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Abstract. In many previously remote regions in the world, increasing and often
unregulated access is leading to dramatic increases in hunting pressure and declines in the
densities of prey species, sometimes to the point of local extinction. Not surprisingly,
numerous studies have found a correlation between the distance to the closest access point and
prey densities. Here we hypothesized that, for many wide-ranging species, local abundances
are reduced by hunting associated with multiple access points as opposed to just the closest
access points. We also hypothesized that the distribution of hunter access determines both
patterns of occupancy and abundance in occupied areas and that these two patterns
(occupancy and abundance) respond to access at different spatial scales. Using data on the
distribution of abundances of African forest elephant (Loxodonta africana cyclotis) in and
around five national parks in Central Africa, we tested these hypotheses using a model
comparison framework.

We found that models including an index based on the distance to multiple roads
outperformed models including other access-based covariates, including a model based on
distance to the closest road only. We also found that models that allowed us to model
occupancy and abundance separately outperformed simpler models. Occupancy responds to
access at the same scale as previous estimates of average maximum displacement in the
subspecies, while the scale of the response of abundance is more ambiguous, but appears to be
greater. Lastly, we show that incorporating indices based on multiple access points and
modeling abundance and occupancy has important practical consequences for our
understanding of overall regional abundances and the distribution of abundances within
regions.

Key words: access; African forest elephant; hunting; Loxodonta africana cyclotis; range collapse;
roads; wide-ranging mammals.

INTRODUCTION

Species-based conservation relies on estimates of the

distribution and abundance of the target species to

develop and prioritize management responses (Caughley

and Gunn 1996, Wikramanayake et al. 1998, Sanderson

et al. 2002a, b, Blake and Hedges 2004, Sanderson

2006). These estimates are often derived from survey

data and influenced by assumptions about the spatial

structure of populations of the targeted species and the

distribution and intensity of threats within and around

the survey area. Hunting has been identified as a key

threat for many species of conservation concern

(Wilcove et al. 1998, Li and Wilcove 2005). The

distribution of hunting pressure in remote forested areas

is largely determined by the location of access points.

Points of access into otherwise remote areas are

generally found near settlements, rivers, and roads

(Barnes et al. 1997, Wilkie et al. 2000, Laurance et al.

2006, Blake et al. 2007). Not surprisingly, studies have

established that the probability of occurrence and the

relative densities of exploited species increase with

distance from access points (Barnes et al. 1991, Peres

and Lake 2003, Blom et al. 2005, Blake et al. 2007).

The character of this relationship (in terms of the

distance at which densities reach undisturbed levels and

the degree to which densities are lowered in the most

affected areas) varies greatly between different animal

species (Peres and Lake 2003). Clearly, differences in

human hunting preferences, intensity, and efficiency can

explain some of this among species variation; however,
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aspects of the spatial structure of prey populations may

also play an important role in determining the distribu-

tion of abundances in hunted landscapes. One concept

of spatial population theory, source–sink dynamics

(Pulliam 1988), has already been applied in the context

of landscapes with patchy distributions of hunting

pressure to explain why populations of exploited species

persist in hunted areas when levels of hunting are locally

unsustainable (Mace and Waller 1988, Novaro et al.

2000, 2005, Naranjo and Bodmer 2007, Robinson et al.

2008). In these landscapes, it is believed that migration

from non- or lightly hunted areas to hunted areas

compensates for the increased mortality in hunted areas.

While source–sink theory has been invoked to explain

the resulting differences in mean densities between

hunted and neighboring areas, this theory ignores the

spatial details of dispersal (focusing only on net

immigration) and daily movements in determining finer

scale distributions of densities. That is, source–sink

models assume a series of discrete prey populations in

which individuals are exposed to homogeneous levels of

hunting pressure and among which there is no exchange

of individuals except in terms of permanent migration.

Furthermore, many studies assume that the extents of

these discrete populations are determined solely on the

basis of the distribution of hunting (a human-centered

perspective) without reference to the biology of the prey

species.

These assumptions are rarely met in the real world,

where local populations are rarely discrete, individuals

(not populations) are exposed to different environmental

conditions, and the movements of individuals (not the

distribution of a threat such as hunting) determine the

extent of local populations. One implication of the

failure of these assumptions is that even if hunting

pressure (or some other threatening process) is distrib-

uted evenly in two or more different areas with well-

defined borders, the impacts on densities are not

expected to be evenly distributed within the different

areas. The impacts are not expected to be evenly

distributed because population processes will occur

across the borders and some individuals will move

between patches as part of their normal ranging

behavior.

The importance of individual movement processes

and local population processes in determining the final

distribution of densities will vary depending on how the

spatial extents of these two processes compare to the

spatial extent of hunting around an access point (i.e., the

hunting shadow). For many species, the spatial extent of

both the local populations and individual home ranges

will be less than the extent of the hunting shadow (Fig.

1a). For these species, interspecific variation in the

behavioral responses to lowered densities (e.g., territory

or home range expansion), dispersal ability, and growth

rate of the source populations can help explain

disparities between taxa in the separation from the

closest access point required for densities to return to

non-hunted levels. For some species, however, the

spatial extent of individual home ranges and local

populations will be greater than the extent of the

hunting shadow (Fig. 1b), and as a result the impact

on densities may extend far beyond the extent of the

hunting shadow. For example, individuals within home

ranges that overlap a hunted area will have a higher

likelihood of being killed than those have no overlap,

even if they spend much of their time in areas that are

not hunted. The effect of hunting on densities could

extend even further if neighboring individuals respond

to the loss of individuals from hunting by increasing

FIG. 1. Conceptual model of the interaction between the distribution of a threat (in this case the hunting shadow around access
points) and the spatial population structure of a prey species. Hexagons illustrate the scale of home ranges or local populations of a
given target species, while the shaded areas around the access points represent the extent of the direct impact of the access points
(i.e., the extent of the hunting shadow). The boundaries of hexagons overlapping the hunting shadow were left blank to illustrate
the difference in the extent of the impact of a threat on (a) a restricted and (b) a wide-ranging prey species. We expect that distance
to the closest access point will be an adequate proxy for the impact of hunting when access points are isolated or when prey species
restrict their movements to areas that are smaller than the extent of the hunting shadow around a single access point.

June 2011 1297HUNTER ACCESS AND ELEPHANT ABUNDANCE



their territory or home range size to occupy vacant

areas.

Furthermore, we would expect that if the spatial

extents of individual home ranges and local populations

are sufficiently large (relative to the spatial extent of the

hunting shadow) and there are multiple sources of

threats (i.e., multiple hunting access points), then

densities at a given location may be a function of the

location and distance to multiple threats, not just to the

closest one. While this expectation may seem intuitive,

most analyses of the impact of hunting on prey densities

have assumed that only the closest access points matter.

The dependence of local abundances on the spatial

structure of access points could arise through two

pathways, which are not mutually exclusive. First,

individuals whose home ranges previously overlapped

with the hunting shadow are more likely to have died or

to have shifted their home range into other areas leading

to a decreased probability of any individuals being

present at the spatial scale of home ranges and leading to

a home-range-scale response (HRSR). At larger spatial

scales, areas around hunting shadows will act as sink

habitat, and increases in the proportion of the ratio of

sink to source habitat may eventually lead to lower

densities, even in areas that are separated from hunting

zone by more than one home range. This local

population-scale response (LPSR) should operate at

spatial scales larger than the HRSR and should affect

densities in occupied areas.

If both the LPSR and the HRSR are operating then

we would expect that, at the scale of individual home

ranges, increasing overlap with threatening processes

will increase the likelihood that an area will be

unoccupied, while at the scale of the local population,

the amount of overlap with threatening processes will

determine the aggregated mortality and thus the average

density of the local population. One way to test this two-

process hypothesis is to model both processes using two

separate generalized linear models. Presence (interpreted

here as some non-negligible probability of use by

individuals of a species) at each location could be

modeled by linking predictors to the binomial statistical

distribution through the logit link (i.e., as in logistic

regression), while abundances in occupied locations

could be modeled by linking a separate set of predictors

to the statistical distribution for count data (Poisson or

negative binomial) via the logarithm link. Modeling

both occupancy (presence) and abundance is useful

when the factors determining species presence are

distinct from the factors that determine density in

occupied areas (Cunningham and Lindenmayer 2005).

In particular, when the two processes responsible for

presence and densities operate on different spatial or

temporal scales (Wenger and Freeman 2008).

One potential pitfall of modeling presence and

abundance in separate sets of models is that all zeros

are included in the occupancy model and excluded from

the count (abundance) model. This is problematic

because we would expect some zeros in a count data

set with a small mean, and removal of these zeros in the

count model can bias the results of both models

(Warton 2005). Fortunately, we can overcome this

problem, while still modeling both components of the

two-process model, by fitting the occupancy and count

models simultaneously using models based on zero-

inflated count distributions (specifically the zero-inflated

negative binomial distribution). This statistical model is

consistent with the general view that ranges are

structured hierarchically and that range collapse can

occur through losses at the level of individual home

ranges as well as declines in local populations (Gaston

2003). A key distinction apparent in both the hierarchi-

cal conceptual model and this statistical model is that

absences (zeros) can arise either because an area is

locally unsuitable (high probability of zero in the

occupancy portion of the model) or because an area is

suitable but the neighborhood of the area is unsuitable

(leading to a low predicted density in the count portion

with a high likelihood of a zero count). Since the

probability of zero in a zero-inflated distribution never

actually reaches 1 (as a result of its being linked through

the logistic function), this model also allows for the

possibility of detection of dispersers in unsuitable areas

bordering suitable areas, another key issue in range

structure, particularly along range edges (Gaston 2003).

This issue is particularly important for wide-ranging

species that are more likely to travel long distances

outside suitable areas because of their greater mobility.

The hypothesis that the distributions and local

abundances of species with larger home ranges will be

affected by the spatial distribution of hunting, or more

generally, threats, through either of the two response

pathways is largely untested with a few key exceptions.

For example, some studies have applied similar logic to

the HRSR to explain why species with large home

ranges are more vulnerable to local extinction in small

protected areas due to edge effects (Woodroffe and

Ginsberg 1998, 2000). More recently, Frair et al. (2008)

determined that home range occupancy of elk in

Alberta, Canada, where an extensive road network is

growing, exhibited thresholds in response to road

density that would leave otherwise suitable areas

unoccupied as a result of conditions in their neighbor-

hood. The approach of Frair et al. (2008), which focused

on the environment of individuals and movements and

how these scale up to occupancy patterns, is consistent

with a hierarchical view of range erosion in the face of

threatening processes. While the rich literature on

habitat patch occupancy in fragmented landscapes also

involves many examples of thresholds (Andren 1994,

Fahrig 2001, Radford and Bennett 2004), the key

distinction of Frair et al.’s (2008) study is that it defines

the home range based on the biology of species as

opposed to the pattern of landscape fragments.

Studies seeking to apply source–sink theory to

understand distributions of hunted species have tended
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to focus on circumstances where the management of

different parcels is well differentiated (i.e., hunted vs.

non-hunted; Mace and Waller 1988, Novaro et al. 2000,

2005, Naranjo and Bodmer 2007, Robinson et al. 2008)

or there are only a few access points (Barnes et al. 1991,

Peres and Lake 2003, Blom et al. 2005, Blake et al.

2007). The choice of areas with few access points is

important because models based on either the closest

access or multiple access points are likely to agree when

there are few access points, while disagreeing at higher

levels of access. This point is illustrated in Fig. 2 in

which the density values at the hypothetical sampling

locations in a more remote part of the hypothetical

landscape are the same for both models even as the

predictions throughout the rest of the landscape vary

greatly. This suggests that understanding the effects that

the spatial structure of threats will have on wildlife will

require that we sample along the spectrum of human

influence and consider a variety of hypotheses of the

manner in which humans affect the distribution of

hunted species.

The African forest elephant (Loxodonta africana

cyclotis) is an ideal species to test how access affects

the distribution of wide-ranging species. Individuals

move over large areas on daily, weekly, and seasonal

timescales, leaving signs of their presence as they move.

Densities of forest elephants are usually based on

elephant dung counts because the actual animals are

difficult to observe. Understanding how multiple access

points influence elephant distributions is becoming

increasingly relevant in previously isolated parts of the

West and Central Africa forest, where roads and

settlements associated with commercial forestry, mining,

and petroleum operations are leading to increased access

for hunters (Laurance et al. 2006, Blake et al. 2007,

2008). From a conservation point, understanding the

relationship between the spatial structure of access

points and elephant densities (as estimated from

elephant dung counts) is extremely important both in

terms of designing and analyzing monitoring programs

and in developing management interventions that

minimize the impacts of hunting both within and outside

of protected areas.

Here we relied on elephant dung count data from

within and around five national parks in Central Africa

(Blake et al. 2007) to investigate how the spatial

structure of access points influences the distribution of

L. a. cyclotis. More specifically we asked: (1) Are models

that consider the cumulative effects of multiple, nearby

access points better supported by data than models

based on the closest access point only, and are the

access-based covariates more important in predicting

presence or density conditioned on presence? (2) To

what degree and at what scales are threats affecting

elephant densities through changes in occupancy

(HRSR) or through decreases in local densities condi-

tioned on presence (LPSR)? (3) To what extent do

models differ in their predictions of the total quantity of

dung and its spatial distribution (i.e., what are the

practical implications of different models)?

METHODS AND MATERIALS

Transect data

In order to gain a better understanding of the

response of forest elephants to multiple access points

we reanalyzed a data set that was previously included in

a broader study of the state of forest elephant

populations in the Congo Basin (Blake et al. 2007).

Three-hundred and eighty-three transects were surveyed

for elephant dung in and adjacent to five protected areas

FIG. 2. Densities of the target species (a) based only on distance to access points and (b) based on the percentage of overlap
between the threatening process and the scale of the target species in Fig. 1b. Note that neither panel is based on Fig. 1a, and that
although panels (a) and (b) differ throughout the landscape, they provide similar results along a hypothetical transect starting from
the most remote settlement. As a result, it would be impossible to distinguish the importance of the additive impact of multiple
access points based on studies in more remote areas.
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in five Central African countries (Table 1). While the

majority of these transects (339) were 1 km in length, 19

transects in Salonga National Park (NP) were cut short

by 12 m to 272 m due to impassable terrain, and 25 of

the transects in Dzanga NP were only 300 m in length

due to the adoption of a different protocol. Along each

transect all signs of elephants and humans were noted,

as well as several habitat variables. For our analysis, the

response variable was the number of elephant dung piles

recorded per transect. Here we report the results of an

analysis using dung piles in all freshness categories;

however, we found similar qualitative results when we

restricted our analysis to different freshness categories.

Elephant dung piles are the elephant sign that is

predominantly used in estimating forest elephant densi-

ties (Barnes 2001). We controlled for differences in the

effective area sampled per transect by including its log as

an offset in the count portion of the model. Since the

predictors in the count portion of the model are linked

to the number of dung piles through a log link, including

the log of the effective area sampled per transect with the

predictors is in effect the same as modeling the density of

dung per square kilometer. The effective area sampled

per transect was calculated by fitting distance sampling

detection functions to the forest elephant dung piles in

order to estimate the effective strip width and multiply-

ing this by the transect length. Since each park was

surveyed by a different team, we had reason to believe

that detection functions might vary between different

parks. We tested this assumption by comparing the

values of the Akaike Information Criterion (AIC) for a

model with separate detection functions to the AIC of a

model where the detection function was the same for all

parks. Comparison based on AIC strongly favored the

model with separate detection functions for each park,

and we used the park-specific estimates of effective strip

widths associated with these detection functions in

further analyses. All detection functions were fit using

Distance software (Thomas et al. 2006) with a half

normal cosine function. A few dung piles lacked the

perpendicular distance required to fit a detection

function and were included in the main analysis, but

excluded from the estimation of the effective strip width.

GIS data

The locations of roads, populated places, and rivers

were obtained from the National Imagery and Mapping

Agency’s (NIMA) Digital Chart of the World (NIMA

1997). Both river and road data sets were edited to add

major roads and rivers that were known to have been

omitted or misplaced. Individuals familiar with each of

the parks designated which rivers were navigable.

GPS points taken at the beginning and end of each

transect were used to define the midpoint of each

transect. We then used this location to calculate

distances to the nearest river, road, and populated place

for each transect. To test whether access points acted

additively we first had to define the spatial extent of the

effect of each access point. We chose a distance of 20 km

based on Blake et al.’s (2007) analyses of the human

signs portion of this data set. They found that at this

distance from the nearest road the probability of

detecting human signs fell below 50% in all areas and

the mean probability based on the pooled data was

,40%. Although Blake et al. (2007) only considered

roads, we also analyzed populated places and observed a

similar pattern. Thus, we felt confident in using 20 km

for all types of access points. We then created an index

of the cumulative effects of multiple access points,

Ctype,r, which measured the proportion of a circle with

radius, r, which overlapped with the 20-km buffer

around the given type (settlement [s], river [ri], or road

[ro]) of access point. We calculated this index for rivers,

roads, and populated places using a 30 km radius. We

chose a 30 km radius as a starting point based on Blake

et al. (2008). We also calculated the index for radii of 15

km, 45 km, 60 km, 75 km, and 90 km for roads only in

order to determine if the HRSR was operating at larger

scales, and if and at what scale the LPSR was operating.

Statistical modeling

Forest elephants travel individually or in small groups

of different sizes (usually 2–5 individuals) and make fine-

scale habitat selection based on variables such as fruit

density and browse quality that are patchily distributed

in space and time and unknowable at the scale of this

investigation (Walsh et al. 2001, Blake 2002). This

behavior would lead to overdispersed dung count data.

Avoidance of and/or higher mortality in potential home

ranges overlapping with the areas around access points

could also lead to a greater proportion of zeroes than

expected. To accommodate these two processes, we

chose a zero-inflated negative binomial (ZINB) regres-

sion model (Welsh et al. 1996). Initial examination of

the raw data provided evidence to support our choice as

the dung data appeared to be overdispersed and to

TABLE 1. Distribution of sampling locations among the five countries/protected areas.

Country Protected area Number of transects

Cameroon Boumba Bek 47
Central African Republic Dzanga (Ndoki and Sangha) 75
Gabon Minkébé 60
Congo Nouabalé Ndoki 71
Democratic Republic of the Congo Salonga 130

Note: Some transects were located outside strictly protected areas.
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contain extra zeros. However, we also tested our initial

assumption using a Vuong test (Vuong 1989) by

comparing our final models to analogous models using

simpler probability distributions that allowed for only

overdispersion (negative binomial) or only a separate

process producing zeros (zero-inflated Poisson). Vuong

tests are a means of comparing non-nested models.

Analyses were conducted in R 2.7.2 (R Development

Core Team 2008) using the pscl package to fit the zero-

inflated models (Zeileis et al. 2008) and perform the

Vuong test (Jackman 2008) and the MASS (Venables

and Ripley 2002) package to fit the standard generalized

linear model with a negative binomial distribution. The

ZINB regression model allows for separate linear

combinations of predictors for the count portion of

the model and the zero portion of the model. The

separate linear combinations are transformed through

log(count data) and logistic (zero portion) link func-

tions. As mentioned previously, the count data portion

of all models included the log of the effective area

sampled per transect as an offset.

We had a priori reason to believe that there might be

significant differences in abundance between different

regions irrespective of our predictors because of

differences in environmental conditions and the history

of human impacts. For example, human settlements

have been present in Salonga for many years, while

Minkébé was relatively inaccessible until recently.

Following Blake et al. (2007), we considered Nouabalé

Ndoki and Dzanga, which are contiguous as a single

region and included four region-specific intercepts in the

count portion of the regression model for all analyses

(i.e., one for Ndoki-Dzanga and one for each of the

three other sites).

To assess the effects of the multiple access points on

elephant densities relative to the single closest access

point (question 1), we tested a set of 21 models that

included various combinations of either single or

multiple access points as covariates. We also considered

a null model that assumed that dung densities were

homogeneous across the study areas. The seven covar-

iates included were: (1) the distance to the nearest

settlement; (2) distance to the nearest road; (3) distance

to nearest river; (4) distance to nearest settlement, river,

or road; (5) Cs30; (6) Cro30; and (7) Cri30. These

covariates were first included in the zero portion of the

regression model, then in the count portion, and finally

in both portions. We used AIC to choose the model that

had the strongest support in the data (Johnson and

Omland 2004). To assess the distance at which threats

affected home ranges or population densities (question

2), we compared 36 models based on all distance

combinations (i.e., 15 km, 30 km, 45 km, 60 km, 75

km, and 90 km) of Cro,r in the count and zero portions

of the model. We focused on Cro,r since the model that

included it had had the lowest AIC values in question 1.

We used AIC values to calculate Akaike weights for

these 36 models. A model’s Akaike weight can be

interpreted as the probability that it is the best model

given the data and entire model set under consideration

(Burnham and Anderson 1998). Akaike weights can also

be summed across models containing the same covariate

to express the strength of evidence for a particular

covariate.

Model predictions: comparison of three models

In order to illustrate the differences in predictions that

result from different modeling assumptions we chose

three representative models and determined the predict-

ed distribution of dung density and total abundances per

region. The three models we chose were the model with

the overall lowest AIC, the model with the lowest AIC

amongst models based only on nearest access, and a

simpler model based only on the negative binomial

distribution (as opposed to the ZINB in the first two

models) and incorporating the nearest road as a

predictor. We chose to include this last model, one

which was not in our analysis and which does include

zero-inflation, in order to illustrate how the predictions

would have differed if we had ignored the excess zeros in

our data and assumed that the closest road, instead of

the cumulative effects of roads, was the best predictor.

To illustrate the density distribution for the four study

regions, we broke each region into 1 km2-grid cells and

the relevant covariates (distance to closest road, Cro45,

and Cro60) were estimated at their centers. We choose

this resolution after experimenting with finer and coarser

scales and determining that covariates hardly varied

between neighboring points at this resolution and that

any finer scale made calculations needlessly computa-

tionally intensive.

Calculating the expected probabilities of zero, expect-

ed count, and expected combined results were relatively

straightforward in ArcGIS (ESRI 2008) using the

Spatial Analyst tool; however, we also wanted to

incorporate prediction uncertainty, particularly for our

estimates of abundance. To account for parameter

uncertainty in the three separate models we took

random draws of parameter values from the multivar-

iate normal distribution described by the variance–

covariance matrix and maximum likelihood parameter

estimates associated with each model. Since the proba-

bility of zero was calculated on the scale of thousands of

square meters, we chose to treat each 1-km square as 400

replicates of 2500-m2 squares. Therefore, for each draw

of parameter values we calculated a prediction for each

1-km2 square by first choosing from the binomial

distribution given by the predicted probability of

occupancy for that 1-km2 square and with size equal

to 400, and then choosing from the negative binomial

distribution predicted for that 1-km2 square. These

values were then summed to give the prediction for that

cell. After this procedure had been repeated for each 1-

km2 square in the four regions for a given set of

parameter values, we determined the predicted abun-

dance for each region and moved on to the next draw of
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parameter values. In total, we chose 1000 draws for each

of the three models and computed means and standard

deviations for each of the four regions based on the 1000

draws. For the best model we also calculated both a

mean and standard deviation for each cell. These values

were used to check that the means matched with the

expected values and to calculate coefficients of variation.

The comparison of results from design-based and

model-based abundance estimates can lead to greater

understanding of the practical significance of model

outputs (Hedley and Buckland 2004), so for each region

we also compared the average densities predicted by

these three models to estimates from a prior design-

based analysis of the data (Blake 2005).

RESULTS

1) Are models that consider the cumulative effects of

multiple, nearby access points better supported by data

than models based on the closest access point only and are

the access-based covariates more important in predicting

presence or density conditioned on presence?—Models

based on the cumulative effects of multiple access points

were better supported than those based on the nearest

points for all three classes of access points (i.e., river,

road, and populated place). The best overall model

included the index of cumulative effects of roads in the

count and zero portions (Model 22 in Appendix);

however, the simpler model that included the cumulative

effects only in the zero portion differed from model 22

by only 0.9 in its AIC value suggesting that the

cumulative effects of roads (as measured at the scale of

30 km) act primarily on patterns of occupancy and not

on density. More generally, models based on roads and

settlements were better supported than those based on

rivers or closest overall access, regardless of whether the

cumulative or nearest indices were used. All indices had

a larger impact on AIC when they were only included in

the zero portion than when they were included only in

the count portion.

2) To what degree and at what scales are threats

affecting elephant densities through changes in occupancy

(HRSR) or through decreases in local densities condi-

tioned on presence (LPSR)?—The overall best model

from this set includes Cro45 in the zero portion and Cro60

in the count portion, leading to a 27 point decrease in

AIC as opposed to the best model considered in the

previous set. Vuong tests confirmed that this best model

was better than models with the same covariates based

on either a negative binomial distribution only or a zero-

inflated Poisson distribution only (P , 0.001 for both

comparisons). Focusing on the support for the covari-

ates in the best model across all models in this set, the

data strongly support models incorporating Cro45 in the

zero portion of the ZINB regression (92.5%) and

provide weaker support (62.5%) for Cro60 in the count

portion; however, while there is only moderate support

for Cro60 in the count portion, there is over a 95%
probability that Cro measured at scales equal to or

greater than 45 km (i.e., at 45 km, 60 km,75 km, or 90

km), should be included as the predictor of the count

portion (Table 2).

3) To what extent do models differ in their predictions

of the total quantity of dung and its spatial distribution

(i.e., what are the practical implications of different

models)?—Total dung abundance and density estimates

by region vary greatly depending on the model used to

generate the estimates (Table 3). The predictions of the

model based on cumulative effects (the best overall

model) are lower than the predictions of the other two

spatial models in all four regions, and lower than the

design-based estimates in the three regions where

estimates are available. Summed over all four regions,

the model based on cumulative effects predicts 11.1

million (18%) less dung than the model without a zero

portion based on the nearest road and 2.6 million (4.7%)

less than the model based on the nearest road in both the

zero and count portions. In addition to these differences

in the total amount of dung, there are marked

differences in the predicted distributions of dung (Fig.

3). In particular, the model based on cumulative effects

often predicts sharp gradients in the dung density near

edges of the regions. To gain a better understanding of

TABLE 2. Comparison of the ability of 36 models based on our index of the cumulative effects of roads (Cro) to predict both empty
transects and the abundances in nonempty transects.

Count portion

Zero portion

Cro15 Cro30 Cro45 Cro60 Cro75 Cro90

Cro15 54 (. . .) 30 (. . .) 10 (0.004) 7.8 (0.012) 16 (. . .) 21 (. . .)
Cro30 48 (. . .) 27� (. . .) 8.1 (0.011) 7.3 (0.016) 15 (. . .) 20 (. . .)
Cro45 37 (. . .) 19 (. . .) 3.0 (0.134) 5.8 (0.033)
Cro60 30 (. . .) 13 (0.001) 0.0 (0.615) 8.3 (0.010)
Cro75 35 (. . .) 15 (. . .) 3.0 (0.135) 12.8 (0.001)
Cro90 40 (. . .) 19 (. . .) 6.2 (0.027) 15.1 (. . .) 30 (. . .) 38 (. . .)

Notes: The main entries are the DAICs based on this model set, and the values in parentheses are the Akaike weights. The six
models in boldface all include Cro45 as the predictor of empty transects, and their combined Akaike weights suggest that there is a
greater than 90% probability that the best model includes Cro45. There is also .95% probability that the best model includes a
predictor of abundance based on Cro measured at the same or greater extent than Cro45 (i.e., at 45 km, 60 km, 75 km, or 90 km;
models are italicized). Ellipses indicate that the corresponding Akaike weight was ,0.001.

� This model is the same as model 22 in the first set (see Appendix), and the high value of DAIC (27) illustrates the improvement
in the second set of models over the first set.
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how the cumulative effects model is arriving at these

predictions and what the levels of uncertainty are

around the predictions, we decomposed portions of the

ZINB predictions and calculated the coefficient of

variation (CV) of the aggregate predictions (Fig. 4).

These decomposed portions suggest that the zero

portion of the model is driving many of the patterns

apparent in the overall predictions (Fig. 3), as well as the

patterns in the CV.

DISCUSSION

Our results provide support for the hypothesis that

wide-ranging mammals respond more strongly to

multiple access points for hunters than to the closest

single access point. In particular, the probability that

any location will be devoid of elephant dung, and thus

presumably of elephants, is closely linked to how much

of the area within 45 km of that location is within 20 km

of roads and/or settlements. The scale of 45 km for this

response is strongly supported by the data as opposed to

other potential response scales that were considered (15–

90 km at 15-km intervals). This scale matches previous

estimates of home range dimensions for forest elephants.

For example, Blake et al. (2008) found that the average

maximum linear displacement, defined as the longest

axis of the minimum convex polygon, of 28 forest

elephants was 40.3 km.

In addition to the support for HRSR in the zero

portion of the ZINB regression, there was good, albeit

slightly weaker, support for a response in dung densities

to multiple access points at even larger scales (i.e., at the

scale of local populations). The overall best model

included an index of overlap at the scale of 60 km, and

there was a greater than 95% probability that the

response was occurring at scales � 45 km. Although this

effect was not as pronounced as the HRSR, this may be

because declines in local populations occur over longer

time intervals than the direct mortality and behavioral

response of elephants (avoiding hunted areas and

crowding in other areas) that are associated with the

HRSR. Furthermore, because we only have data from

one time period and included region-specific intercepts,

it is possible that the effects of hunting on densities are

included in the regional intercepts (in addition to

differences in the natural population ecology of ele-

phants in the different regions). In other words, the

LPSR we detected occurred on top of differences in the

average densities between different regions that are

partially the results of the history of hunting in these

regions. For example, Salonga, an area with a long

history of high human impact in the immediate

landscape, had a much smaller intercept than

Minkébé, an area where heavy exploitation of elephants

began more recently. Regional intercepts may also

reflect variation in dung decay rates. Dung decay rates

are known to vary greatly temporally and between

different regions. Within each protected area, efforts

were made to complete transects over as short a time as

possible (typically a few months) to limit the impact of

temporal variation. Regional variation in decay rates

was harder to control for and we assumed that, while it

plays some role in the estimated regional intercepts, it is

highly unlikely that it introduced a systematic bias.

As with most models of ecological processes, even the

best models considered in this study were still gross

approximations (Box 1976, Scott et al. 2002). Our

models do not account for regional variation in dung

decay rates, the possibility that hunters may be found in

areas far from roads (Blake et al. 2007), variation in the

degree of protection, local human population density

and hunting intensity, or regional differences in the

distance elephants and hunters travel (which would lead

to differences in how the cumulative effects are

calculated). Despite these limitations, models based on

the cumulative effect of access points were far better

supported by the data than the commonly used

alternatives relying only on the nearest road. In

addition, the best supported model predicted lower

TABLE 3. Design- and model-based estimates (ZINB, zero-inflated negative binomial regression) of dung density and abundance
by region.

Region

Design-
based

estimate�

ZINB

Negative binomial, closest road Closest road in count and zero Cro60 count; Cro45 zero

Dung
density

(piles/km2)

Abundance
(total number
of dung piles)

Dung
density

(piles/km2)

Abundance
(total number
of dung piles)

Dung
density

(piles/km2)

Abundance
(total number
of dung piles)

Boumba Bek NA� 671 (143) 1 600 000 889 (203) 2 120 000 646 (169) 1 540 000
Dzanga/Nouabalé 724§ 755 (95) 6 970 000 745 (75) 6 870 000 625 (60) 5 770 000
Minkébé 5348 5619 (870) 52 300 000 4632 (560) 43 100 000 4613 (555) 42 900 000
Salonga 91.6 102 (18) 2 270 000 112 (21) 2 490 000 81 (18) 1 810 000

Notes: Model-based estimates were obtained by assuming three different models for the distribution of dung. Values in
parentheses are standard deviations.

� Standard deviations for design-based estimates are not directly comparable as they include different sources of uncertainty
(e.g., uncertainty in effective strip width).

� Density estimates were not attempted for Boumba Bek.
§ Dzanga and Nouabalé were originally analyzed separately, and here we report the weighted average based on the respective

areas of the two regions.
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regional abundances than either design-based analyses

or model-based analyses based on distance to the closest

road (Table 3). Lastly, the best supported model

predicted a different distribution of densities within the

regions than was predicted by models based on distance

to the closest road (Fig. 3).

While the use of an index that includes multiple access

points instead of just the nearest access point explains

some of the improvement in our ability to approximate

the underlying distribution, another key difference in

this study was the use of ZINB regression. This model

allowed us to model the separate processes that we

believed were responsible for areas that were not

occupied and for densities in those areas that are

occupied. While a count-based model can account for

some zeros, the importance of the zero-inflation portion

FIG. 3. Density surfaces predicted by three models in the four regions. Within each region (row), left-hand maps (a, d, g, j) show
the predictions based on negative binomial only regression with distance to road as the predictor; center maps (b, e, h, k) show the
projection based on zero-inflated negative binomial (ZINB) regression with distance to road in both portions; and right-hand maps
(c, f, h, l) are based on ZINB regression using the best predictors identified in Table 2 (Cro45 in the zero portion and Cro60 in the
count portion; see Methods and materials for a description of index C) . The regions from top to bottom are (a�c) Salonga, (d�f )
Minkébé, (g�i ) Dzanga/Nouabalé, and ( j�l) Boumba Bek (see Table 1 for countries). Note that scales used to display the results
for the different regions are not the same.
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of our best model and the Vuong tests confirm that a

two-process model is best supported by the data. In

addition to the different predictions offered by a two-

process model, this model has interesting implications

for how we think of range collapse. In particular, our

results are consistent with the belief that range collapse

in species with home ranges occurs both through losses

at the level of individual home ranges and through

declines in the local populations.

Implications for conservation and land use planning

Our study strongly supports previous calls (Laurance

et al. 2006, Blake et al. 2007, 2008) to improve road and

other infrastructure planning at local and national levels

in the Congo Basin. Planning for roads, settlements, and

oil and mining infrastructure usually depends on a single

criterion: how cost effective is the planned development

in the short term. Wilderness areas in the Congo Basin

FIG. 4. Decomposition of the best model identified in Table 2. Regions are the same as in Fig. 3. The maps on the left (a, d, g, j)
in each region show the prediction from the count portion of the ZINB model, the maps in the center (b, e, h, k) show the prediction
from the zero portion of the ZINB model, and the maps on the right (c, f, h, l) use the coefficient of variation (CV) calculated from
1000 simulations of each 1-km square to illustrate the variation resulting from parameter uncertainty. Notice the large roles that
zero predictions play in both the overall prediction (maps on the right-hand side of Fig. 3) and in the CV. These estimates of CV do
not include uncertainty in the estimates of the effective strip width.
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have shrunk dramatically over the last two decades, and

multiple access points are driving ever deeper into

formerly inaccessible forests. While any access into

wildlife habitat in the absence of effective law enforce-

ment threatens the integrity of wildlife populations, we

have shown that proliferation of access points is

particularly damaging for wide-ranging species such as

forest elephants. As the number of access points

increases and the area of available wilderness declines,

the costs of adequate policing escalate dramatically. In

central Africa today, these costs are almost exclusively

borne by grants awarded to conservation nongovern-

mental organizations (NGOs), and seldom by the

private sector and national governments whose devel-

opment policies and practices create and exacerbate the

problem. Until the impact of the geography of access is

accepted, understood, and taken into account at the

infrastructure planning stage, conservation effectiveness

of wide-ranging forest elephants will continue to decline.
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