# **R** Reference Card

by Tom Short, EPRI Solutions, Inc., tshort@eprisolutions.com 2005-07-12 Granted to the public domain. See www.Rpad.org for the source and latest version. Includes material from *R* for Beginners by Emmanuel Paradis (with permission).

## Help and basics

Most R functions have online documentation.

help(topic) documentation on topic

?topic id.

- help.search("topic") search the help system
- apropos("topic") the names of all objects in the search list matching the regular expression "topic"
- help.start() start the HTML version of help

str(a) display the internal \*str\*ucture of an R object

- summary(a) gives a "summary" of a, usually a statistical summary but it is generic meaning it has different operations for different classes of a
- ls() show objects in the search path; specify pat="pat" to search on a
   pattern
- ls.str() for each variable in the search path
- dir() show files in the current directory

methods(a) shows S3 methods of a

- methods(class=class(a)) lists all the methods to handle objects of class a
- library(x) load add-on packages; library(help=x) lists datasets and functions in package x.
- attach(x) database x to the R search path; x can be a list, data frame, or R
  data file created with save. Use search() to show the search path.

## Input and output

 ${\tt load}$  ( ) load the datasets written with <code>save</code>

data(x) loads specified data sets

- read.table(file) reads a file in table format and creates a data frame from it; the default separator sep="" is any whitespace; use header=TRUE to read the first line as a header of column names; use as.is=TRUE to prevent character vectors from being converted to factors; use comment.char="" to prevent "#" from being interpreted as a comment; use skip=n to skip n lines before reading data; see the help for options on row naming, NA treatment, and others
- read.csv("filename",header=TRUE) id. but with defaults set for reading comma-delimited files
- read.delim("filename",header=TRUE) id. but with defaults set
   for reading tab-delimited files
- read.fwf(file,widths,header=FALSE,sep="",as.is=FALSE)
  read a table of fixed width formatted data into a 'data.frame'; widths
  is an integer vector, giving the widths of the fixed-width fields
- save(file,...) saves the specified objects (...) in the XDR platformindependent binary format

- print(a, ...) prints its arguments; generic, meaning it can have different methods for different objects

format(x,...) format an R object for pretty printing

- write.table(x,file="",row.names=TRUE,col.names=TRUE,
  - sep=" ") prints x after converting to a data frame; if quote is TRUE, character or factor columns are surrounded by quotes ("); sep is the field separator; eol is the end-of-line separator; na is the string for missing values; use col.names=NA to add a blank column header to get the column headers aligned correctly for spreadsheet input
- sink(file) output to file, until sink()

Most of the I/O functions have a file argument. This can often be a character string naming a file or a connection. file="" means the standard input or output. Connections can include files, pipes, zipped files, and R variables.

On windows, the file connection can also be used with description =

"clipboard". To read a table copied from Excel, use

x <- read.delim("clipboard")</pre>

To write a table to the clipboard for Excel, use

write.table(x, "clipboard", sep="\t", col.names=NA)

For database interaction, see packages RODBC, DBI, RMySQL, RPgSQL, and ROracle. See packages XML, hdf5, netCDF for reading other file formats.

### **Data creation**

- c(...) generic function to combine arguments with the default forming a vector; with recursive=TRUE descends through lists combining all elements into one vector
- from: to generates a sequence; ":" has operator priority; 1:4 + 1 is "2,3,4,5"
- seq(from,to) generates a sequence by= specifies increment; length=
   specifies desired length
- seq(along=x) generates 1, 2, ..., length(x); useful for for loops
- rep(x,times) replicate x times; use each= to repeat "each" element of x each times; rep(c(1,2,3),2) is 1 2 3 1 2 3; rep(c(1,2,3),each=2) is 1 1 2 2 3 3
- data.frame(...) create a data frame of the named or unnamed arguments; data.frame(v=1:4,ch=c("a","B","c","d"),n=10); shorter vectors are recycled to the length of the longest
- list(...) create a list of the named or unnamed arguments; list(a=c(1,2),b="hi",c=3i);
- **array(x,dim=)** array with data x; specify dimensions like dim=c(3,4,2); elements of x recycle if x is not long enough
- matrix(x,nrow=,ncol=) matrix; elements of x recycle
- factor(x,levels=) encodes a vector x as a factor
- gl(n,k,length=n\*k,labels=1:n) generate levels (factors) by specifying the pattern of their levels; k is the number of levels, and n is the number of replications
- expand.grid() a data frame from all combinations of the supplied vectors or factors
- **rbind(...)** combine arguments by rows for matrices, data frames, and others

cbind(...) id. by columns

## Slicing and extracting data

Indexing lists

- list with elements n x[n] n<sup>th</sup> element of the list x[[n]] x[["name"]] element of the list named "name" x\$name id. Indexing vectors n<sup>th</sup> element x[n] all *but* the  $n^{th}$  element x[-n] x[1:n] first n elements elements from n+1 to the end x[-(1:n)]specific elements x[c(1,4,2)] element named "name" x["name"] all elements greater than 3 x[x > 3]x[x > 3 & x < 5]all elements between 3 and 5 x[x %in% c("a", "and", "the")] elements in the given set Indexing matrices x[i,j] element at row i, column j x[i,] row i x[,j] column i x[, c(1, 3)] columns 1 and 3 x["name",] row named "name" Indexing data frames (matrix indexing plus the following) x[["name"]] column named "name"
- x\$name id.

# Variable conversion

- as.array(x), as.data.frame(x), as.numeric(x),
  - as.logical(x), as.complex(x), as.character(x), ... convert type; for a complete list, use methods (as)
- Variable information
- - ... test for type; for a complete list, use methods (is)

length(x) number of elements in x

- dim(x) Retrieve or set the dimension of an object; dim(x) <- c(3, 2)dimnames (x) Retrieve or set the dimension names of an object
- **nrow(x)** number of rows; NROW (x) is the same but treats a vector as a one-row matrix

ncol(x) and NCOL(x) id. for columns

- class(x) get or set the class of x; class(x) <- "myclass"</pre>
- unclass(x) remove the class attribute of x
- attr(x,which) get or set the attribute which of x
- attributes(obj) get or set the list of attributes of <code>obj</code>

## Data selection and manipulation

which.max(x) returns the index of the greatest element of x which.min(x) returns the index of the smallest element of x rev(x) reverses the elements of x

- sort(x) sorts the elements of x in increasing order; to sort in decreasing
   order: rev(sort(x))

save.image(file) saves all objects

- which(x == a) returns a vector of the indices of x if the comparison operation is true (TRUE), in this example the values of i for which x[i] == a (the argument of this function must be a variable of mode logical)
- **choose(n, k)** computes the combinations of k events among n repetitions = n!/[(n-k)!k!]
- na.omit(x) suppresses the observations with missing data (NA) (suppresses the corresponding line if x is a matrix or a data frame)

**na.fail(x)** returns an error message if x contains at least one NA

- unique(x) if x is a vector or a data frame, returns a similar object but with the duplicate elements suppressed
- table(x) returns a table with the numbers of the differents values of x
  (typically for integers or factors)

subset(x, ...) returns a selection of x with respect to criteria (..., typically comparisons: x\$V1 < 10); if x is a data frame, the option select gives the variables to be kept or dropped using a minus sign

sample(x, size) resample randomly and without replacement size elements in the vector x, the option replace = TRUE allows to resample with replacement

prop.table(x,margin=) table entries as fraction of marginal table

#### Math

sin,cos,tan,asin,acos,atan,atan2,log,log10,exp

**max(x)** maximum of the elements of x

**min(x)** minimum of the elements of x

range(x) id. then c(min(x), max(x))

- sum(x) sum of the elements of x
- diff(x) lagged and iterated differences of vector x
- **prod(x)** product of the elements of x
- **mean(x)** mean of the elements of x
- median(x) median of the elements of x
- quantile(x,probs=) sample quantiles corresponding to the given probabilities (defaults to 0,25,.5,.75,1)

weighted.mean(x, w) mean of x with weights w

- rank(x) ranks of the elements of x
- **var**(**x**) or cov(x) variance of the elements of x (calculated on n-1); if x is a matrix or a data frame, the variance-covariance matrix is calculated **calculated calculated deviction** of u

sd(x) standard deviation of x

- **cor(x)** correlation matrix of x if it is a matrix or a data frame (1 if x is a vector)
- var(x, y) or cov(x, y) covariance between x and y, or between the columns of x and those of y if they are matrices or data frames
- cor(x, y) linear correlation between x and y, or correlation matrix if they are matrices or data frames
- round(x, n) rounds the elements of x to n decimals
- log(x, base) computes the logarithm of x with base base
- scale(x) if x is a matrix, centers and scales the data; to center only use the option scale=FALSE, to scale only center=FALSE (by default center=TRUE, scale=TRUE)
- pmin(x,y,...) a vector which ith element is the minimum of x[i], y[i],...

**pmax(x,y,...)** id. for the maximum

**cumsum(x)** a vector which *i*th element is the sum from x[1] to x[i] **cumprod(x)** id. for the product cummin(x) id. for the minimum

cummax(x) id. for the maximum

- **Re(x)** real part of a complex number

**Im(x)** imaginary part

**IIII(X)** Intaginary part

**Mod(x)** modulus; abs(x) is the same

Arg(x) angle in radians of the complex number

Conj(x) complex conjugate

convolve(x,y) compute the several kinds of convolutions of two sequences

fft(x) Fast Fourier Transform of an array

**mvfft(x)** FFT of each column of a matrix

filter(x,filter) applies linear filtering to a univariate time series or to each series separately of a multivariate time series

Many math functions have a logical parameter  ${\tt na.rm=FALSE}$  to specify missing data (NA) removal.

### Matrices

t(x) transpose diag(x) diagonal %\*% matrix multiplication solve(a,b) solves a %\*% x = b for x solve(a) matrix inverse of a rowsum(x) sum of rows for a matrix-like object; rowSums(x) is a faster version colsum(x), colSums(x) id. for columns rowMeans(x) fast version of row means colMeans(x) id. for columns

### Advanced data processing

apply(X,INDEX,FUN=) a vector or array or list of values obtained by applying a function FUN to margins (INDEX) of X

**lapply(X, FUN)** apply FUN to each element of the list X

tapply(X,INDEX,FUN=) apply FUN to each cell of a ragged array given by X with indexes INDEX

- by (data, INDEX, FUN) apply FUN to data frame data subsetted by INDEX
- ave(x,...,FUN=mean) subsets of x are averaged (or other function specified by FUN), where each subset consist of those observations with the same factor levels

merge(a,b) merge two data frames by common columns or row names

xtabs(a b,data=x) a contingency table from cross-classifying factors

- aggregate(x, by, FUN) splits the data frame x into subsets, computes summary statistics for each, and returns the result in a convenient form; by is a list of grouping elements, each as long as the variables in x
- stack(x, ...) transform data available as separate columns in a data frame or list into a single column

unstack(x, ...) inverse of stack()

reshape(x, ...) reshapes a data frame between 'wide' format with repeated measurements in separate columns of the same record and 'long' format with the repeated measurements in separate records; use (direction="wide") or (direction="long")

## Strings

- paste(...) concatenate vectors after converting to character; sep= is the string to separate terms (a single space is the default); collapse= is an optional string to separate "collapsed" results
- substr(x,start,stop) substrings in a character vector; can also assign, as substr(x, start, stop) <- value</pre>

strsplit(x,split) split x according to the substring split

grep(pattern,x) searches for matches to pattern within x; see ?regex

gsub(pattern,replacement,x) replacement of matches determined by regular expression matching sub() is the same but only replaces the first occurrence.

tolower(x) convert to lowercase

- toupper(x) convert to uppercase

x %in% table id. but returns a logical vector

pmatch(x,table) partial matches for the elements of x among table nchar(x) number of characters

### **Dates and times**

The class Date has dates without times. POSIXct has dates and times, including time zones. Comparisons (e.g. >), seq(), and difftime() are useful. Date also allows + and -. ?DateTimeClasses gives more information. See also package chron.

- **as.Date(s)** and **as.POSIXct(s)** convert to the respective class; format(dt) converts to a string representation. The default string format is "2001-02-21". These accept a second argument to specify a format for conversion. Some common formats are:
- %a, %A Abbreviated and full weekday name.
- %b, %B Abbreviated and full month name.
- %d Day of the month (01–31).
- %H Hours (00–23).
- %I Hours (01–12).
- % j Day of year (001–366).
- %m Month (01–12).
- %M Minute (00–59).
- %p AM/PM indicator.
- %S Second as decimal number (00–61).
- &U Week (00–53); the first Sunday as day 1 of week 1.
- %w Weekday (0–6, Sunday is 0).
- W Week (00–53); the first Monday as day 1 of week 1.
- %y Year without century (00–99). Don't use.
- %Y Year with century.
- %z (output only.) Offset from Greenwich; -0800 is 8 hours west of.
- %Z (output only.) Time zone as a character string (empty if not available).

Where leading zeros are shown they will be used on output but are optional on input. See ?strftime.

- postscript(file) starts the graphics device driver for producing PostScript graphics; use horizontal = FALSE, onefile = FALSE, paper = "special" for EPS files; family= specifies the font (AvantGarde, Bookman, Courier, Helvetica, Helvetica-Narrow, NewCenturySchoolbook, Palatino, Times, or ComputerModern); width= and height= specifies the size of the region in inches (for paper="special", these specify the paper size).
- **ps.options()** set and view (if called without arguments) default values for the arguments to postscript
- pdf, png, jpeg, bitmap, xfig, pictex; see ?Devices
- dev.off() shuts down the specified (default is the current) graphics device; see also dev.cur.dev.set

#### Plotting

- plot(x) plot of the values of x (on the y-axis) ordered on the x-axis plot(x, y) bivariate plot of x (on the x-axis) and y (on the y-axis)
- **hist(x)** histogram of the frequencies of x
- **barplot(x)** histogram of the values of x: use horiz=FALSE for horizontal bars
- dotchart(x) if x is a data frame, plots a Cleveland dot plot (stacked plots line-by-line and column-by-column)
- **pie(x)** circular pie-chart

boxplot(x) "box-and-whiskers" plot

- **sunflowerplot(x, y)** id. than plot () but the points with similar coordinates are drawn as flowers which petal number represents the number of points
- stripplot(x) plot of the values of x on a line (an alternative to boxplot() for small sample sizes)
- $coplot(x^{y} \mid z)$  bivariate plot of x and y for each value or interval of values of z
- interaction.plot (f1, f2, y) if f1 and f2 are factors, plots the means of y (on the y-axis) with respect to the values of f1 (on the x-axis) and of f2 (different curves); the option fun allows to choose the summary statistic of v (by default fun=mean)
- **matplot(x,y)** bivariate plot of the first column of x vs. the first one of y, the second one of x vs. the second one of y, etc.
- fourfoldplot(x) visualizes, with quarters of circles, the association between two dichotomous variables for different populations (x must be an array with dim=c(2, 2, k), or a matrix with dim=c(2, 2) if k = 1)
- **assocplot(x)** Cohen–Friendly graph showing the deviations from independence of rows and columns in a two dimensional contingency table
- **mosaicplot(x)** 'mosaic' graph of the residuals from a log-linear regression of a contingency table
- **pairs(x)** if x is a matrix or a data frame, draws all possible bivariate plots between the columns of x
- plot.ts(x) if x is an object of class "ts", plot of x with respect to time, x may be multivariate but the series must have the same frequency and dates
- **ts.plot(x)** id. but if x is multivariate the series may have different dates and must have the same frequency
- **gqnorm(x)** quantiles of x with respect to the values expected under a normal law
- qqplot(x, y) quantiles of y with respect to the quantiles of x

- curves), x and y must be vectors and z must be a matrix so that  $\dim(z) = c(\operatorname{length}(x), \operatorname{length}(y))$  (x and y may be omitted)
- **filled.contour**(**x**, **y**, **z**) id. but the areas between the contours are **box()** draw a box around the current plot coloured, and a legend of the colours is drawn as well
- **image(x, y, z)** id. but with colours (actual data are plotted)
- persp(x, y, z) id. but in perspective (actual data are plotted)
- stars(x) if x is a matrix or a data frame, draws a graph with segments or a star where each row of x is represented by a star and the columns are the lengths of the segments
- symbols(x, y, ...) draws, at the coordinates given by x and y, symbols (circles, squares, rectangles, stars, thermometres or "boxplots") which sizes, colours ... are specified by supplementary arguments
- termplot(mod.obj) plot of the (partial) effects of a regression model (mod.obi)
- The following parameters are common to many plotting functions:
- add=FALSE if TRUE superposes the plot on the previous one (if it exists) **axes=TRUE** if FALSE does not draw the axes and the box
- **type="p"** specifies the type of plot, "p": points, "1": lines, "b": points connected by lines, "o": id. but the lines are over the points, "h": vertical lines, "s": steps, the data are represented by the top of the vertical lines, "S": id. but the data are represented by the bottom of the vertical lines
- xlim=, ylim= specifies the lower and upper limits of the axes, for example with xlim=c(1, 10) or xlim=range(x)
- **xlab**=, **ylab**= annotates the axes, must be variables of mode character
- **main** = main title, must be a variable of mode character

**sub=** sub-title (written in a smaller font)

## Low-level plotting commands

points(x, y) adds points (the option type= can be used) lines(x, y) id. but with lines

- text(x, y, labels, ...) adds text given by labels at coordinates (x,y); a typical use is: plot(x, y, type="n"); text(x, y, names)
- mtext(text, side=3, line=0, ...) adds text given by text in the margin specified by side (see axis() below); line specifies the line from the plotting area
- segments (x0, y0, x1, y1) draws lines from points (x0,y0) to points lwd a numeric which controls the width of lines, default 1 (x1,y1)
- arrows(x0, y0, x1, y1, angle= 30, code=2) id. with arrows at points (x0,y0) if code=2, at points (x1,y1) if code=1, or both if code=3; angle controls the angle from the shaft of the arrow to the edge of the arrow head
- abline(a,b) draws a line of slope b and intercept a
- **abline(h=y)** draws a horizontal line at ordinate y
- **abline(v=x)** draws a vertical line at abcissa x
- abline(lm.obj) draws the regression line given by lm.obj
- rect(x1, y1, x2, y2) draws a rectangle which left, right, bottom, and top limits are x1, x2, y1, and y2, respectively
- polygon(x, y) draws a polygon linking the points with coordinates given by x and y
- legend(x, y, legend) adds the legend at the point (x,y) with the symbols given by legend
- title() adds a title and optionally a sub-title

- contour (x, y, z) contour plot (data are interpolated to draw the **axis(side)** adds an axis at the bottom (side=1), on the left (2), at the top (3), or on the right (4); at=vect (optional) gives the abcissa (or ordinates) where tick-marks are drawn
  - rug(x) draws the data x on the x-axis as small vertical lines
  - locator(n, type="n", ...) returns the coordinates (x, y) after the user has clicked n times on the plot with the mouse; also draws symbols (type="p") or lines (type="l") with respect to optional graphic parameters (...); by default nothing is drawn (type="n")

#### **Graphical parameters**

These can be set globally with par(...); many can be passed as parameters to plotting commands.

- adj controls text justification (0 left-justified, 0.5 centred, 1 right-justified)
- **bg** specifies the colour of the background (ex. : bg="red", bg="blue", ... the list of the 657 available colours is displayed with colors ())
- bty controls the type of box drawn around the plot, allowed values are: "o", "1", "7", "c", "u" ou "]" (the box looks like the corresponding character); if bty="n" the box is not drawn
- cex a value controlling the size of texts and symbols with respect to the default; the following parameters have the same control for numbers on the axes, cex.axis, the axis labels, cex.lab, the title, cex.main, and the sub-title, cex.sub
- col controls the color of symbols and lines; use color names: "red", "blue" see colors() or as "#RRGGBB"; see rgb(), hsv(), gray(), and rainbow(); as for cex there are: col.axis, col.lab, col.main, col.sub
- font an integer which controls the style of text (1: normal, 2: italics, 3: bold. 4: bold italics): as for cex there are: font.axis. font.lab. font.main.font.sub
- **las** an integer which controls the orientation of the axis labels (0: parallel to the axes, 1: horizontal, 2: perpendicular to the axes, 3: vertical)
- lty controls the type of lines, can be an integer or string (1: "solid", 2: "dashed", 3: "dotted", 4: "dotdash", 5: "longdash", 6: "twodash", or a string of up to eight characters (between "0" and "9") which specifies alternatively the length, in points or pixels, of the drawn elements and the blanks, for example lty="44" will have the same effect than lty=2
- mar a vector of 4 numeric values which control the space between the axes and the border of the graph of the form c(bottom, left, top, right), the default values are c (5.1, 4.1, 4.1, 2.1)
- **mfcol** a vector of the form c(nr,nc) which partitions the graphic window as a matrix of nr lines and nc columns, the plots are then drawn in columns
- **mfrow** id. but the plots are drawn by row
- pch controls the type of symbol, either an integer between 1 and 25, or any single character within ""
- 1 2 △ 3 + 4 × 5 ◇ 6 ▽ 7 ⊠ 8 ¥ 9 ◆ 10 ⊕ 11 ☎ 12 ⊞ 13 ⊠ 14 ⊠ 15 16● 17▲ 18◆ 19● 20● 21○ 22□ 23◇ 24△ 25▽ \*\* . XX aa ??
- **ps** an integer which controls the size in points of texts and symbols
- pty a character which specifies the type of the plotting region, "s": square, "m": maximal
- tck a value which specifies the length of tick-marks on the axes as a fraction of the smallest of the width or height of the plot; if tck=1 a grid is drawn

- tcl a value which specifies the length of tick-marks on the axes as a fraction of the height of a line of text (by default tcl=-0.5)
- xaxs, yaxs style of axis interval calculation; default "r" for an extra space; "i" for no extra space
- <code>yaxt</code> if <code>yaxt="n"</code> the y-axis is set but not drawn (useful in conjonction with axis(side=2, ...))

## Lattice (Trellis) graphics

xyplot(y~x) bivariate plots (with many functionalities)

- barchart(y~x) histogram of the values of y with respect to those of x
  dotplot(y~x) Cleveland dot plot (stacked plots line-by-line and columnby-column)
- densityplot(~x) density functions plot
- **histogram(~x)** histogram of the frequencies of x

**bwplot(y~x)** "box-and-whiskers" plot

- qqmath(~x) quantiles of x with respect to the values expected under a theoretical distribution
- stripplot(y~x) single dimension plot, x must be numeric, y may be a
  factor
- qq(y<sup>~</sup>x) quantiles to compare two distributions, x must be numeric, y may be numeric, character, or factor but must have two 'levels'

**splom(~x)** matrix of bivariate plots

parallel(~x) parallel coordinates plot

- levelplot(z~x\*y|g1\*g2) coloured plot of the values of z at the coordinates given by x and y (x, y and z are all of the same length)
- wireframe(z~x\*y|g1\*g2) 3d surface plot
- cloud(z~x\*y|g1\*g2) 3d scatter plot

In the normal Lattice formula, y x|g1\*g2 has combinations of optional conditioning variables g1 and g2 plotted on separate panels. Lattice functions take many of the same arguments as base graphics plus also data= the data frame for the formula variables and subset= for subsetting. Use panel= to define a custom panel function (see apropos("panel") and ?llines). Lattice functions return an object of class trellis and have to be print-ed to produce the graph. Use print(xyplot(...)) inside functions where automatic printing doesn't work. Use lattice.theme and lset to change Lattice defaults.

#### **Optimization and model fitting**

- optim(par, fn, method = c("Nelder-Mead", "BFGS",
- "CG", "L-BFGS-B", "SANN") general-purpose optimization; par is initial values, fn is function to optimize (normally minimize)
- **nlm(f,p)** minimize function f using a Newton-type algorithm with starting values p
- lm(formula) fit linear models; formula is typically of the form response termA + termB + ...; use I (x\*y) + I (x^2) for terms made of nonlinear components
- glm(formula,family=) fit generalized linear models, specified by giving a symbolic description of the linear predictor and a description of the error distribution; family is a description of the error distribution and link function to be used in the model; see ?family
- **nls(formula)** nonlinear least-squares estimates of the nonlinear model parameters
- approx(x,y=) linearly interpolate given data points; x can be an xy plotting structure
- spline(x,y=) cubic spline interpolation

**loess(formula)** fit a polynomial surface using local fitting

- Many of the formula-based modeling functions have several common arguments: data= the data frame for the formula variables, subset= a subset of variables used in the fit, na.action= action for missing values: "na.fail", "na.omit", or a function. The following generics often apply to model fitting functions:
- predict(fit,...) predictions from fit based on input data

df.residual(fit) returns the number of residual degrees of freedom

- coef(fit) returns the estimated coefficients (sometimes with their standard-errors)
- residuals(fit) returns the residuals
- deviance(fit) returns the deviance
- fitted(fit) returns the fitted values
- logLik(fit) computes the logarithm of the likelihood and the number of
  parameters
- AIC(fit) computes the Akaike information criterion or AIC

#### **Statistics**

- aov(formula) analysis of variance model
- **anova (fit,...)** analysis of variance (or deviance) tables for one or more fitted model objects
- **density(x)** kernel density estimates of x
- binom.test(), pairwise.t.test(), power.t.test(),
   prop.test(), t.test(), ... use help.search("test")

### **Distributions**

rnorm(n, mean=0, sd=1) Gaussian (normal) rexp(n, rate=1) exponential rgamma(n, shape, scale=1) gamma rpois(n, lambda) Poisson rweibull(n, shape, scale=1) Weibull rcauchy(n, location=0, scale=1) Cauchy rbeta(n, shape1, shape2) beta rt(n, df) 'Student' (t) rf(n, df1, df2) Fisher-Snedecor (F) ( $\chi^2$ ) rchisg(n, df) Pearson rbinom(n, size, prob) binomial rgeom(n, prob) geometric rhyper(nn, m, n, k) hypergeometric rlogis(n, location=0, scale=1) logistic rlnorm(n, meanlog=0, sdlog=1) lognormal rnbinom(n, size, prob) negative binomial runif(n, min=0, max=1) uniform rwilcox(nn, m, n), rsignrank(nn, n) Wilcoxon's statistics All these functions can be used by replacing the letter r with d, p or q to get, respectively, the probability density (dfunc(x, ...)), the cumulative probability density (pfunc(x, ...)), and the value of quantile (qfunc(p, ...)) ...), with 0 ).

#### Programming

- do.call(funname, args) executes a function call from the name of the function and a list of arguments to be passed to it