
Nearly every plant or animal species includes many par‑
tially isolated populations. As a result of genetic drift or 
divergent natural selection, such populations become 
genetically differentiated over time. For example, recent 
analyses based on more than 370 short tandem repeat 
loci1 (microsatellites) and 600,000 SNPs2 suggest that 
only 5–10% of human genetic diversity is accounted for 
by genetic differences among populations from major 
geographical regions. These results indicate that there 
are far more similarities among geographically distinct 
human populations than differences. But what does it 
mean to say that 5–10% of diversity is accounted for by 
differences among populations, and how is this figure 
derived? The short answer is that the estimate of FST 
among human populations sampled from these regions 
is 0.05 for the microsatellite data and 0.10 for the SNP 
data. However, this answer helps only if one understands 
what FST is, how it is estimated from data and what it 
means to get two different estimates for the same set of 
populations when different genetic markers are used.

Working independently in the 1940s and 1950s, 
Sewall Wright3 and Gustave Malécot4 introduced 
F‑statistics as a tool for describing the partitioning of 
genetic diversity within and among populations. In 
a paper published in 1931 (Ref. 5), Wright had already 
provided a comprehensive account of the processes that 
cause genetic differentiation among populations. He 
showed that the amount of genetic differentiation among 

populations has a predictable relationship to the rates 
of important evolutionary processes (migration, muta‑
tion and drift). For example, large populations among 
which there is much migration tend to show little dif‑
ferentiation, whereas small populations among which 
there is little migration tend to be highly differentiated. 
FST is a convenient measure of this differentiation, and 
as a result FST and related statistics are among the most 
widely used descriptive statistics in population and  
evolutionary genetics.

But FST is more than a descriptive statistic and a meas‑
ure of genetic differentiation. FST is directly related to the 
variance in allele frequency among populations and, con‑
versely, to the degree of resemblance among individuals 
within populations. If FST is small, it means that the allele 
frequencies within each population are similar; if it is 
large, it means that the allele frequencies are different. If 
natural selection favours one allele over others at a partic‑
ular locus in some populations, the FST at that locus will be 
larger than at loci in which among‑population differences 
are purely a result of genetic drift. Genome scans that 
compare single‑locus estimates of FST with the genome‑
wide background might therefore identify regions of 
the genome that have been subjected to diversifying  
selection6–8. Alternatively, if the demographic history of 
populations affects the genetic variation on sex chro‑
mosomes in a different way from the genetic varia‑
tion on autosomes, the estimates of FST derived from  
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Genetic drift
The random fluctuations in 
allele frequencies over time 
that are due to chance alone.

Short tandem repeat loci
Loci consisting of short 
sequences (2–6 nucleotides) 
that are repeated multiple 
times. Alleles at short tandem 
repeat loci differ from one 
another in their number of 
repeats.

Variance
A measure of the amount of 
variation around a mean value.
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Abstract | Wright’s F‑statistics, and especially F
ST

, provide important insights into the 
evolutionary processes that influence the structure of genetic variation within and among 
populations, and they are among the most widely used descriptive statistics in population 
and evolutionary genetics. Estimates of F

ST
 can identify regions of the genome that have 

been the target of selection, and comparisons of F
ST

 from different parts of the genome can 
provide insights into the demographic history of populations. For these reasons and others, 
F

ST
 has a central role in population and evolutionary genetics and has wide applications in 

fields that range from disease association mapping to forensic science. This Review clarifies 
how F

ST
 is defined, how it should be estimated, how it is related to similar statistics and how 

estimates of F
ST

 should be interpreted.
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Diversifying selection
Selection in which different 
alleles are favoured in  
different populations. It is  
often a consequence of local 
adaptation (in which genotypes 
from different populations have 
higher fitness in their home 
environments owing to 
historical natural selection).

Hardy–Weinberg 
proportions
When the frequency of each 
diploid genotype at a locus 
equals that expected from the 
random union of alleles. That 
is, the genotypes AA, Aa and 
aa will be at frequencies p2, 
2pq and q2, respectively.

Heterozygote advantage
A pattern of natural selection 
in which heterozygotes are 
more likely to survive than 
homozygotes.

sex chromosome markers might be different from those 
derived from autosomal markers9. 

estimates of FST are also important in association 
mapping of human disease genes and in forensic science. 
The same evolutionary processes that increase differen‑
tiation among populations also increase the similarity 
among individuals within populations. Therefore, FST 
must be considered when allele frequencies are com‑
pared between cases and controls to ensure that the 
differences between them are greater than expected by 
chance. Similarly, the probability of a match between a 
suspect and a crime scene sample is specific to the set of 
people who might reasonably be expected to be sources 
of the sample. However, defining this set is difficult, so 
a ‘θ correction’ is applied to population frequencies to 
accommodate variation among subpopulations. The θ 
correction depends on the value of FST.

In this review, we discuss how FST is defined, describe 
approaches for estimating it from data and illustrate sev‑
eral ways in which analysis of FST can provide insights 
into the genetic structure and evolutionary dynamics 
of populations. In addition, we discuss four statistics 
that are related to FST (GST, RST, ΦST and QST), clarify the 
differences among them and recommend when each  
should be used.

These additional statistics partition genetic diver‑
sity into within‑ and among‑population components. 
of the four, GST is most closely related to FST, and it has 
been widely used as a measure of genetic differentiation 
among populations. However, as we describe below, 
GST is an appropriate measure of genetic differentiation 
only when the contribution of genetic drift to among‑
population differences is not of interest. As a result, the 
contexts in which it is useful are limited. By contrast, 
RST (for microsatellite data) and ΦST (for molecular 
sequence data) are useful in a wide range of contexts in 
which it is important to account for the mutational ‘dis‑
tances’ among alleles, and QST is useful in the analysis of  
continuously varying traits. 

definitions
Wright introduced FST as one of three interrelated 
parameters to describe the genetic structure of diploid 
populations3. These parameters are: FIT, the correlation 
between gametes within an individual relative to the 
entire population; FIS, the correlation between gametes 
within an individual relative to the subpopulation to 
which that individual belongs; and FST, the correlation 
between gametes chosen randomly from within the 
same subpopulation relative to the entire population. 
We describe here how these parameters are defined in 
terms of the departure of genotype frequencies from  
Hardy–Weinberg proportions.

Deriving measures of genetic diversity. As an example 
of how to calculate genetic diversity, consider two pop‑
ulations that are segregating for two alleles at a single 
locus. The frequency of allele A1 in the first population  
is labelled as p1 and its frequency in the second population is  
labelled as p2. The frequency of genotype A1A1 in the first 
population is labelled as x11,1, the frequency of genotype 

A1A2 in the first population is labelled as x12,1, and so on. 
The genotype frequencies in the two populations are 
given by the following set of equations:
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In this context, ƒ1 and ƒ2 are often referred to as the 
within‑population inbreeding coefficients, but this term 
can be misleading. In practice, ƒ is a measure of the fre‑
quency of heterozygotes compared with that expected 
when genotypes are in Hardy–Weinberg proportions. 
Inbreeding leads to a deficiency of heterozygotes rela‑
tive to Hardy–Weinberg expectations, so when there 
is inbreeding in both populations, ƒ1 and ƒ2 will have 
positive values. But if individuals avoid inbreeding or 
if there is heterozygote advantage, then heterozygotes 
will be more common than expected under Hardy–
Weinberg expectations, and ƒ1 and ƒ2 will be negative. 
In short, ƒ1 and ƒ2 are measures of how different the 
genotype proportions within populations are from 
Hardy–Weinberg expectations, and positive values of ƒ 
indicate a deficiency of heterozygotes, whereas negative 
values indicate an excess.

Now consider the genotype frequencies in a combined 
sample that consists of a proportion c of individuals from 
the first population and a proportion 1 – c of individuals 
from the second population. Similar to the way in which 
the genotype frequencies in each population differ from 
Hardy–Weinberg expectations based on the allele fre‑
quency in each population, genotype frequencies in the 
combined sample differ from Hardy–Weinberg expec‑
tations based on the average allele frequency. The allele 
frequencies are given by:

x11 = π 2 + Fπ (1−π)
x12 = 2π (1−π )(1− F)
x22 = (1 −π )2 + Fπ (1−π) (2)

in which π = cp1 + (1 – c)p2 is the average allele frequency 
for A1 in the combined sample and F is the total inbreeding  
coefficient10. F can be expressed as:

(1− F ) = (1−ƒ)(1−θ) (3)

in which ƒ = cƒ1 + (1 – c)ƒ2 is the average within‑population  
departure from Hardy–Weinberg expectations and θ is a 
measure of allele frequency differentiation among popu‑
lations (see BOX 1 for a summary of the mathematical  
notation used in this review). We can define θ as:

θ = π2

π (1−π )
σ

 (4)

in which π2σ  is the variance in allele frequency among 
populations. π(1 – π) is the variance in the allelic state for 
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an allele chosen randomly from the entire population, 
so it can be regarded as a measure of genetic diversity 
in the entire population. θ can therefore be interpreted 
as the proportion of genetic diversity that is due to the  
differences in allele frequency among populations.

Wright first developed these ideas in the context of 
a model of discrete populations, in which each popula‑
tion is the same size and receives immigrants from all 
other populations at the same rate5. However, the same 
statistical argument can be applied to any partitioning 

of genetic diversity in which the populations differ in 
allele frequency, whether or not those populations are 
discrete11. Therefore, when we use θ as a purely descrip‑
tive statistic that describes the partitioning of genetic 
diversity among ‘populations’, we do not need to make 
assumptions about whether the ‘populations’ we sam‑
ple are discrete or about the evolutionary processes that 
might have led to differences among them. Nonetheless, 
other methods of analysis could be more informative in 
continuously distributed populations12–14.

Linking ƒ, θ and F to Wright’s F‑statistics. using a dif‑
ferent approach, Cockerham10,15 showed that ƒ, θ and 
F can also represent intraclass correlation coefficients. 
He showed that ƒ is the correlation between alleles 
within individuals relative to the population to which 
they belong, θ is the correlation between alleles within 
populations relative to the combined population and F 
is the correlation between alleles within individuals rela‑
tive to the combined population. These are the defini‑
tions that Wright gave for FIS, FST and FIT, respectively. 
In short, ƒ and FIS can be thought of either as the aver‑
age within‑population departure from Hardy–Weinberg 
expectations or as the correlation between alleles within 
individuals relative to the population to which they 
belong. θ and FST can be thought of either as the propor‑
tion of genetic diversity due to allele frequency differ‑
ences among populations or as the correlations between 
alleles within populations relative to the entire popula‑
tion. F and FIT can be thought of either as the depar‑
ture of genotype frequencies in the combined sample 
from Hardy–Weinberg expectations or as the correla‑
tion between alleles within individuals relative to the 
combined sample.

In Wright’s notation, subscripts refer to a compari‑
son between levels in a hierarchy: IS refers to ‘individu‑
als within subpopulations’, ST to ‘subpopulations within 
the total population’ and IT to ‘individuals within the 
total population’16. The hierarchy in equation 1 can 
be extended indefinitely to accommodate such struc‑
tures. For example, Wright16 describes variation in the 
frequency of the Standard chromosome in Drosophila 
pseudoobscura in the western united States at the level of 
demes (D; local populations), regions (r; groups of sev‑
eral demes), subdivisions (S; groups of several regions) 
and the total range (T). The corresponding F‑statistics 
are related in the same multiplicative way as ƒ, θ and F:

(1 – FDT) = (1 – FDR)(1 – FRS)(1 – FST) (5)

In this scheme, FDr measures the differentiation 
among demes within a region, FrS measures the dif‑
ferentiation among regions within subdivisions and FST 
measures the differentiation among subdivisions within 
the total range.

If we return to the examples of genetic differentia‑
tion among human populations that were mentioned at 
the beginning of this review, we can now see that an 
estimate for FST or θ of 0.05 (from microsatellites) and 
0.10 (from SNPs) suggests that only 5–10% of human 
genetic diversity is a result of genetic differentiation 

Box 1 | mathematical notation

In this box, we provide definitions for the mathematical symbols used throughout 
the Review.

Parameter Definition

Among-population allele frequency distribution

π Mean allele frequency

Variance in allele frequency

Wright’s F-statistics and Cockerham’s θ-statistics

F
IS

Correlation of alleles within an individual relative to the subpopulation 
in which it occurs; equivalently, the average departure of genotype 
frequencies from Hardy–Weinberg expectations within populations

F
ST

Correlation of randomly chosen alleles within the same subpopulation 
relative to the entire population; equivalently, the proportion of genetic 
diversity due to allele frequency differences among populations

F
IT

Correlation of alleles within an individual relative to the entire 
population; equivalently, the departure of genotype frequencies from 
Hardy–Weinberg expectations relative to the entire population

ƒ Co‑ancestry for alleles within an individual relative to the 
subpopulation in which it occurs; equivalent to F

IS

θ Co‑ancestry for randomly chosen alleles within the same 
subpopulation relative to the entire population; equivalent to F

ST

F Co‑ancestry for alleles within an individual relative to the entire 
population; equivalent to F

IT

Φ-statistics and R
ST

*

Φ
IS

Excess similarity of alleles within an individual relative to the 
subpopulation in which it occurs; analogous to F

IS

Φ
ST

Excess similarity among randomly chosen alleles within the same 
subpopulation relative to the entire population; equivalently, the 
proportion of genetic diversity (measured as the expected squared 
evolutionary distance between alleles) due to differences among 
populations; analogous to F

ST
 

Φ
IT

Excess similarity of alleles within an individual relative to the entire 
population; analogous to F

IT

R
ST

Excess similarity among randomly chosen alleles within the same 
subpopulation relative to the entire population; equivalently, the 
proportion of genetic diversity (measured as the expected squared 
difference in repeat numbers between alleles) due to differences 
among populations; analogous to F

ST

Measuring genetic differentiation among populations in quantitative traits

Additive genetic variance within populations

Additive genetic variance among populations

Q
ST

Proportion of additive genetic variation in the entire population due to 
differences among populations; analogous to F

ST

*Φ
ST

 from analysis of molecular variance (AMOVA) is used for haplotype data (for example, 
nucleotide sequence data or mapped restriction site data) and requires a measure of 
evolutionary distance among all pairs of haploytpes. R

ST
 is used for microsatellite data and 

requires that alleles are labelled according to the number of repeat units that they contain.

πσ

σ
σ
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among human populations. What might be surprising 
is that the two estimates are derived from the same set of 
populations — this indicates that the amount of genetic 
differentiation among human populations is greater at 
SNP loci than at microsatellites.

estimation
Statistical sampling. When Wright and Malécot intro‑
duced F‑statistics, they did not distinguish between 
the parameters defined in the preceding section and 

the estimates of those parameters that we make from 
data. Not making this distinction is similar to confus‑
ing the mean height of the human population with an 
estimate of the mean height calculated from a sample 
of the population. estimates of height must account for 
the variation associated with taking a finite sample from 
a population. New samples from the same population 
will have different characteristics. We refer to this vari‑
ation as statistical sampling17 (BOX 2). In the context of 
F‑statistics, statistical sampling refers to the variation 

Box 2 | Genetic sampling versus statistical sampling

Genetic drift leads to differences among populations that 
are described by the distribution of allele frequencies 
among those populations. The variance of this distribution is 
directly related to F

ST
 (see equation 2), but in a typical study 

only a subset of populations is sampled. Therefore, in 
addition to accounting for the variation associated with 
sampling from populations, estimates of F‑statistics must 
account for the variation associated with sampling sets of 
populations from the allele frequency distribution.

Genetic (or evolutionary) sampling
Part a of the figure shows the distribution of allele 
frequencies among populations corresponding to a mean 
allele frequency of π = 0.5 and F

ST
 = θ = 0.1. If two sets of 

populations (represented by dark and light circles) are 
sampled from this distribution, the allele frequencies in the 
first set of populations (light circles) will differ from those  
in the second set (dark circles). Part b provides an example in 
which two different sets of five population frequencies are 
drawn randomly from the distribution of allele frequencies 
shown in part a.

The variation in allele frequencies illustrated in part a 
reflects the effect of genetic or evolutionary sampling. The 
differences between the sets of samples in part b reflect  
the effect of sampling particular populations from the 
distribution of allele frequencies in part a and are analogous 
to the results that would be expected in an empirical study 
if it were repeated on a different set of populations.

statistical sampling
Part c illustrates the more familiar idea of statistical 
sampling. It shows the distribution of sample allele 
frequencies obtained in 1,000 samples of 20 individuals  
from the population with the largest allele frequency in the 
population sample on the left in part b. Statistical sampling 
refers to the variation in sample composition that is 
expected when alleles are repeatedly sampled from a population with a particular allele frequency.

Investigators can control the amount of variation associated with statistical sampling by increasing the number of 
individuals sampled within populations: the larger the number of individuals sampled, the less that the sample allele 
frequencies will differ from the underlying population frequencies. By contrast, investigators cannot control the amount 
of variation associated with genetic sampling: the variation associated with genetic sampling is an intrinsic property of 
the underlying stochastic evolutionary process that contributes to the differentiation among populations.

the relationship between Fst and Gst
Nei introduced the statistic G

ST
 as a measure of genetic differentiation among populations33. It is defined in terms of the 

population frequencies in part b, not the allele frequency distribution in part a. By contrast, estimates of F
ST

 account for 
genetic sampling and they are intended to reflect the properties of the allele frequency distribution in part a. As a result, 
F

ST
 and G

ST
 measure different properties. Therefore, G

ST
 will be an appropriate measure only when interest focuses on 

characteristics of the particular samples illustrated in part b. In a typical population study, θ will be a more appropriate 
measure of differentiation.

It might seem that similar arguments should apply to exact tests of population differentiation102 because they also use 
permutations of sample configurations to determine whether populations are differentiated from one another. However, 
the permutation test is equivalent to determining whether the allele frequency distribution in part a has a variance 
greater than zero, so exact tests implicitly consider both statistical and genetic sampling effects.
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Likelihood
A mathematical function that 
describes the relationship 
between the unknown 
parameters of a statistical 
distribution — for example, the 
mean and variance of the allele 
frequency distribution among 
populations or the allele 
frequency in a particular 
population — and the data. It 
is directly proportional to the 
probability of the data given 
the unknown parameters.

Prior distribution
A statistical distribution used in 
Bayesian analysis to describe 
the probability that parameters 
take on a particular value 
before examining any data.  
It expresses the level of 
uncertainty about those 
parameters before the data 
have been analysed.

Posterior distribution
A statistical distribution used in 
Bayesian analysis to describe 
the probability that parameters 
take a particular value after the 
data have been analysed.  
It reflects both the likelihood  
of the data given particular 
parameters and the prior 
probability that parameters 
take particular values.

Markov chain Monte Carlo 
methods
Methods that implement a 
computational technique  
that is widely used for 
approximating complex 
integrals and other functions. 
In this context, these methods 
are used to approximate the 
posterior distribution of a 
Bayesian model. 

Multinomial distribution
A statistical distribution that 
describes the probability of 
obtaining a sample with a 
specified number of objects in 
each of several categories. The 
probability is determined by 
the total sample size and the 
probability of drawing an 
object from each category.  
The binomial distribution is a 
special case of the multinomial 
distribution in which there are 
two categories.

associated with collecting genetic samples from a fixed 
set of populations that have fixed but unknown genotype 
frequencies. The magnitude of variation associated with 
statistical sampling can be reduced by increasing the size 
of within‑population samples.

Genetic sampling. There is an important difference 
between estimates made by F‑statistics and estimates of 
height. In addition to accounting for statistical sampling, 
F‑statistics must account for differences among the sets 
of populations that have been sampled. These differ‑
ences might arise either because the populations that 
are sampled are only a subset of all of the populations 
that could be sampled (statistical sampling of popula‑
tions rather than statistical sampling of genotypes within 
populations) or because the populations that are sampled 
represent only one possible outcome of an underlying 
stochastic evolutionary process. even if we could take 
the set of sampled populations back to a previous point 
in time and re‑run the evolutionary process under all of 
the same conditions (the same population sizes, muta‑
tion rates, migration rates and selection coefficients), 
the genotype frequencies in the new set of populations 
would differ from those in the populations that were 
actually sampled18. This genetic sampling17 is an una‑
voidable consequence of genetic drift. The magnitude 
of variation associated with genetic sampling cannot be 
reduced by increasing either the number of individuals 
sampled within populations or the number of popula‑
tions sampled. Indeed, the characteristics of genetic  
sampling are shown by estimates of F‑statistics.

In simple cases, it might make sense to estimate statis‑
tical parameters using simple functions of the data, such  
as the sample mean. In more complicated cases,  
such as those presented by F‑statistics, it is useful to have 
well‑defined approaches for constructing estimates. 
Statisticians have developed several different approaches 
for estimating parameters from data19. Three widely used 
approaches are the method of moments, the method of 
maximum likelihood and Bayesian methods.

Approaches to estimating FST: method‑of‑moments  
estimates. The method of moments produces an esti‑
mate by finding an algebraic expression that makes the 
expected value of certain sample statistics equal to simple 
functions of the parameters that are being estimated (as 
explained in more detail below)19. Method‑of‑moments 
estimates are designed to have low bias in the sense that 
if samples are taken repeatedly from the same population, 
the average of the corresponding sample estimates will be 
close to the unknown population parameter. These esti‑
mates have the additional advantages that they are easy to 
calculate and do not require any assumptions about the 
shape of the distribution from which the sample is drawn, 
other than that it has a mean and variance.

For F‑statistics, method‑of‑moments estimates17,20,21 
are based on an analysis of variance (ANovA) of allele 
frequencies. ANovA is a statistical method that tests 
whether the means of two or more groups are equal and 
can therefore be used to assess the degree of differentia‑
tion between populations. Briefly, if the variance among 

populations is the same as the variance within popula‑
tions, there is no population substructure. ANovA calcu‑
lations are framed in terms of mean squares. Therefore, in 
practice, one calculates the expected mean square among 
populations (that is, the variance of sample allele frequen‑
cies around the mean allele frequency over all popula‑
tions) and the expected mean square within populations 
(that is, the heterozygosity within populations when 
genotypes are in Hardy–Weinberg proportions) aver‑
aged over all possible samples (statistical sampling) from 
all possible populations with the same evolutionary his‑
tory (genetic sampling). These expected values are then 
equated to the observed mean squares that are calculated 
from a sample, and the resulting set of equations is solved 
for the corresponding variance components. Following 
the work of Cockerham10,22, F‑statistics are defined in 
terms of these variance components (BOX 3).

Approaches to estimating FST: maximum‑likelihood and 
Bayesian estimates. In contrast to method‑of‑moments 
estimates, likelihood and Bayesian estimates are difficult 
to calculate and require the specification of the prob‑
ability distribution from which the sample was drawn. 
once this probability distribution is specified, we can 
calculate a quantity called the likelihood, which is pro‑
portional to the probability of our observed data given 
those parameters. A maximum‑likelihood estimate for 
the parameters is obtained by finding the values of the 
unknown parameters that maximize that likelihood19. In 
most cases, maximum‑likelihood estimates are biased. 
Nonetheless, they typically have a smaller variance and 
deviate less from the unknown population parameter 
than the corresponding method‑of‑moments estimates19. 
For these and other reasons, the method of maximum 
likelihood is the most widely used technique for deriving 
statistical estimators23,24.

Bayesian estimates share many of the advantages asso‑
ciated with maximum‑likelihood estimates because they 
use the same likelihood to relate the data to unknown 
parameters. However, they differ from maximum‑ 
likelihood estimates because the likelihood is modified 
by placing prior distributions on unknown parameters, and 
estimates are based on the posterior distribution, which is 
proportional to the product of the likelihood and the 
prior distributions. Both maximum‑likelihood and 
Bayesian methods suffer the disadvantage that simple 
algebraic expressions for the estimates are rarely avail‑
able. Instead, the estimates are obtained through compu‑
tational methods. Because the Markov chain Monte Carlo 
methods (MCMC methods) used for analysis of Bayesian 
models do not require a unique point of maximum likeli‑
hood to be identified, Bayesian estimates can be obtained 
even in complex models with thousands or tens of thou‑
sands of parameters, for which numerical maximization 
of the likelihood would be difficult or impossible26.

For F‑statistics, the likelihood approach27,28 specifies 
a probability distribution that describes the variation in 
allele frequencies among populations and a multinomial  
distribution that describes genotype samples within 
populations. θ is related to the variance of the probabil‑
ity distribution that describes the among‑population 
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distribution of allele frequencies, and the genotype fre‑
quencies are determined by the allele frequencies in each 
population and ƒ. estimates are obtained by maximizing 
the likelihood function with respect to θ, ƒ and the allele 
frequencies. The Bayesian approach uses the same likeli‑
hood function, and after placing appropriate prior distri‑
butions on ƒ, θ and allele frequencies, MCMC methods 
are used to sample from the posterior distributions  
of ƒ and θ.

Comparing the methods. With more than 5,000 cita‑
tions, the moments method described by Weir and 
Cockerham20 has been widely used, partly because of its 
robustness and partly because it is simple to implement. 
The maximum‑likelihood methods also give simple 
equations when the distribution of allele frequencies 
among populations is assumed to be normal27, but only 
if the sample sizes are equal29. Bayesian methods allow 
probability statements to be made about F‑statistics, 
and extensions of these methods allow the relation‑
ship between F‑statistics and demographic or envi‑
ronmental covariates to be explored in the context of a 
single model30. However, implementations of Bayesian  
methods may be computationally demanding.

A simple data set is used in BOX 3 to illustrate the 
slightly different estimates obtained from each approach. 
estimates of FST using moments and Bayesian methods 
have not been extensively compared, but our experi‑
ence suggests that the differences in estimates are small 
when the average number of individuals per population 
is moderate to large (>20), when the number of popu‑
lations is moderate to large (>10–15) and when most 
populations are polymorphic. When differences arise, 
they reflect differences in the treatment of allele fre‑
quency estimates when alleles are rare or sample sizes 
are small. The Bayesian approach ‘smooths’ popula‑
tion allele frequencies towards the mean24 and does so 
more aggressively when alleles are rare or sample sizes 
are small. The moments approach treats the sample fre‑
quencies as fixed quantities without such smoothing. 
The simulation results in Ref. 31 are consistent with this 
interpretation, although they compare Bayesian esti‑
mates with estimates of GST

32, which does not account for  
genetic sampling.

Related statistics 
Population geneticists have proposed several statistical 
measures that are related to FST. Here, we describe four 
of them: GST, RST, ΦST and QST. Nei33 introduced GST as a 
measure of population differentiation. We discuss its rela‑
tionship to FST in BOX 2. Haplotype and microsatellite data 
contain information not only about the frequency with 
which particular alleles occur but also on the evolutionary 
distance between them. Statistics such as ΦST (for haplo‑
type data) and RST (for microsatellite data) are intended 
to take advantage of this additional information and to 
provide greater insight into the patterns of relationships 
among populations. Whereas FST, ΦST and RST all apply to 
discrete genetic data, QST is an analogous statistic for con‑
tinuously varying traits. If the markers used to estimate FST 
can be presumed to be selectively neutral, comparing an 
estimate of QST with an estimate of FST can provide investi‑
gators with evidence that natural selection has shaped the 
pattern of variation in the quantitative trait.

RST, ΦST and AMOVA. The methods for estimating ƒ, θ 
and F described above are appropriate for multi‑allelic 
data when the alleles are regarded as equivalent to one 
another. However, when the data consist of variation 
at microsatellite loci or of nucleotide sequence (haplo‑
type) information, related methods that allow mutation 

Parameter Method of moments Maximum likelihood Bayesian

ƒ 0.0309 0.0346 0.0503

θ 0.00402 0.00640 0.0189

F 0.0348 0.0408 0.0683

To extend the method‑of‑moments approach to multiple alleles and multiple loci, 
calculations are done separately for every allele at every locus and the sums of squares are 
combined17,27. To extend the likelihood or Bayesian approaches, we make the assumption that 
ƒ and θ have the same value at every locus and that genotype counts are sampled 
independently across loci and populations104,105.

Box 3 | Comparing methods for estimating Fst

To illustrate the differences among calculating method‑of‑moments, maximum‑likelihood 
and Bayesian estimates of F‑statistics, we use data from a classic study on human 
populations that investigated the allele frequency differences at blood group loci  
(see the table). We use a subset of the data that were originally reported by Workman and 
Niswander103. Their data consist of genotype counts at several loci in Native American 
Papago and were collected from ten political districts in south‑western Arizona. 
Estimates of F

IS
, F

ST
 and F

IT
 derived from the MN blood group locus suggest that there is 

little departure of the genotype frequencies from Hardy–Weinberg expectations within 
each district and little genetic differentiation among the districts.

Method-of-moments analysis
Analysis of variance on the indicator variable y

ij,k
, in which y

ij,k
 = 1 if allele i in individual j  

of population k is M, gives moment estimates for the variance components of σ  = 0.16,  
σ  = 0.00511, and σ  = 0.0000667, in which 

G
 stands for genotypes (alleles within 

individuals), 
I
 stands for individuals (individuals within populations) and 

P
 stands for 

populations (among populations). Following Cockerham10:

σ σ
σ σ σ

θ σ
σ σ σ

σ
σ σ  

Therefore, the moment estimates are F = 0.0348, θ = 0.00402 and ƒ = 0.0309. As 
expected for human populations, there is little evidence that the genotype proportions 
within each political district differ from Hardy–Weinberg expectations (ƒ ≈ 0). Similarly, 
there is little evidence of genetic differentiation among political districts (θ ≈ 0).

Bayesian and likelihood analysis
By contrast, current implementations of a Bayesian approach to analysing these  
data typically assume independent uniform (0,1) prior distributions for both ƒ and θ.  
The posterior mean of ƒ and θ for these data are 0.0503 and 0.0189, respectively. The 
posterior distribution of ƒ has a mode near 0 but is broad (with a 95% credible interval  
of 0.0033–0.123), which causes the posterior mean of ƒ to be larger than the 
method‑of‑moments estimate. Similarly, the estimates of allele frequencies within each 
population are uncertain and the estimate of θ takes this uncertainty into account, 
suggesting that there is slightly more among‑population differentiation than detected 
with moment estimates. For comparison, the maximum‑likelihood estimates are 
F = 0.0408, θ = 0.00640 and ƒ = 0.0346 (obtained by estimating the variance components 
in a Gaussian mixed model applied to the indicator variables and by using Cockerham’s 
definitions of F, ƒ and θ in terms of the variance components).
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Additive genetic variance
The part of the total genetic 
variation that is due to the 
main (or additive) effects of 
alleles on a phenotype. The 
additive variance determines 
the degree of resemblance 
between relatives and 
therefore the response to 
selection.

Stabilizing selection
Selection in which either the 
same allele or the same 
genotype is favoured in 
different populations.

Effective population size
formulated by Wright in 1931, 
the effective population size 
reflects the size of an idealized 
population that would 
experience drift in the  
same way as the actual 
(census) population. The 
effective population size  
can be lower than the  
census population  
size owing to various factors, 
including a history of 
population bottlenecks and 
reduced recombination.

rates to differ between different pairs of alleles might be 
more appropriate. excoffier et al.34 introduced analysis of 
molecular variance (AMovA) for analysis of haplotype  
variation. AMovA is based on an analysis‑of‑variance 
framework that is analogous to the one developed 
by Weir and Cockerham20. The mean squares in an 
AMovA analysis are based on a user‑specified measure 
of the evolutionary distance between haplotypes, and 
AMovA leads to quantities that are analogous to classi‑
cal F‑statistics (BOX 1). Similarly, the mean squares used to 
calculate RST

35,36 are based on differences in the number 
of repeats between alleles at each microsatellite locus. 
Although the result of both analyses is a partitioning of 
genetic variance into within‑ and among‑population  
components analogous to FST, neither has a direct inter‑
pretation as a parameter of a statistical distribution. 
Instead, they estimate an index that is derived from two 
different statistical distributions: the distribution of allele 
(haplotype or microsatellite) frequencies among popula‑
tions and the distribution of evolutionary distances among 
alleles. Nonetheless, such measures may be thought of as 
estimating the additional time since the common ances‑
try of randomly chosen alleles that accrues as a result 
of populations being subdivided37,38, provided that the 
measure of evolutionary distance between any two alleles 
is proportional to the time since their most recent com‑
mon ancestor. extensive simulation studies have shown 
that estimates of RST may be unreliable unless many loci 
are used39–41, but unlike FST the expected value of RST does 
not depend on the rate of mutation. estimates of ΦST or 
RST may be useful when mutations have contributed sub‑
stantially to allelic differences among populations, but 
their usefulness may be limited by the extent to which  
the mutational model underlying the statistics matches the  
actual mutational processes occurring in the system39.

QST and polygenic variation. Spitze42 noted that another 
quantity analogous to θ can be estimated for continuously  
varying traits. Specifically, we can define:

QST = GP
2

GP
2 + 2 GI

2
σ

σ σ
 (6)

in which  GP
2σ  is the additive genetic variance among popu‑

lations and  GI
2σ  is the additive genetic variance within 

populations.  GP
2σ  can be estimated from between‑

population crosses, and  GI
2σ  can be estimated from 

within‑population crosses. Because the total variance 
in between‑population crosses is  GP

2σ  +  GI
2σ , QST is the 

proportion of additive genetic variance in a trait that 
is due to among‑population differences. If the trait is 
selectively neutral, if all genetic variation is additive 
and if the mutation rates at loci contributing to the 
trait are the same as those at other loci, we expect QST 
and FST to be equal43,44. Comparing the magnitude of 
QST and FST may therefore indicate whether a particu‑
lar trait has been subject to stabilizing selection (QST<FST) 
or diversifying selection (QST>FST). However, because 
of the uncertainties associated with estimates of QST 
and FST, such comparisons are likely to be useful only 
when they are available for a moderately large number 
of populations (>20)45. Furthermore, caution is neces‑
sary when suggesting that a comparison of QST and FST 
provides evidence for stabilizing selection because non‑
additive genetic variation tends to change QST, even for 
a neutral trait46.

applications
F‑statistics include both FST, which measures the amount 
of genetic differentiation among populations (and 
simultaneously the extent to which individuals within 
populations are similar to one another), and FIS, which 
measures the departure of genotype frequencies within 
populations from Hardy–Weinberg proportions. Here, 
we focus on the applications of FST for several reasons 
(BOX 4).

Estimating migration rates. Wright5 showed that if all 
populations in a species are equally likely to exchange 
migrants and if migration is rare, then:

FST ≈ 1
4Nem+1

 (7)

in which m is the fraction of each population composed 
of migrants (the backward migration rate)47 and Ne is the 
effective population size of local populations48. Because of 
this simple relationship, it is tempting to use estimates  
of FST from population data to estimate Nem.

unfortunately, it has been recognized for many years 
that this simple approach to estimating migration rates 
might fail49. The most obvious reason for this failure is 
that populations are rarely structured so that all popula‑
tions exchange migrants at the same rate, which causes 
some populations to resemble one another more than 
others. If differentiation between populations is solely 
a result of isolation by distance50, for example, then the 
slope of the regression of FST/(1 – FST) on either the loga‑
rithm of between‑population distance (for populations 

 Box 4 | Why focus on Fst?

We focus here on F
ST

 for several reasons. First, F
IS

 is easier to interpret. It is defined with 
respect to the populations that are included in the sample, either through population‑
specific estimates or through the average of those estimates. By contrast, F

ST
 is defined 

and interpreted with respect to the distribution of allele frequencies among all 
populations that could have been sampled, not merely those that have been included 
in the sample. As a result, estimates of F

ST
 must account for genetic sampling, which 

introduces a level of complexity and subtlety that requires extra attention.
Second, the application of F‑statistics to problems in population and evolutionary 

genetics often centres on estimates of F
ST

. For example, when interpreting aspects  
of demographic history, such as sex‑biased dispersal out of Africa in human 
populations9, detecting regions of the genome that might have been subject to 
stabilizing or diversifying selection8,58,61 or correcting the probabilities of obtaining a 
match in a forensic application for genetic substructure within populations106, 
estimates of F

ST
 often play a crucial part in interpretations of genetic data. Estimates 

of F
IS

 reveal important properties of the mating system within populations, but 
estimates of F

ST
 reveal properties of the evolutionary processes that lead to 

divergence among populations.
Finally, in many populations of animals, and in human populations in particular, 

within‑population departures from Hardy–Weinberg proportions are small. Where they 
are present, such departures may reveal more about genetic substructuring within 
populations than about departures from random mating. Moreover, although estimates 
of F

IS
 may provide insights into the patterns of mating in inbred populations of plants or 

animals, the direct analysis of mother–offspring genotype combinations is usually more 
informative and reliable107,108.
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Coalescent-based 
approaches
Approaches that use statistical 
properties of the genealogical 
relationship among alleles 
under particular demographic 
and mutational models to 
make inferences about the 
effective size of populations and 
about rates of mutation  
and migration.

distributed in two dimensions) or the between‑population  
distance alone (for populations in a linear habitat) is 
proportional to Deδ

2, in which De is the effective den‑
sity of the population (De = Ne/area) and δ2 is the mean 
squared dispersal distance51. However, if differentiation 
is the result not only of isolation by distance but also of 
natural selection or if the drift–migration process has 
not reached a stationary point, the slope of this rela‑
tionship cannot be interpreted as an estimate of migra‑
tion. Moreover, a pure migration–drift process, a pure  
drift–divergence process or a combination of the two 
could produce the same distribution of allele frequen‑
cies. Indeed, migration–drift, drift–divergence or a com‑
bination of the two can account for any pattern of allele 
frequency differences among populations52. Therefore, 
although pairwise estimates of FST (or ΦST or RST) pro‑
vide some insight into the degree to which populations 
are historically connected37,38, they do not allow us to 
determine whether that connection is a result of ongoing 
migration or of recent common ancestry.

There are additional difficulties with interpreting 
estimates of FST. Different genetic markers may give dif‑
ferent estimates of FST for many reasons, and to derive an 
estimate of migration rates from FST, one must assume 
that the particular set of markers that are chosen have 
the expected relationship with Nem. This may often 
be problematic. For example, differences between FST 
estimates from human microsatellites (0.05) and SNPs 
(0.10) cannot reflect differences in migration rate 
because both estimates are derived from the same set 
of individuals and the same set of populations — the 
Human Genome Diversity Project–Centre d’Étude 
du Polymorphisme Humain sample1,2,53. The use of  
coalescent-based approaches (see later section) that incor‑
porate models of the mutational process is one method of  
overcoming this difficulty54–56. 

Inferring demographic history. Population‑specific or 
pairwise estimates of FST may provide insights into the 
demographic history of populations when estimates are 
available from many loci. For example, Keinan et al.9 
reported pairwise estimates of FST for 13,600–62,830 
autosomal SNP loci and 1,100–2,700 X chromosome SNP 
loci in human population samples from northern europe, 
east Asia and West Africa. Because there are four cop‑
ies of each autosome in the human population for every 
three copies of the X chromosome, one would expect 
there to be greater differentiation at X chromosome loci 
than at autosomal loci. Specifically, for two populations 
that diverged t generations ago, one might  expect:

1− FST = 1 − 1
2Ne

t
 (8)

in which Ne is the effective size of the local populations. 
Therefore, if Q is defined as:

1− FST
auto)/ ln(ln( 1− FST

X  (9)

Q is approximately:

Ne
X /Ne

auto = 0.75   (10)

Q is approximately 0.75 for comparisons between 
east Asians and northern europeans (Q = 0.72 ± 0.05), 
but it is substantially smaller for comparisons 
between West Africans and other populations in the 
sample (Q = 0.58 ± 0.03 for the comparison with 
northern europeans and Q = 0.62 ± 0.03 for the 
comparison with east Asians). These results suggest 
either sex‑biased dispersal (long‑range immigration 
of males from Africa after non‑African populations 
were initially established) or selection on X chro‑
mosome loci after the divergence of African and  
non‑African populations.

Identifying genomic regions under selection. Similarly, 
locus‑specific estimates of FST may identify genomic 
regions that have been subject to selection. The logic 
is straightforward; the pattern of genetic differentia‑
tion at a neutral locus is completely determined by the 
demographic history of the populations (that is, the his‑
tory of population expansions and contractions), the 
mutation rates at the loci concerned and the rates and 
patterns of migration among the populations6,57–60. In 
a typical multilocus sample, it is reasonable to assume 
that all autosomal loci have experienced the same 
demographic history and the same rates and patterns 
of migration. If the loci also have similar mutation rates 
and if the variation at each locus is selectively neutral, 
the allelic variation at each locus represents a separate 
sample from the same underlying stochastic evolution‑
ary process. loci showing unusually large amounts of 
differentiation may indicate regions of the genome that 
have been subject to diversifying selection, whereas loci 
showing unusually small amounts of differentiation may 
indicate regions of the genome that have been subject 
to stabilizing selection58. Several groups have used such 
genome scans to examine patterns of differentiation in 
the human genome.

By comparing locus‑specific estimates of FST with 
the genome‑wide distribution, Akey et al.6 identified 
174 regions (out of the 26,530 examined) that showed 
what they called ‘signatures of selection’ in the human 
genome. of these loci, 156 showed unusually large 
amounts of differentiation (suggesting diversifying 
selection) and 18 showed unusually small amounts of 
differentiation (suggesting stabilizing selection). By 
contrast, when Weir et al.7 examined the high‑resolution  
Perlegen (~1 million SNPs) and phase I HapMap (~0.6 
million SNPs) data sets in humans to examine locus‑
specific estimates of FST, they also found large differ‑
ences in FST among loci, but their analyses suggested 
that the very high variance associated with single‑
locus estimates of FST precluded using these estimates 
to detect selection. Both sets of investigators noted a 
particular problem with single‑locus estimates when 
using high‑resolution SNP maps: the high correlation 
between FST estimates when loci are in strong gametic 
disequilibrium makes it difficult to determine whether 
the FST at any particular SNP is markedly different from 
expectation.

Although single‑locus estimates of FST are highly 
uncertain, simulation studies suggest that when loci 
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Conditional autoregressive 
scheme
A statistical approach 
developed for analysis of data 
in which a random effect is 
associated with the spatial 
location of each observation. 
The magnitude of the random 
effect is determined by a 
weighted average of the 
random effects of nearby 
positions. In most applications, 
the weights of the averages are 
inversely related to the spatial 
distance between two sample 
points.

are inherited independently, background informa‑
tion about a few hundred loci is sufficient to allow the 
reliable identification of loci that are subject to selec‑
tion when a suitable criterion for detecting ‘outliers’ 
is used8,58,61. Although few loci are falsely identified 
as being subject to selection when they are neutral, 
genome scans using FST may often fail to detect selec‑
tion when it is present. For example, when a single 
allele is strongly favoured in all populations, not only 
is FST expected to be nearly zero but variation is also 
expected to be nearly non‑existent, rendering esti‑
mates of FST either highly unreliable or unobtainable. 
Similarly, when selection is weak, data from many 
loci are needed to recognize that the estimate of FST 
at the locus involved is unusual. More importantly, as 
mentioned above, high‑resolution genome scans must 
account for the statistical association between closely 
linked loci. Guo et al.8 used a conditional autoregressive  
scheme to identify 57 loci that showed unusually large 
amounts of among‑population differentiation in a sam‑
ple of 3,000 SNP loci on human chromosome 7 sepa‑
rated by only 860 nucleotides on average. Sixteen of 
these markers are associated with LEP, a gene encoding 
a leptin precursor that is associated with behaviours 
that influence the balance between food intake and 
energy expenditure62 (fIG. 1). Moreover, association 
studies in one French population had previously sug‑
gested a relationship between one of the SNPs identified  
as an outlier in this study and obesity63.

Forensic science and association mapping. In forensic 
science, matching a genetic profile taken from a suspect 
with a profile taken from a stain left at a crime scene 
serves as evidence linking the suspect to the crime. To  
quantify the strength of this evidence, it is useful  
to determine the probability of a random match — that 
is, the probability that the genetic profile at the crime 
scene matches that of the suspect if the suspect was not 
the source of the stain. In some cases, two people, the 
suspect and the person who left the crime sample, may 
belong to a subpopulation for which there is no spe‑
cific allele frequency information. In such a case, we 
can use a θ correction64 to calculate the probability of 
a match based on allele frequency information from a 
larger population of which the subpopulation is a part. 
The probability of a random match takes into account 
the allele frequency variation among subpopulations 
within the wider population for which allele frequen‑
cies are available. For example, if the matching profile 
consisted of a homozygote AA at a single locus and if pA 
is the population frequency of allele A, the probability 
that the crime profile is AA given that the suspect is AA 
and the suspect is not the source of the stain is (Ref. 65):

P (AA| AA) =
3θ + (1−θ)pA( ) 2θ + (1−θ )pA( )

(1+θ )(1+ 2θ )
 (11)

There is a similar equation for heterozygotes, and 
these θ‑correction results are multiplied over loci. The 
1996 National research Council report66 recommended 

Figure 1 | Locus-specific estimates of Fst on human chromosome 7. Estimates are as inferred from the phase II 
HapMap data set95. Horizontal bars indicate the locations of known genes. The red circles are posterior means for SNPs 
with estimates that are detectably different from the genomic background (purple circles). All ‘outliers’ show 
significantly more differentiation among the four populations in the sample than is consistent with the level of 
differentiation seen in the genomic background. The excess differentiation suggests that these SNPs are associated with 
genomic regions in which loci have been subject to diversifying selection among populations. CALU, calumenin; FSCN3, 
ascin homolog 3; GCC1, GRIP and coiled‑coil domain containing 1; GRM8, glutamate receptor, metabotropic 8; LEP, 
leptin; SND1, staphylococcal nuclease and tudor domain containing 1. Figure is modified, with permission, from Ref. 8 © 
(2009) American Statistical Association.
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using θ = 0.01 except for small isolated subpopulations, 
for which they suggested that a value of θ = 0.03 was 
more appropriate. The practical effect of the θ correction 
is that the numerical strength of the evidence against a 
suspect is reduced. If pA = 0.01, for example, the uncor‑
rected probability of a match is 0.0001. However, with 
θ = 0.01, the probability of a match is an order of magni‑
tude larger — 0.0012. With θ = 0.03, it is even larger — 
0.0064. Therefore, it is much less surprising to see a match 
when we take account of the population substructure  
than when we ignore it.

In association mapping, case–control studies com‑
pare the allele frequencies at genetic markers (gener‑
ally SNPs) between groups of people with a disease and 
groups who do not have the disease. When frequencies 
at a marker locus differ between the groups, it is inter‑
preted as evidence for gametic disequilibrium between 
the marker and a disease‑related gene. This in turn sug‑
gests that the marker and disease‑related genes are in 
close proximity on the same chromosome. However, as 
many authors have pointed out, population substructure 
unrelated to disease status could cause the same kind 
of allele frequency difference67–70. The genomic control 
method is one way to account for population substruc‑
ture. It uses background estimates of FST to control for 
subpopulation differences that are unrelated to disease 
status67,68. If cases and controls have different marker 
allele frequencies for reasons unconnected with the 
disease, as would be shown by frequency differences 
across the whole genome, an uncorrected case–control 
test would give spurious indications of marker–disease 
associations.

Relationship to coalescent‑based methods. When 
Kingman introduced the coalescent process to popula‑
tion genetics just over 25 years ago71,72, it revolutionized 
the field. Many approaches to the analysis of molecular 
data, particularly molecular sequence and SNP data, 
now take advantage of the conceptual, computational 
and analytical framework that coalescent‑based meth‑
ods provide73–79. For example, whereas F‑statistics pro‑
vide only limited insight into the rates and patterns of 
migration, statistics based on the coalescent process can 
provide insights into the rates of mutation, migration 
and other evolutionary processes. Coalescent analysis 
is based on maximizing the likelihood of a given sam‑
ple configuration or sampling from the correspond‑
ing Bayesian posterior distribution. The likelihood 
is constructed from the genealogical histories for the 
sample that are consistent with the unknown evolution‑
ary parameters of interest; for example, the size of the 
population or populations from which the sample was 
taken, or the history of population size changes, muta‑
tion rates, recombination rates or migration rates55,80–86. 
Coalescent analyses are likely to provide precise esti‑
mates of effective population size, mutation rates and 
migration rates when certain conditions are met — 
that is, when the model used for analysis is consistent 
with the demographic history of populations from 
which samples are collected, with the migration pat‑
terns among populations in the sample and with the 

mutational processes that generated allelic differences 
in the sample, and also when it is reasonable to presume 
that the drift–mutation–migration process has reached 
an evolutionary equilibrium54,73. When these assump‑
tions are not met it may not be reasonable to estimate 
the related evolutionary parameters, and the examples 
presented above show that analyses based on F‑statistics 
may still provide substantial insights.

Conclusions
Sewall Wright5 provided a comprehensive account of 
the processes leading to genetic differentiation among 
populations nearly 80 years ago, but he did not provide 
the tools that empirical population geneticists needed 
to apply his insights to understanding variation in wild 
populations. During his work on isolation by distance in 
the plant Linanthus parryae in the 1940s50,87, the theory 
of F‑statistics that he and Gustave Malécot later devel‑
oped3,4,16,88 began to emerge. Because of the insights that 
F‑statistics can provide about the processes of differen‑
tiation among populations, over the past 50 years they 
have become the most widely used descriptive statis‑
tics in population and evolutionary genetics. From the 
time population geneticists first began to collect data on 
allozyme variation89–94 to recent analyses of SNP varia‑
tion in the human genome2,9,95–97, F‑statistics, and FST in 
particular, have been used to investigate processes that 
influence the distribution of genetic variation within and 
among populations. unfortunately, neither Wright nor 
Malécot distinguished carefully between the definition 
of F‑statistics and the estimation of F‑statistics. In par‑
ticular, until Cockerham introduced his indicator for‑
malism10,22, few if any population geneticists understood 
that estimators of F‑statistics must take into account 
both statistical sampling and genetic sampling.

The statistical methodology for estimating 
F‑statistics is now well established. With the availability  
of methods to estimate locus‑ and population‑specific 
effects on FST

7,8,27,58,61,98, geneticists now have a set of 
tools for identifying genomic regions or populations 
with unusual evolutionary histories. Through further 
extensions of this approach, it is even possible to deter‑
mine the relationship between the recent evolutionary 
history of populations and environmental or demo‑
graphic variables99. The basic principles of how popu‑
lation size, mutation rate and migration are related to 
the genetic structures of populations have been well 
understood for nearly 80 years. Analyses of F‑statistics 
in populations of plants, animals and microorganisms 
have broadened and deepened this understanding, 
but these analyses have mostly been applied to data 
sets that contain a small number of loci. The age of 
population genomics is now upon us100,101. The 1,000 
Genomes project and the International HapMap 
Project give a hint of what is to come. Despite the scale 
of these projects, much of the data can be understood 
fundamentally as allelic variation at individual loci. As 
a result, we expect F‑statistics to be at least as useful 
in understanding these massive data sets as they have 
been in population and evolutionary genetics for most 
of the past century.
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