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Removing Allometric E4ects of Body Size in Morphological Analysis
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In the present paper, a normalization technique to scale data that exhibit an allometric growth
is presented and the way it has to be used is described. It is shown how the method has been
derived from the theoretical equations of allometric growth. Consequently, the method
completely removes all the information related to size, not only scaling all individuals to the
same size, but also adjusting their shape to that they would have in the new size according to
allometry. In the particular case of isometry when the measures are of identical dimension, this
normalization coincides with ratios (one of the most popular methods but only valid in this
particular case). This procedure is a theoretical generalization of the technique used by Thorpe
(1975, Biol. J. ¸inn. Soc. 7, 27}43; 1976, Biol. Rev. 51, 407}452) which was recorded as one of
the most e$cient methods in the empirical evaluation done by Reist (1985, Can. J. Zool. 63,
1429}1439).
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Introduction

Most of the variability in a set of multivariate
morphometric data from natural populations is
due to individual size. In morphometrics, size
must be considered as a contingent source of
variability since it is associated with individual
growth and the aim of such studies is usually
focused on shape that must be size-free.

In the general case of allometric growth (one
type of ontogenetic variation), there is a variation
in shape related to variation in size. The in#uence
of size due to allometric growth may be elimi-
nated by the appropriate statistical procedures
(Gould, 1966). There are several normalization
methods whose aim is to eliminate the size e!ect
in the context of allometric growth. However,
some of the most popular methods have critical
shortcomings that lead to misinterpretation of
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the results. Among those the ratio of every
measurement to the one chosen as the indepen-
dent variable e!ectively reduces all the indi-
viduals to the same size but does not remove the
undesired size e!ect because they maintain their
size-dependent shape due to allometry. In other
words, it is only valid if growth is isometric (i.e.
shape does not change with size).

Traditionally, in the studies of multivariate al-
lometry it has generally been assumed that the
"rst component in the principal components
analysis (PCA) represents the size, because all
the characters are correlated positively with this
component (e.g. Jolicoeur & Mosimann, 1960;
Shea, 1985). However, it has been observed that
as much the size as the shape are incorporated
into this "rst component (Mosimann, 1970;
Sprent, 1972; Humphries et al., 1981). Several
methods have been used to correct for the size
factor, e.g. regression applied a PCA (&&shearing'')
(Humphries et al., 1981) and extraction of
( 2000 Academic Press
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the vector of isometric size and their eigenvalue
associated with a PCA (Somers, 1986), or to
eliminate the size by a ratio method (Mosimann
and James, 1979). The use of PCA to eliminate
the in#uence of size in an intra-speci"c analysis in
discriminating by shape (expressed by the second
principal component) appears to be inferior to
the prior elimination of this in#uence. The
method which eliminates the in#uence of the on-
togenetic size appears to be superior to the PCA
(Thorpe, 1976).

The aim of the present paper is to present
and describe a normalization technique to scale
data that exhibit an allometric growth. The
method is theoretically derived from the
equations of allometric growth. This normaliz-
ation procedure is, consequently, coherent with
allometry. It completely removes all the informa-
tion related to size, not only scaling all indi-
viduals to the same size, but also adjusting their
shape to that they would have in the new size. In
other words, this procedure is one proper way for
scaling in the case of allometry. This procedure
was presented empirically by Thorpe (1975, 1976)
and was recorded as one of the most e$cient
methods in the empirical evaluation done by
Reist (1985).

The Allometric Model

The general form relating any pair of magni-
tudes X and > of a body is described by the
equation

>"aXb , (1)

where a and b are parameters.
This equation is just a formal relationship be-

tween two morphometric variables. For example,
if X is the diameter and> the volume of a sphere,
the parameter values are a"2n/3 and b"3. In
general, the parameter a is called the coe$cient
of shape, because its value only depends on
the shape of the body, while b is the power ful"l-
ling the dimensional balance (in the previous
example, b"3 because the volume is the third
power of a length).

In the case of geometric bodies with no
structural variability, eqn (1), with constant
parameters, completely describes the relationship
between any pair of measurements taken on such
a body.

The changes of shape due to body transforma-
tions involved in growth can be represented as
changes in the parameter a. For example, the
transformation of a cube with diagonal"1 into
a sphere of diameter"1 could be represented by
a change of the parameter a from 1.732 ("31@3)
to 2.094 ("2n/3). Since the growth of an organ-
ism is not only an increment of its size but also
a change in shape, for convenience, it could be
assumed that the shape coe$cient a is propor-
tional to a size power, so that

a"aXc, (2)

where a and c are constants.
Substituting eqn (2) into eqn (1) the allometric

power equation stated by Huxley (1924, 1932) is
obtained

>"aXb, (3)

where both a and b are constants.
This new expression (3) is formally similar

to eqn (1). It consists of a re-parameterization of
eqn (1) suitable for allometry analyses. In com-
parison with eqn (1) here the parameters are (i)
constant and (ii) have a di!erent meaning: a is
a constant factor of the shape parameter a in eqn
(1) while the variability of this parameter has
been transferred to the exponent, modifying it
according to

b"b#c. (4)

In the particular case of isometric growth, as the
shape will not change with size, the shape para-
meter a in eqn (1) is constant, then a"a and
c"0; thus b"b, and, hence, eqns (1) and (3) are
exactly the same. In such a particular case, an
observer could not guess the size of an individual
from a picture without a scale. However, in the
general case of allometric growth where there
are changes of shape with size, the parameter
b would be di!erent from the value of b expected
in the dimensional balance. The shape of an indi-
vidual can be expressed as a particular combina-
tion of di!erent measurements taken over it. An
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observer could say something about the size of
a particular individual from a picture without
a scale, if he were accustomed to seeing how
shape changes with growth in that species. For
example, if we were to see a picture showing child
and adult silhouettes with the same height, we
could guess that there were di!erences in their
actual sizes because of our empirical knowledge
of the evolution of shape with size in human
growth.

It should be emphasized that the term allomet-
ric growth only refers to smooth and regular
changes of shape during growth. Processes like
metamorphosis, involving the appearance of new
structures or disappearance of old ones, do not "t
the general allometric model (3).

At this point it should also be noted that, in
morphometrics, any model other than eqn (3) is
usually wrong. In this respect, the linear model,
>"A#BX, found to be widely used, parti-
cularly in cases where X and > have the same
dimension (b"1), is wrong for at least two rea-
sons: (i) it cannot detect shape changes, the main
aim of morphometrics, and (ii) the independent
term A has no sense in morphometrics where at
X"0, > must be 0.

In a morphometric context, a population can
be de"ned as all the individuals that share the
same allometric relationships. This means that
the relative growth of a given pair of body magni-
tudes follows eqn (3) with the same parameter
b for all individuals. In other words, in any indi-
vidual, every given pair of body magnitudes is
related to a unique parameter b in the model (3).
Then the set of parameters b (one for every pair of
magnitudes) constitutes a characteristic of the
population.

On the other hand, we can recognize and
identify particular individuals in a population,
and we can do this along their life. In spite of
the fact that the shape of all individuals changes
with time according a "xed set of b's, each indi-
vidual keeps its particular shape allowing an ob-
server to identify it in its di!erent phases of
growth. Since b's have been assumed to have the
same constant values for all individuals, and
gather the body changes associated with size, the
particular shape of an individual must be con-
tained in the a's, the other parameter of eqn (3).
So every individual has its own set of a's
(constant along its life) determining its individual
shape.

Fitting Data

Within the frame of the previous assumptions,
the morphometric relationship between a pair
of body measures X and > taken on a parti-
cular individual i of a population can be ex-
pressed as

>"a
i
Xb, (5)

where the constant a
i
depends on the particular

individual while b is the same for all the indi-
viduals in the population. The shape factor a

i
(see

Appendix A), can be split into two factors as
follows:

a
i
"aeei, (6)

where a is the common shape factor, shared by all
individuals of the population and eei is the par-
ticular shape factor distinctive of the individual i.
The relationship between X and > may be re-
written as follows:

>"aXbeei, (7)

thus now both a and b are constants for all the
individuals while the shape particularity of indi-
vidual i has been moved to eei. Now assuming
that e

i
is normally distributed (see Appendix A),

regression technique may be applied to obtain
the parameters a and b. Note in addition that in
eqn (7), if X is set to any constant value, the
distribution of the corresponding >'s would be
log-normally distributed.

The particular shape factor is constant for
every individual and accounts for the persistent
features that make each individual not only dif-
ferent from others, but recognizable throughout
life (it is independent of the value of X). Equation
(7) may be interpreted as the particular curve for
individual i relating X and > magnitudes while
the estimated regression curve,

>"aXb, (8)



FIG. 1. Graphic illustration of the normalization proced-
ure. The central curve (solid in all points) represents a regres-
sion curve estimated from a set of data (in arbitrary units)
relating two magnitudes of a body. The lower and upper
curves represent the growth trajectories of two particular
individuals, one of which has a negative particular shape
factor (see text), with current value for X being 100, and the
other has a positive particular shape factor and its current
X value has reached 160. The dashed sections indicate the
trajectories assumed to be followed in the future by these
two individuals. The intersection with the vertical line shows
the values of > which would have both individuals on
X

0
"140.
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represents a theoretical mean curve of the set of
all individual curves. Since the particular shape
factor is a constant dependent on each individual,
all particular curves of all individuals belong to
the same family as the mean.

Once the parameters a and b are estimated (see
Appendix A), the value of the particular shape
factor for the individual i may be obtained
by rearranging eqn (7). Thus, from the pair of
measurement values (X

i
, >

i
) made on this indi-

vidual

eei"
>
i

aXb
i

. (9)

hence,

e
i
"ln C

>
i

aXb
i
D . (10)

In this interpretation, every individual curve is
represented by a single observation (X

i
, >

i
) point

lying upon the curve. In general, the available
observations cover di!erent values of X and it is
recommended that sampling should cover sys-
tematically the entire range of variation of X in
order to get good estimates of a and b. Figure 1
illustrates this interpretation.

Since the particular shape factor for the indi-
vidual i is a constant, the theoretical value of >,
called >*

i
, which this individual i would reach

when X"X
0

is, according to (9),

>*
i
"aXb

0
eei , (11)

and, substituting the particular shape factor in
eqn (11) by its expression (9), we obtain

>*
i
"aXb

0

>
i

aXb
i

, (12)

hence,

>*
i
">

i C
X

0
X

i
D
b

(13)

which is independent of a.
Equation (13) converts any particular observed

point (X , > ) into a theoretical point (X , >* ) in

i i 0 i
such a way that all observations taken at di!erent
values, X

i
, are normalized to a unique X

0
, main-

taining the particular shape factor for every
individual (see the example in Appendix B).
This procedure coincides with the correction
proposed by Thorpe (1975). According to this
author, the allometric character states have been
adjusted to the values they would assume if the
specimens were of mean body size.

The transformation of data proposed in eqn
(13) removes all the size e!ects due to allometric
growth. Otherwise, fundamental and permanent
structures remain masked by the high amount of
variance accumulated by such a contingent phe-
nomenon. The logarithm of the particular shape
factor, e

i
, computed in eqn (10) could also be used

instead as a size-independent representation of
a particular individual.

Discussion

In general, a morphometric data set will "t one
of the two following case problems:

1. it can be assumed to be likely that all indi-
viduals follow one single allometric pattern. This
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is the case in populations de"ned by geographical
location, or sexes when no sexual dimorphism
has been demonstrated, or

2. it is evident, or may be presumed, that dif-
ferent populations have di!erent allometric
parameters. This can happen between sexes in
a clear case of sexual dimorphism, or among
di!erent species.

In the "rst case, the parameters a and b are esti-
mated from all individuals, and "nding an appro-
priate X

0
falling in the range of observed X's, will

not pose a major problem (see Appendix B).
The second case is slightly more complicated

and it has been deeply analysed by Reist (1986).
If the regression parameters of the di!erent
groups are similar (the shapes are not very
di!erent) an appropriate X

0
could be found.

Nevertheless, two di!erent allometric curves, re-
lating X with two di!erent groups, may have no
common point for X'0, or even if this point
exists (and it could be a good candidate for X

0
), it

may fail in a third curve relating X to a third
group.

If it becomes impossible to "nd a reasonable
common value for X

0
or if the regression para-

meters of two or more groups were very di!erent,
it may imply that the comparison of such widely
di!erent organisms is meaningless.

Finally, it is considered that the method pre-
sented in this paper applies the concept following
the geometric approach from a theorem of
Mosimann (1970) generating a shape vector
independent of size, and it generates a space of
residuals instead of choosing an arbitrary vari-
able (independent character) to use in the regres-
sion. However, Bookstein et al. (1985, p. 27)
stated the following: &&That we should not remove
size from measured variables follows from a the-
orem of Mosimann (1970). In general, (2) resid-
uals are still statistically dependent upon all
measures of size except at most a single one not
computable a priori.'' Obviously, these size-ad-
justed variables can yield satisfactory results by
the above method and then it recommends
a multivariate analysis to "nd the biological ex-
planations in terms of the original size-free shape
variables. The bivariate regression method is
straightforward and useful, although there is
a relatively main limitation that it assumes
growth can be adequately de"ned by a single
independent variable (Thorpe, 1983).
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APPENDIX A

Stochastic for Fitting

Equation (3) is deterministic. When it is used
to "t measurements taken over individuals of a
population, the equation can no longer describe
the actual relationship between the two variables
because there are both natural variability among
individuals and measurement errors. To take into
account this new element implies a transforma-
tion of eqn (3) into a stochastic model to "t the
data. Typically a random variable, named error
term, should be included in the equation, which
may be completed in several ways.

According to Ratkowsky (1990, p. 11), the er-
ror term can be additive or multiplicative (other
possibilities will not be considered here), and its
probability distribution may follow di!erent
laws. However, as few of the possible distribution
laws are actually useful, only the normal-Gaus-
sian probability distribution function will be used
in this paper. Other well-known distributions
(e.g. Poisson or uniform), though used in some
models, will not be discussed here. The normal-
Gaussian distribution is used directly when
errors are additive, while an exponential form of
the normal distribution, known as log-normal, is
used when the error term is multiplicative. The
following equations represent both kinds of error
considering the model (3) with an error for>, and
no error for X:

The additive

>"aXb#e , (A.1)

and the multiplicative

>"aXbee, (A.2)

where e is a random variable, normally distrib-
uted with mean 0 and variance p2. Hence, ee is
log-normally distributed.

Equation (A.1) has two shortcomings in order
to be adopted in morphometrics: it can produce
negative values for > which are not realistic, and
also assumes the error distribution to be indepen-
dent of X, while residual analysis shows
frequently that the variance of > is larger as X
increases. Equation (A.2) does not have the above
shortcomings and must preferably be adopted. In
addition, as shown later, eqn (A.2) is more easily
"tted than (A.1). If we had used eqn (A.1) instead,
parameters would have to be estimated by non-
linear regression, which would complicate the
computations.

Equation (A.2) may be rewritten in a widely
used statistical notation introducing

>K "aXb (A.3)

which is usually called the expected value of >,
according to the deterministic allometric model
(3), while the value of > obtained in stochastic
equation (A.2) is known as the observed value.
Thus, in terms of expected and observed values,
equation (A.2) becomes

>">K ee . (A.4)

Note that in eqn (A.2), error only a!ects the
variable >. This kind of error in stochastic
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models is sometimes referred to as process error
(Hilborn & Walters, 1992, p. 225), which means
that the error term only re#ects the natural varia-
bility among individuals, and measurements are
error-free (no observation error a!ecting X).
Francis & Shotton (1997) consider that the word
&&error'' applied to the process variation is mis-
leading. The term uncertainty (process uncertain-
ty) might be more convenient since it expresses in
a more accurate way that it derives from natural
variation rather than error. The types of relation-
ships in which the error term only a!ects one
variable are called predictive (Ricker, 1973) since
they are used to estimate > when X is known (or
X when > is known). In the case that both
variables are a!ected by an error term, other
stochastic relationships, known as functional or
reduced major axis (Teissier, 1948; Gould, 1966;
Ricker, 1973), would be established. However, the
ordinary major axis (also called the orthogonal
regression line) of logarithmically transformed
data, which assumes that both variates are a!ec-
ted by random #uctuations (Jolicoeur, 1975;
Jolicoeur & Ducharme, 1992) also might be con-
sidered.

According to the aim of morphometrics, we
can assume that the source of variability comes
only from the morphological di!erences among
individuals the measurements being error-free.
Thus, a process error is assumed in the stochastic
model and measurements are considered as
exact. In most morphometric studies, there
are many multivariate observations available to
estimate the two parameters in eqn (A.2) for every
pair of variables. Hence, regression techniques
must be applied for "tting. According to the
regression theory (Draper & Smith, 1981, Chap.
1; Ratkowsky, 1990, Chap. 1), the proper way to
estimate parameters is to transform the equation
in order to make the errors normal and additive
(homoscedasticity). Consequently, the para-
meters in eqn (A.2) have to be estimated by linear
regression on logarithmically transformed X and
>. The method suggested for testing the accuracy
of the "tting procedure is a posteriori residual
analysis.

After logarithmic transformation, eqn (A.2)
becomes

ln >"ln a#b lnX#e . (A.5)
Equation (A.5) is actually linear with additive
error. Hence, the parameters can be estimated by
standard linear regression procedures.

In summary, the following default assumptions
on data and models are made: (i) the allometric
growth equation (3) is used to compute estimates
of>; (ii) the error term only a!ects the dependent
variable >, keeping the independent variable
X free of error, i.e. it is a process error; and
(iii) the error term is assumed to be multiplicative,
with a log-normal probability distribution. Then,
eqn (A.2) will properly describe the relationship
between X and observed >.

APPENDIX B

Example of Application

Packard & Boardman (1988) presented two
sets of bivariate data from experiments carried
out with eggs of two species of turtles (Chelydra
serpentina and Chrysemis picta), each subjected to
two di!erent treatments. With the "rst species
they found a signi"cant di!erence among treat-
ments while within the second one there was not.
The goal of that paper was to show how mislead-
ing ratios could be, so they compared ANCOVA
results with those using ANOVA on data scaled
by ratios. Their conclusion was that ANCOVA
gave the correct interpretation while ANOVA on
ratios led to an erroneous conclusion in both
cases (i.e. showing that the di!erences among
treatments were signi"cant in the second case
while not in the "rst). These authors pointed out
that the use of ratios to scale data that vary
allometrically with body size is misleading.
Although the reasonable "eld for the normaliz-
ation method presented here is in multivariate
analyses we will take advantage of the above
bivariate example to illustrate, with a small num-
ber of data and a simple analysis, that this
method works.

The data and results are presented in Tables
B1}B3. Tables B1}B2 show, for each experiment,
the raw data (X and >) and the transformations:
ratios (>/X), normalized according to our
method [>*, eqn (13)] and particular shape factor
[exp(e

i
), eqn (9)]. The parameters a and b

required for the normalization have been ob-
tained by regression using eqn (A.5). Table B3



TABLE B1
Raw data presented by Packard & Boardman (1988) for Chelydra serpentina
and transformed values. ¹he regression parameters for >"aXb are

a"0.02825, b"1.611 and the mean X is 11.49; X
0

is set to 11.5

Egg mass (X) Dry mass (>) Ratio (>/X) >* (for X
0
"11.5) exp(e

i
)

Group 1 (N"8)
10.223 1.184 0.1158 1.4313 0.9903
11.184 1.371 0.1226 1.4340 0.9922
12.251 1.676 0.1368 1.5136 1.0473
11.922 1.662 0.1394 1.5682 1.0851
11.485 1.509 0.1314 1.5122 1.0463
11.625 1.539 0.1324 1.5124 1.0465
11.303 1.481 0.1310 1.5228 1.0537
11.662 1.417 0.1215 1.3854 0.9586

Group 2 (N"8)
11.415 1.364 0.1195 1.3804 0.9551
11.684 1.508 0.1291 1.4699 1.0171
11.668 1.535 0.1316 1.4995 1.0376
11.322 1.387 0.1225 1.4223 0.9841
12.553 1.522 0.1212 1.3216 0.9145
12.213 1.502 0.1230 1.3633 0.9433
10.814 1.256 0.1161 1.3868 0.9596
10.493 1.230 0.1172 1.4257 0.9865

TABLE B2
Raw data presented by Packard & Boardman (1988) for Chrysemis picta and
transformed values. ¹he regression parameters for >"aXb are a"0.705,

b"1.092 and the mean X is 3.38, X
0

is set to 3.4

Egg mass (X) Dry mass (>) Ratio (>/X) >* (for X
0
"3.4) exp(e

i
)

Group 1 (N"5)
3.050 2.349 0.7702 2.6447 0.9865
2.783 2.129 0.7650 2.6491 0.9881
2.492 1.936 0.7769 2.7176 1.0136
3.543 2.813 0.7940 2.6893 1.0031
2.495 1.908 0.7647 2.6748 0.9977

Group 2 (N"5)
4.088 3.307 0.8090 2.7044 1.0087
4.264 3.405 0.7985 2.6594 0.9919
3.200 2.528 0.7900 2.7009 1.0074
4.038 3.217 0.7967 2.6664 0.9946
3.855 3.102 0.8047 2.7046 1.0088

TABLE B3
Summary of comparative results of the statistical
analyses in terms of F (Fisher) and its associated
probability (P&B; Packard & Boardman, 1988)

Chelydra
serpentina

Chrysemis
picta

F p F p

P&B ANCOVA 6.10 0.029 1.33 0.29
P&B ANOVA on ratios 3.38 0.09 16.35 0.004
ANOVA on normalized

data (present method) 6.59 0.022 0.52 0.48

92 J. LLEONART E¹ A¸.
shows the compared results of ANCOVA,
ANOVA on ratios and ANOVA on the nor-
malized data.

According to Table B3, ANCOVA and
ANOVA on normalized data reveal that the two
groups of Chelydra serpentina present signi"cant
di!erences (p(0.05), while ANOVA on ratios
does not detect them. The oposite situation hap-
pens in the case of Chrysemis picta.These results
show that the normalization procedure presented
in this paper allows to recognize the patterns,
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also revealed by the ANCOVA, but misinter-
preted by the ratio transformation.

As it has been said before, the method
proposed here is more useful when applied
to multivariate analysis, and has been success-
fully used in such analyses by Lombarte
& Lleonart (1993) in "sh (hake) otoliths, Senar et
al. (1994) in bird (siskins) wings and Iban8 ez-
Aguirre & Lleonart (1996) in "sh (grey mullets)
morphometry.
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