
APPENDIX A

Standard probability distribl

A.I Introduction

Tables A.I and A.2 present standard notation, probability density functions,
parameter descriptions, means, modes, and standard deviations for standard
probability distributions. The rest of this appendix provides additional infor-
mation including typical areas of application and methods for simulation.

We use the standard notation 6 for the random variable (or random vector),
except in the case of the Wishart and inverse-Wishart, for which we use W for
the random matrix. The parameters are given conventional labels; all proba-
bility distributions are implicitly conditional on the parameters. Most of the
distributions here are simple univariate distributions. The multivariate nor-
mal and related Wishart and multivariate t, and the multinomial and related
Dirichlet distributions, are the principal exceptions. Realistic distributions for
complicated multivariate models, including hierarchical and mixture models,
can usually be constructed from these building blocks.

For simulating random variables from these distributions, we assume that
a computer subroutine or command is available that generates pseudorandom
samples from the uniform distribution on the unit interval. Some care must be
taken to ensure that the pseudorandom samples from the uniform distribution
are appropriate for the task at hand. For example, a sequence may appear
uniform in one dimension while rn-tuples are not randomly scattered in m
dimensions. Many statistical software packages are available for simulating
random deviates from the distributions presented here.

A.2 Continuous distributions

Uniform

The uniform distribution is used to represent a variable that is known to
lie in an interval and equally likely to be found anywhere in the interval. A
noninformative distribution is obtained in the limit as a —> — oo, b —> oo. If u
is drawn from a standard uniform distribution U(0,1), then 0 = a + (b — a)u
is a draw from U(a,b).
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Table A.I

Distribution

STANDARD PROBABILITY
Continuous distributions

Notation Parameters

boundaries a, 0
with /3 > a

symmetric, pos. definite
(implicit dimension d' dxd variance matrix V

0 ~ Gamma(a, 0) shape a > Q
inverse scale /? > np(0) = Gamma(#|a, 0)

Inverse-
gamma

9 ~ Inv-gamma(a. 0)
p(9] = Inv-gamma(#|a,/3)

nu' # ~ v 2Cm-square N A "

shape a > 0
scale 0 > 0

degrees of freedom > 0

Inverse-
chi-square

Scaled
inverse-
chi-square

„ , . , e~Expon(0)Exponential ,„, C, f a t ™
p(0) = Expon(6\0)

W~Wishart,,(S)
Wishart p(W) = Wis

(implicit dimension k x k)

Inverse-
Wishart

degrees of freedom v > 0

degrees of freedom v > 0
scale s > 0

p(W) = In
(implicit dimension k x k)

inverse scale 0 > 0

degrees of freedom v
symmetric, pos. definite

k x k scale matrix 5"

degrees of freedom v
symmetric, pos. definite

k x k scale matrix 5

CONTINUOUS DISTRIBUTIONS

Density function
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Mean, variance, and mode

E(6) = M- var(0) =
mode(6>) =

mode(6l) = a^, f o r a > l

E(0) = -^Y, f o r a > 1

mode(6») = -VY

= !/, var(0) =
mode(6') = ^-2, for ; />2

Gamma(a = |. /3 =

same as Inv-gamma(Q = |,/3 =

E(fl) = ̂ , for i /> 2
var(0) = (^_2)?(i,-4}'!y

mode(0) = 7^2

same as Inv-gamma(a = ^, /9 = |s2)

, 6»>0
same as Gamma(a = 1, ft] mode(0) = 0

exp (-± ti(S-lW)), W pos. definite
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Table A.I Continuous distributions continued

Distribution Notation Parameters

CONTINUOUS DISTRIBUTIONS

Density function
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Mean, variance, and mode

Student-/

Multivariate
Student-/

Beta

Dirichlet

Table A. 2
Distribution

u
Poisson ^

Binomial

Multinomial

Negative
binomial

Beta-
binomial

<9~/,,(/i,cr2)
p(#) =/„(%, a2)
tv is short for /„((),!)

#- /„( / ; ,£)
p(0) =*„(%,£)
(implicit dimension d)

0 ~ Beta(tt,/i)
p(6) = Beta(0|a,/?)

61 ~ Dirichlet (on, . . ,«A:)
p(0) =Dirichlet((9|a1, . . ,a / f c)

Discrete distributions
Notation

0 ~ Poisson(A)
7>(0) = Poisson(6»|A)

0~B'm(n,p)
p(0) = Bin(0|7i,7j)

0 ~ Multilist; pi, . . ,/;/,.)
p(0) =Multiii(0|n;^1,. . ,7i t .)

0 ~ Neg-bin(o:, /?)
p(0) - Neg-bin(0|«, 0)

0 ~ Beta,-bin(r/, a. /?)
p(6>) — Beta bin(0|r? o ft)

degrees of freedom v > o
location /;,
scale a > 0

degrees of freedom v > Q

symmetric, pos. definite
d x d scale matrix £

'prior sample sizes'
rv > 0, ft > 0

'prior sample sizes'
n.j > 0; rv0 = ̂ =1 aj

Parameters

'rate' A > 0

'sample size'
n (positive integer)

'probability' p e [0, 1]

'sample size'
n (positive integer)

'probabilities' p.j G [0, 1 ;
Ej=1ft- = i '

shape n > 0
inverse sc'ale ft > 0

'sample size'
•/( (positive integer)

'prior sample sizes'
a>Q,/3>0

i,,

E(0) = /x , forz»l
/ / J N r ( (y+l) /2) /-, | 1 (0-/ iy2\-( , ,+])/2 ywr f f l l - ^ rr2 for ;y > 9

^(.W> r(iy/2)\/^:(T^1 ' i^ T ^ ^ v y//1N "-^ '
mode(b') = /y,

/m r((^+d)/2) 1^1-1/2 E(0) =/ / , f o r z v > l
P(tf) r( ,V2)>/ ' ' /^- ' /2l^l var(6l) = ^-E, tor7/>2

x( l + i(0-/,)TS-1(^-M))-(^) /2 moded?) ="/,

Tp // l^ <^

/ f l N T(« + /J) fl(v U-, flW^1 ~~ a + /J n f lp l H ) = r/ ir(i)V ( l - ( 7 ) vTi-Cfl"! ^/> f r i i i \aup; ((V+/3)^(Q+/?+i)
(9 G 0. 1 rnnr lpCff l ""^

E(^) = ̂
//1X r(Qi + .--t-«fc)/3«i~l /)Qfc-l varCr? "1 S^"0""'^

P(0) rcao-rtaj^i 9k -l(^> «tt°°+V
0i, • • , Ok > 0; Dj=i ̂  = 1 - cov(&" 0^ = ~^+T)

mode(0j) = ^— ̂

1 Density function Mean, variance, and mode

1 P(0) = ̂  exp (-A) E(0) = A, var(0) = A
1 0 = 0 , 1 , 2 , . . . mode(0)=[AJ

f pw = Q/(i-Pr-fl Sr=nxi-rt
0 = 0 , l , 2 , . . . , n mode(0)= L("+l)pJ

n(m _ c « Vntfl • V* E^') = npjPly) - U, e2 .- eJPi ^A- v.u.(^) = np .(1 _ p .)
Qj = 0 , 1 , 2 , . . . , n; 2j=] 0j = n cov(0i, 0,) =' -nprfjj

,m /»+«-!>> (" /3 VV ! V E(0) = f

eIw\.M ("+l) varW=^(/^l)

,,n r(n + l) r(a+B)r(n+/3-0) ^fft\-n_°L^
P(U) r ( f l+i)r (n-e +i) r(o+/3+n) - '^'^(Q+0+n)

X •!-(„) r(j) , W - U, l , 2 , . . . , n vrt i (VJ "-(f l+1g)2(Q+^+i)

k " ,';!' : '•
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Univariate normal
The normal distribution is ubiquitous in statistical work. Sample averages ar
approximately normally distributed by the central limit theorem. A noninfor.
mative or flat distribution is obtained in the limit as the variance cr2 —> ̂
The variance is usually restricted to be positive; cr2 = 0 corresponds to a point
mass at 9. There are no restrictions on 9. The density function is always finite
the integral is finite as long as a2 is finite. A subroutine for generating random
draws from the standard normal distribution (fi = 0,cr = 1) is available in
many computer packages. If not, a subroutine to generate standard normal
deviates from a stream of uniform deviates can be obtained from a variety of
simulation texts; see Section A.4 for some references. If z is a random devi-
ate from the standard normal distribution, then 9 = fj, + az is a draw from

.
Two properties of the normal distribution that play a large role in model

building and Bayesian computation are the addition and mixture properties.
The sum of two independent normal random variables is normally distributed.
If QI and 02 are independent with N(/ii,erf) and N^^cr2.) distributions, then

+ 62 ~ N(//i + /z2, CTJ + . The mixture property states that if (0i|02)
N(6>2,<j2) and #2 ~ N^,^), then 9\ N(/x2,cr2 + cr2,). This is useful in the
analysis of hierarchical normal models.

Lognormal
If 0 is a random variable that is restricted to be positive, and log 9 ~ N(//, cr2),
then 9 is said to have a lognormal distribution. Using the Jacobian of the
log transformation, one can directly determine that the density is p(6) =
(\/2TTaff)~l exp(-2^r(log(9 - ^)2), the mean is exp(^i + jcr2), the variance is
exp(2^)exp(cr2)(exp(cr2) - 1), and the mode is exp(/i - cr2). The geometric
mean and geometric standard deviation of a lognormally-distributed random
variable 6 are simply e^ and e° .

Multivariate normal
The multivariate normal density is always finite; the integral is finite as long
as det(E~1) > 0. A noninformative distribution is obtained in the limit as
det(E-1) -* 0; this limit is not uniquely defined. A random draw from a multi-
variate normal distribution can be obtained using the Cholesky decomposition
of E and a vector of univariate normal draws. The Cholesky decomposition
of E produces a lower-triangular matrix A (the 'Cholesky factor') for which
AAT = E. If 2 = ( z i , . . . , Z d ) are d independent standard normal random
variables, then 9 = n + Az is a random draw from the multivariate normal
distribution with covariance matrix E.

The marginal distribution of any subset of components (for example, 9i or
(Oi. 9j)) is also normal. Any linear transformation of 9, such as the projection
of 9 onto a linear subspace, is also normal, with dimension equal to the rank

CONTINUOUS DISTRIBUTIONSONTINUOUS DlbTKitJU iiuiMo

| ; the «„,„„,»«„, The ™^^l^™^^
£y li»» »<»1»«:;"»" T'H K™(« S <listrib»ti»». ">» «' + fe ~~>*^^A»l^^to™i*^™*m"
^^*^*£^J%%%£* , giv» U» «»»i,,iUg *
^̂ ^̂ "11 no™,,,. If we petition . into subvecto,.

fiem V) °l.c» P(U\V) >« (n,ultiv«i»te) normal:
E([/|V) = E(t/)+cov(V',[/)v,r(V)-1(V--E(V».

™r(t/|V) = vKtl/l-covlKt/l^Vr'covtU.V),
r- n\r J-Un

(A.I)
var =

where cov(V, U) is a rectangular matrix (submatrix of S) of the appropriate
dimensions, and cov([7, V) = cov(y U)T . In particular, if we define the matrix
of conditional coefficients,

- - 1

then (A.2)

jfi
Conversely, if we parameterize the distribution of U and V hierarchically:

U\ ~ N(Xy, Et/|v), V ~ N(/ i v, Ev),

then the joint distribution of 9 is the multivariate normal,

9 = • N / 'v\ •. ,
This generalizes the mixture property of univariate normals.

The 'weighted sum of squares,' SS = (9 — p,)'ITj~1(9 — /x), has a x2 distri-
bution. For any matrix A for which AA7 = S, the conditional distribution of
A~l(9 - /i), given SS, is uniform on a (d-l)-dimensional sphere.

Gamma
The gamma distribution is the conjugate prior distribution for the inverse of
the normal variance and for the mean parameter of the Poisson distribution.
The gamma integral is finite if a > 0; the density function is finite if n > 1. A
noninformative distribution is obtained in the limit as a —> 0, ft —> 0. Many
computer packages generate gamma random variables directly; otherwise, it
is possible to obtain draws from a gamma random variable using draws from
a uniform as input. The most effective method depends on the parameter a;
see the references for details.

There is an addition property for independent gamma random variables
with the same inverse scale parameter. If Q\d 9% are independent with
Gamma(a1./3) and Gamma(«2, ft) distributions, then 9] +#2 ~ Gamma(ai +
a-2, ft) • The logarithm of a gamma random variable is approximately normal;
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raising a gamma random variable to the one-third power provides an even
better normal approximation.

Inverse-gamma

If ff^1 has a gamma distribution with parameters a, (3, then 0 has the inverse-
gamma distribution. The density is finite always; its integral is finite if a > 0.
The inverse-gamma is the conjugate prior distribution for the normal variance.
A noninformative distribution is obtained as a, 0 ~+ 0.

Chi-square

The x2 distribution is a special case of the gamma distribution, with a = v/2
and 0 = |. The addition property holds since the inverse scale parameter
"'" n'"J 'r " :i ^2 are independent with xl, and xl, distributions, then

' Y2 At/] -

Inverse chi-square

The inverse-^2 is a special case of the inverse-gamma distribution, with a =
/-//2 and ft = 1. We also define the scaled inverse chi-square distribution,
which is useful for variance parameters in normal models. To obtain a sim-
ulation draw 9 from the Inv-^2(t/,.s2) distribution, first draw X from the xl
distribution and then let 9 = vs2 /X.

Exponential

The exponential distribution is the distribution of waiting times for the next
event in a Poisson process and is a special case of the gamma distribution with
a — 1. Simulation of draws from the exponential distribution is straightfor-
ward. If U is a draw from the uniform distribution on [0,1], then - \og(U)/0
is a draw from the exponential distribution with parameter /?.

Weibull

If 0 is a random variable that is restricted to be positive, and (6/0}" nas
an Expon(l) distribution, then 0 is said to have a Weibull distribution with
shape parameter a > 0 and scale parameter f3 > 0. The Weibull is often
used to model failure times in reliability analysis. Using the Jacobian of the
log transformation, one can directly determine that the density is p(&) *
PQ"~1 exp(-(0//?)"), the mean is '/3T(l + £), the variance is /?2fF(l + «) "
(F(l + I))2], and the mode is /?(! - ^)1/Q.

CONTINUOUS DISTRIBUTIONS
Wishart
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The Wishart is the conjugate prior distribution for the inverse covariance ma-
trix in a multivariate normal distribution. It is a multivariate generalization
of the gamma distribution. The integral is finite if the degrees of freedom
parameter, ;/, is greater than or equal to the dimension, k. The density is
finite if v > k + 1. A noninformative distribution is obtained as v — > 0. The
sample covariance matrix for iid multivariate normal data has a Wishart dis-
tribution. In fact, multivariate normal simulations can be used to simulate a
draw from the Wishart distribution, as follows. Simulate «i, ...,av, v inde-
pendent samples from a -̂dimensional multivariate N(0, S) distribution, then
lot (9 = ]Cr=i aial • This only works when the distribution is proper; that is,
v > k.

Inverse- Wishart

If W~l ~ Wishart,, (5) then W has the inverse- Wishart distribution. The
inverse- Wishart is the conjugate prior distribution for the multivariate nor-
mal covariance matrix. The inverse- Wishart density is always finite, and the
integral is always finite. A degenerate form occurs when v < k.

Student-t

The t is the marginal posterior distribution for the normal mean with unknown
variance and conjugate prior distribution and can be interpreted as a mixture
of normals with common mean and variances that follow an inverse-gamma
distribution. The t is also the ratio of a normal random variable and the square
root of an independent gamma random variable. To simulate t, simulate z from
a standard normal and x from a \V , then let 6 = fi + az \fvjx. The t density is
always finite; the integral is finite if v > 0 and a is finite. In the limit v — > oc,
(ho t distribution approaches N(/t. a'2}. The case ofV — 1 is called the Cauchy
distribution. The t distribution can be used in place of a normal distribution
in a robust analysis.

To draw from the multivariate tu([i, S) distribution, generate a vector z ~
N(0,/) and a scalar x ~ x'i~ tneri compute // + Az\/v/x, where A satisfies

The beta is the conjugate prior distribution for the binomial probability. The
density is finite if a, ft > 1, and the integral is finite if a,/? > 0. The choice
r* = (3 = 1 gives the standard uniform distribution; a = /3 = 0.5 and « = /? = ()
arc also sometimes used as noninformative densities. To simulate 9 from the
beta distribution, first simulate xn and x,i from x2,, and \2^ distributions,
''cspectively, then let 9 = x*+Xi1 •
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It is sometimes useful to estimate quickly the parameters of the beta dis-

tribution using the method of moments:

-1
a=

var(0)
(3 = (a + /3)(l -E(0)).(A.3)

The beta distribution is also of interest because the kill order statistic from
a sample of n iid U(0, 1) variables has the Beta(&, n — k + 1) distribution.

Dirichlet

The Dirichlet is the conjugate prior distribution for the parameters of the
multinomial distribution. The Dirichlet is a multivariate generalization of the
beta distribution. As with the beta, the integral is finite if all of the re's are
positive, and the density is finite if all are greater than or equal to one. A
iioninforniative prior is obtained as «? — > 0 for all j.

The marginal distribution of a single Oj is Beta(a7, «o — o.j). The marginal
distribution of a subvector of 9 is Dirichlet; for example ($,;, Oj, 1 — #; — Oj) ~
Dirichlet(a»,aj,ao — a,; — otj). The conditional distribution of a subvector
given the remaining elements is Dirichlet under the condition ]Cj=i @j = 1-

There are two standard approaches to sampling from a Dirichlet distri-
bution. The fastest method generalizes the method used to sample from the
beta distribution: draw x\ . . . , xk from independent gamma distributions with
common scale and shape parameters ai,...,ak, and for each j, let Oj —
•':j/Hz=] X:>- A ^ess efficient algorithm relies on the univariate marginal and
conditional distributions being beta and proceeds as follows. Simulate 0\m
a Beta(oii, X^,:=2 a») distribution. Then simulate 9%, • • • , 0fc-i in order, as fol-
lows. For j = 2, . . . , fc— 1, simulate <j>j from a Beta(oy, X^=j+i a«) distribution,
and let 6:j = (1 - £f-j" 0^. Finally, set 9k = l- ^ll Oi-

A.3 Discrete distributions

Poisson

The Poisson distribution is commonly used to represent count data, such as the
number of arrivals in a fixed time period. The Poisson distribution has an ad-
dition property: if 0\d (92 are independent with Poisson(A] ) and Poisson(A2)
distributions, then 0\ ~ Poisson(Ai + A2). Simulation for the Poisson dis-
tribution (and most discrete distributions) can be cumbersome. Table lookup
can be used to invert the cumulative distribution function. Simulation texts
describe other approaches.

DISCRETE DISTRIBUTIONS

Binomial
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The binomial distribution is commonly used to represent the number of 'suc-
cesses' in a sequence of n iid Bernoulli trials, with probability of success p in
each trial. A binomial random variable with large n is approximately normal.
If 9\d 62 are independent with Biu(rf i,/;) and Bin(«2,p) distributions, then
0\ 0'2 ~ Bin(rii + 7^2,p). For small n. a binomial random variable can be
simulated by obtaining n independent standard uniforms and setting 9 equal
to the number of uniform deviates less than or equal to p. For larger n, more
efficient algorithms are often available in computer packages. When n = 1.
the binomial is called the Bernoulli distribution.

Multinomial

The multinomial distribution is a multivariate generalization of the binomial
distribution. The marginal distribution of a single Oj. is binomial. The con-
ditional distribution of a subvector of 0 is multinomial with 'sample size'
parameter reduced by the fixed components of 9 and 'probability' parameters
rescaled to have sum equal to one. We can simulate a multivariate draw using
a sequence of binomial draws. Draw 0\m a Bin(rt,pi) distribution. Then
draw 02) • • • i Qk-i m order, as follows. For j = 2,..., k — I, draw Oj from a
Bin(n - ^=1 0i.Pj/Ei=jPi) distribution. Finally, set 9k = n - Y^ll &i- If
at any time in the simulation the binomial sample size parameter equals zero,
use the convention that a Bin(0,p) variable is identically zero.

Negative binomial

The negative binomial distribution is the marginal distribution for a Poisson
random variable when the rate parameter has a Gamma(a,/3) prior distribu-
tion. The negative binomial can also be used as a robust alternative to the
Poisson distribution, because it has the same sample space, but has an ad-
ditional parameter. To simulate a negative binomial random variable, draw
A ~ Gamma(a, (3) and then draw 0 ~ Poisson(A). In the limit a —» oo, and
a//3 —^constant, the distribution approaches a Poisson with parameter a/(3.
Under the alternative parametrization, p = -J^i, the random variable 9 can be
interpreted as the number of Bernoulli failures obtained before the a successes,
where the probability of success is p.

Beta-binomial

The beta-binomial arises as the marginal distribution of a binomial random
variable when the probability of success has a Beta(a,/tf) prior distribution.
It can also be used as a robust alternative to the binomial distribution. The
mixture definition gives an algorithm for simulating from the beta-binomial:
draw (j> ~ Beta(a, ff) arid then draw 9 ~ Bin(r?,, 0).
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A.4 Bibliographic note

Many software packages contain subroutines to simulate draws from these dis-
tributions. Texts on simulation typically include information about many of
these distributions; for example, Ripley (1987) discusses simulation of all of
these in detail, except for the Dirichlet and multinomial. Johnson and Kotz <
(1972) give more detail, such as the characteristic functions, for the distri-
butions. Fortran and C programs for uniform, normal, gamma, Poissori, and
binomial distributions are available in Press et al. (1986).
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