standard deviation). I am not aware of any study that has done

so, but if a clear separation of within- and between-group pre-

dictors becomes more popular, this might be an efficient way

to obtain comparable standardized effect size estimates.

If the focus is on within-group predictors in a LMM, there

might be between-group variation in slopes that makes it nec-

essary to fit random-slope models rather than random-inter-

cept models (Schielzeth & Forstmeier 2009). To make the

random-slope variance comparable with the random-intercept

variance, it has been suggested to use standardized input vari-

ables, which implies to estimate the variance on the scale of

standardized slopes (Nussey, Wilson, & Brommer 2007;

Schielzeth & Forstmeier 2009). The between-group random-

slope variance of standardized slopes can be interpreted as the

distribution of individual slopes around the population mean

slope (which is the fixed effect estimate of the slope). Hence,

the use of standardized input variables and responses make the

random-slope variance scale-independent and comparable

across studies. This standardization of random-slope variances

constitutes yet another advantage of using standardized input

variables.
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