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Abstract Tropical forests hold large stores of carbon, yet
uncertainty remains regarding their quantitative contri-
bution to the global carbon cycle. One approach to
quantifying carbon biomass stores consists in inferring
changes from long-term forest inventory plots. Regres-
sion models are used to convert inventory data into an
estimate of aboveground biomass (AGB). We provide a
critical reassessment of the quality and the robustness of
these models across tropical forest types, using a large
dataset of 2,410 trees ‡ 5 cm diameter, directly harvested
in 27 study sites across the tropics. Proportional rela-
tionships between aboveground biomass and the prod-

uct of wood density, trunk cross-sectional area, and
total height are constructed. We also develop a regres-
sion model involving wood density and stem diameter
only. Our models were tested for secondary and old-
growth forests, for dry, moist and wet forests, for low-
land and montane forests, and for mangrove forests.
The most important predictors of AGB of a tree were, in
decreasing order of importance, its trunk diameter,
wood specific gravity, total height, and forest type (dry,
moist, or wet). Overestimates prevailed, giving a bias of
0.5–6.5% when errors were averaged across all stands.
Our regression models can be used reliably to predict
aboveground tree biomass across a broad range of
tropical forests. Because they are based on an unprece-
dented dataset, these models should improve the qualityElectronic Supplementary Material Supplementary material is
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of tropical biomass estimates, and bring consensus
about the contribution of the tropical forest biome and
tropical deforestation to the global carbon cycle.

Keywords Biomass Æ Carbon Æ Plant allometry Æ
Tropical forest

Introduction

The response of tropical forest ecosystems to natural or
anthropogenic environmental changes is a central topic
in ecology (Lugo and Brown 1986; Phillips et al. 1998;
Houghton et al. 2001; Chambers et al. 2001a; Grace
2004). Long-term forest inventories are most useful in
order to evaluate the magnitude of carbon fluxes be-
tween aboveground forest ecosystems and the atmo-
sphere (Houghton 2003; Grace 2004). Guidelines have
been published for setting up permanent plots, censusing
trees correctly (Sheil 1995; Condit 1998), and for esti-
mating aboveground biomass (AGB) stocks and changes
from these datasets (Brown 1997; Clark et al. 2001;
Phillips et al. 2002; Chave et al. 2004). However, one of
the large sources of uncertainty in all estimates of carbon
stocks in tropical forests is the lack of standard models
for converting tree measurements to aboveground bio-
mass estimates. Here, we directly appraise a critical step
in the plot-based biomass estimation procedure, namely
the conversion of plot census data into estimates of
AGB.

The use of allometric regression models is a crucial
step in estimating AGB, yet it is seldom directly tested
(Crow 1978; Cunia 1987; Brown et al. 1989; Houghton
et al. 2001; Chave et al. 2001). Because 1 ha of tropical
forest may shelter as many as 300 different tree species
(Oliveira and Mori 1999), one cannot use species-spe-
cific regression models, as in the temperate zone (Ter-
Mikaelian and Korzukhin 1997; Shepashenko et al.
1998; Brown and Schroeder 1999). Instead, mixed
species tree biomass regression models must be used.
Moreover, published regression models are usually
based on a small number of directly harvested trees and
include very few large diameter trees, thus not well
representing the forest at large. This explains why two
models constructed for the same forest may yield dif-
ferent AGB estimates, a difference exacerbated for
large trees, which imposes a great uncertainty on stand-
level biomass estimates (Brown 1997; Nelson et al.
1999; Clark and Clark 2000; Houghton et al. 2001;
Chave et al. 2004). Direct tree harvest data are difficult
to acquire in the field, and few published studies are
available. Therefore, it is often impossible to indepen-
dently assess the model’s quality.

A simple geometrical argument suggests that the total
aboveground biomass (AGB, in kg) of a tree with
diameter D should be proportional to the product of
wood specific gravity (q, oven-dry wood over green
volume), times trunk basal area (BA=p D2/4), times

total tree height (H). Hence, the following relationship
should hold across forests:

AGB ¼ F � q� pD2

4

� �
� H ð1Þ

This model assumes taper does not change as trees get
larger. The multiplicative coefficient F depends on tree
taper only. In our measurement units (AGB, D in cm, q
g/cm3, H in m), Dawkins (1961) and Gray (1966) pre-
dicted a constant form factor F across broadleaf species,
with F=0.06 (Cannell 1984). If trees were assumed to be
poles with no taper and uniform wood specific gravity,
the form factor of Eq. 1 should be F=0.1. If instead
trees had a perfect conical shape (uniform taper), it
should be F=0.0333. This formula, originally developed
by foresters, has seldom been used in the recent litera-
ture on the tropical carbon cycle. The first reason is that
a comparison with available data shows that a rela-
tionship of the form

AGB ¼ F � q� pD2

4

� �
� H

� �b

ð2Þ

with b<1, may actually be a better model than Eq. 1
(Brown et al. 1989). The second reason is that formula 1
requires that total height be available on each tree, a
variable difficult to measure in closed-canopy forests.
Hence, models involving only trunk diameter are usually
preferred. The most popular such models are con-
structed by assuming a power-law relationship between
tree height and trunk diameter: H� DB, where the
symbol � means that the two terms are proportional.
Then, a model for the tree AGB may be obtained by
substituting equation H � DB into Eq. 1:

AGB ¼ cqD2þB ð3Þ

where c measures the taper of a mean tree. The exponent
B can be derived from engineering considerations
(McMahon and Kronauer 1976), and c measures the
taper of a mean tree. In reality a power-law is not the
best relationship for predicting height from diameter.
Trees of large diameter show negative residuals, sug-
gesting there are mechanical and/or physiological limits
to height increase in large diameter trees (Niklas 1995;
Midgley 2003). Hence, models slightly more complex
than Eq. 2 should be used. We propose below a number
of regression models constructed along the same lines,
and we test their quality.

The predictive power of these models depends on
how well they are validated using tree biomass data
obtained directly from destructive harvest experiments.
In the present work, we carry out the first among-site
validation of biomass regression models with a large
dataset collected at sites ranging from dry woodlands to
hyperhumid closed-canopy forests, from highly seasonal
to aseasonal climates, lowland to high-elevation forests,
and secondary to old-growth forests. We also included
two mangrove forest studies (e.g. Sherman et al. 2003).
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This dataset considerably expands previous studies by
including new data from Australia, Brazil, French
Guiana, Guadeloupe, India, Indonesia, Malaysia,
Mexico, and Venezuela. We use this database to test the
generality of simple models, and ask whether common
allometric patterns can be found for trees grown in
different environments. We test the assumption that a
single pan-tropical allometry can be used in AGB esti-
mation procedures. Specifically, we ask to what extent
the observed differences among site-derived allometries
are due to the limited sample size used to construct the
allometry. Our approach relies on model selection based
on penalized likelihood. This enables us to construct a
general procedure for estimating the AGB held in
tropical forest trees.

Materials and methods

Study sites

Our analysis relies upon a compilation of tree harvest
studies carried out since the 1950s. Our compilation
comprises 27 published and unpublished datasets, from
tropical forests in three continents: America, Asia, and
Oceania (Fig. 1), for a total of 2,410 trees ‡5 cm in dbh
(Table 1). Details on site geographical location, climate,
altitude, successional status, and forest type, are pro-
vided in Table 1. These sites encompass a broad array of
environmental conditions. We restricted ourselves to
forests growing in tropical climates, and that regenerate
naturally, thus excluding plantations or managed for-
ests. Further details on these sites and datasets are
available as Electronic Supplementary Materials. We
further partitioned forests into young, or ‘successional’
(S) and ‘old-growth’ (OG) forests. Forests where
evapotranspiration exceeds rainfall during less than a
month were classified as ‘wet forests’. Practically, this
corresponds to high-rainfall lowland forests (rainfall
greater than 3,500 mm/year and no seasonality), and
montane cloud forests. Forests where evapotranspira-
tion exceeds rainfall during more than a month (clima-
tological average over many years), but less than
5 month were classified as ‘moist forests’. These are
forests with a marked dry season (one to 4 months),
sometimes with a semi-deciduous canopy, and corre-
sponding to ca. 1,500–3,500 mm/year in rainfall for
lowland forests. Finally, forests with a pronounced dry

season, during which the plants suffer serious water
stresses, are classified as ‘dry forests’ (below 1,500 mm/
year, over 5 months dry season).

For each harvested tree, our dataset reports biometric
variables (trunk diameter at 130 cm aboveground or
above buttresses, total tree height), and wood specific
gravity (oven-dry weight over green volume). For iden-
tified trees that lacked a direct measurement of specific
gravity, species-level, or genus-level averages were used
wherever possible (see details in ‘‘Electronic Supple-
mentary Material’’). In a few cases a site-averaged value
of wood specific gravity had to be used. It was deduced
from available floristic censuses in nearby plots.

Regression models

We compared a number of statistical models commonly
used to estimate AGB in the forestry literature. A large
number of regression models have already been pub-
lished, and we only selected a limited subset of these,
based on their mathematical simplicity and their applied
relevance.

Biomass-diameter-height regression (model I)

Biomass regression models may include information on
trunk diameter D (in cm), total tree height H (in m) and
wood specific gravity q (in g/cm3). Dawkins’ regression
model (Eq. 1) is a simple version of a more general
model, first proposed by Schumacher and Hall (1933),
and henceforth referred to as our model I:

lnðAGBÞ ¼ aþ b1 lnðDÞ þ b2 lnðHÞ þ b3 lnðqÞ ð4Þ

Indeed, if b1=2, b2=1, b3=1, the above formula is
equivalent to AGB=exp(a)· qD2H. We now define six
versions of this model, based on additional assump-
tions on the parameters. Model I.1 is the full model,
with all four parameter independently fitted for the
different forest types. Model I.2 is like model I.1, but it
assumes that the four parameters do not vary across
forest types. In the remaining four models, the com-
pound variable q D2 H is the only predictor of AGB,
like in Eqs. 1 and 2 above. The model described in
Eq. 2, henceforth our model I.3, is rewritten as
ln(AGB)=a+b2 ln(D

2Hq). Here, again, model I.4 is
like model I.3, but it assumes that the two parameters a
and b2 do not vary across forest types. Finally, the

Fig. 1 Location of the study
sites. All of the experiments
were carried out in the
Neotropics and in South-East
Asia or Oceania. Notice the
absence of study sites in Africa
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model described in Eq. 1: ln(AGB)=a + ln (D2Hq) is
our model I.5 if a varies across forest types, and I.6 if it
does not. This last model provides a null hypothesis:
b1=2, b2=1, b3=1, with just one parameter (cf.
Eq. 1). An alternative hypothesis, namely that AGB
does not depend on wood specific gravity, was also
tested (b3=0). These models are written down explicitly
in Table 2. Roughly, this suite of models defines a
decreasing sequence of complexity, and they are com-
pared following the approach of the model selection
procedure (e.g. Burnham and Anderson 2002, Johnson
and Omland 2004, Wirth et al. 2004). Both regressions
and tests are implemented using linear models (lm()
function of the R software, see http://www.r-pro-
ject.org).

Biomass-diameter regression (model II)

Total tree height is not always available in field inven-
tories, and it may sometimes be better not to include it in
biomass estimation procedures (Williams and Schreuder

2000). A concave shaped relationship is observed when
the logarithm of height, ln(H), is plotted against the
logarithm of diameter, ln(D). This indicates a progres-
sive departure from the ideal allometry during the tree’s
ontogeny. A polynomial model relating ln(H) and ln(D)
provides a reasonable generalization of the power-law
model (Niklas 1995, 1997). Assuming such a polynomial
relationship between ln(H) and ln(D) together with
Eq. 4, it is easy to deduce the following equation, which
is our model II:

lnðAGBÞ ¼ aþ b lnðDÞ þ cðlnðDÞÞ2 þ dðlnðDÞÞ3
þ b3 lnðqÞ ð5Þ

In this model, the power-law relationship is parameter-
ized by c=d=0. As in model I, we tested six alternative
hypotheses based on this model. Our model II.1 was the
most complex model, with all the parameters being
separately fitted for the different forest types, while
model II.2 assumed that the five parameters did not
depend on forest type. Model II.3 was like model II.1,

Table 1 Description of the study sites included in this study. The
first column provides the site label used in the text. Successional
status was categorized into old growth forests (OG) and secondary
forests (S). Three forest types (dry, moist, and wet) were based on

potential evapotranspiration, function of rainfall and elevation.
Supplementary information on the sites and on the data is provided
in the Appendix

Label Country Site Latitude,
longitude

Max
dbh

Trees,
‡5 cm

Trees,
‡10 cm

Rainfall Altitude Dry
months

Succ
status

Forest
type

Australia Australia Darwin 12�30¢S,132�00¢E 52.4 133 82 1,700 20 8 OG Dry
BraMan1 Brazil Manaus 2�57¢S, 60�12¢W 120.0 315 161 2,200 100 3 OG Moist
BraMan2 Brazil Manaus 2�30¢S, 60�00¢W 38.2 123 83 2,700 100 3 S Moist
BraMatoG Brazil Mato Grosso 9�52¢S, 56�06¢W 93.0 34 34 2,300 100 5 OG Moist
BraPara1 Brazil Tomé Acu, Para 2�30¢S, 48�08¢W 138.0 127 127 2,200 100 4 OG Moist
BraPara2 Brazil Jari, Para NA 38.0 15 15 2,200 100 4 OG Moist
BraPara3 Brazil Belem 1�30¢S, 48�30¢W 55.0 21 20 3,000 20 0 S Moist
BraRond Brazil Rondônia 8�45¢S, 63�23¢W 89.0 8 8 2,300 110 4 OG Moist
Cambodia Cambodia Cheko 10�56¢N, 103�2¢E 133.2 72 20 3,726 20 3 OG Wet
Colombia Colombia Araracuara 0�38¢S, 72�22¢W 98.2 52 51 3,000 200 0 OG Wet
CostaRica Costa Rica La Selva 10�43¢N, 83�98¢W 116.0 96 92 3,824 42 0 OG Wet
FrenchGu French Guiana Piste St Elie 5�20¢N, 53�00¢W 117.8 363 187 3,125 50 2 OG Moist
IndiaCha India Uttar Pradesh 25�20¢N, 83�00¢E 34.7 23 23 1,200 350 7 S Dry
IndiaKarna India Karnataka 12�50¢N, 75�20¢E 61.2 188 182 6,000 500 5 OG Moist
Jamaica Jamaica J Crow Ridge 18�08¢N, 76�65¢W 52.4 86 55 2,335 1,572 1 OG Wet
Kaliman1 Indonesia Kalimantan,

Balikpapan
0�40¢S, 116�45¢E 77.6 23 23 2,200 250 2 OG Moist

Kaliman2 Indonesia Kalimantan,
Sebulu

1�50¢S, 116�58¢E 130.5 69 38 1,862 50 1 OG Moist

Llanosec Venezuela Llanos secondary 7�26¢N, 70�55¢W 23.3 24 18 1,800 100 4 S Moist
Llanosold Venezuela Llanos old-growth 7�26¢N, 70�55¢W 156.0 27 27 1,800 100 4 OG Moist
Malaysia Malaysia Pasoh 2�98¢N, 102�31¢E 101.6 139 78 2,054 100 1 OG Moist
MfrenchG French Guiana Cayenne 4�52¢N, 52�19¢W

Sinnamary 5�28¢N, 53�00¢W 42.0 29 11 3,200 0 2 OG Moist-
Mangrove

Iracoubo 5�30¢N, 53�10¢W
Mguadel Guadeloupe Grand

Cul-De-Sac
Marin

16�19¢N, 61�32¢W 40.7 55 41 1,800 0 4 OG Moist-
Mangrove

NewGuinea New Guinea Marafunga 6�00¢S, 145�18¢E 110.1 42 42 3,936 2,450 0 OG Wet
PuertoRi Puerto Rico El Verde 18�32¢N, 65�82¢W 45.7 30 16 3,500 510 1 OG Wet
Sumatra Indonesia Sumatra 1�29¢S, 102�14¢E 48.1 29 24 3,000 100 2 S Moist
Venezuela Venezuela San Carlos 1�93¢N, 67�05¢W 67.5 41 30 3,500 120 0 OG Wet
Yucatan Mexico La Pantera 20�00¢N, 88�00¢W 63.4 248 177 1,200 20 5 OG Dry
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and model II.4 like model II.2, but they both assumed
b3=1. Finally, model II.5 was like model II.3 and model
II.6 like model II.4, but they both assumed no quadratic
and cubic terms in Eq. 5, that is: c=d=0. In all models
II.1, II.3, and II.5, the parameters were independently
fitted for different forest types, while in models II.2, II.4,
and II.6 they were assumed constant. These models are
written down explicitly in Table 4.

Model selection

To select the best statistical model we used a penalized
likelihood criterion (Burnham and Anderson 2002;
Johnson and Omland 2004). Specifically, we used a
penalization on the number of parameters, the Akaike
information criterion (AIC):

AIC ¼ �2 lnðLÞ þ 2p ð6Þ

In this formula, L is the likelihood of the fitted model, p
is the total number of parameters in the model. The best
statistical model minimizes the value of AIC. As an
alternative statistic, we also reported residual standard
error (RSE), the standard error of the residuals. All
statistical analyses were carried out with the R software
package (http://www.r-project.org/). More complex
regression procedures, such as weighted regression, have
been proposed but they do not conclusively provide
much better fits than classical regressions (Cormier et al.
1992). Various statistics for evaluating goodness-of-fit
have also been advocated in the literature (reviewed in
Parresol 1999), but AIC and RSE reported together
provide sufficient information on the quality of a sta-
tistical fit for a mixed-species regression model. Besides
goodness of fit measures, we evaluate a posteriori the
performance of the regression model by measuring the
deviation of the predicted versus measured total AGB at
each site: Error=100·(AGBpredict�AGBmeasured)/
AGBmeasured. The mean across all sites was called the

mean error (or bias, in %), and the standard deviation of
Error across sites was the standard error (also expressed
in %), and represented the overall predictive power of
the regression.

Model prediction

Models I and II can, in principle, be used to estimate
plant AGB, so long as their residuals are normally dis-
tributed. The log-transformation of the data entails a
bias in the final biomass estimation (Baskerville 1972;
Duan 1983; Parresol 1999), and uncorrected biomass
estimates are theoretically expected to underestimate the
real value. A simple, first order, correction for this effect
consists of multiplying the estimate by the correction
factor:

CF ¼ exp
RSE2

2

� �
ð7Þ

which is always a number greater than 1, and where, here
again, RSE is obtained from the model regression pro-
cedure. The larger RSE is, the poorer the regression
model, and the larger the correction factor. To show the
tendency of the final regression model, we plotted the
model’s relative error against AGB, andwe smoothed this
plot using a lowess procedure (locally weighted scatter-
plot smoothing, Cleveland 1979; Nelson et al. 1999).

Results

Biomass-diameter-height regression (model I)

We tested model I for 20 sites, and 1,808 trees (Fig. 2).
We tested the following explanatory variables: D,H, and
q, forest type, successional status, and regional location.
The most important predictive variables were D, H, q,

Table 2 Results of the regression analyses with model I, assuming that all four parameters depend on the type of forest, or that some of
them are fixed. Only six alternative models are reported, corresponding to the most parsimonious ones

Model Forest type a b 1 b 2 b 3 df RSE r2 AIC

ln(AGB)=a+b 1 ln (D)+b 2 ln(H)+b 3 ln (q)
I.1 Dry �2.680 1.805 1.038 0.377 312

Moist �2.994 2.135 0.824 0.809 1344 0.302 0.996 818
Wet �2.408 2.040 0.659 0.746 139

I.2 All types �2.801 2.115 0.780 0.809 1,804 0.316 0.969 971
ln(AGB)=a+b 2 ln(D

2 Hq)
I.3 Dry �2.235 – 0.916 – 314

Moist �3.080 – 1.007 – 1,346 0.311 0.996 913
Wet �2.605 – 0.940 – 141

I.4 All types �2.922 – 0.990 – 1,806 0.323 0.967 1,050
ln(AGB)=a+ln(D2 Hq)
I.5 Dry �2.843 – – – 316

Moist �3.027 – – – 1,349 0.316 0.989 972
Wet �3.024 – – – 143

I.6 All types �2.994 – – – 1,808 0.324 – 1,053

Parameters a, b 1, b 2, and b 3 are the model’s fitted parameters. The best-fit parameters are reported for each model, together with the
degrees of freedom (df), residual standard error (RSE), squared coefficient of regression, and Akaike Information Criterion (AIC)
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and forest type. Including site, successional status,
continent, or forest type did not improve the quality of
the fit. Results for the six variants of model I are sum-
marized in Table 2. The model including all four pre-
dictive variables performed best in all cases, but the
simpler models ln(AGB)=a+b2 ln(D

2Hq), and ln(AG-
B)=a + ln(D2Hq) gave good fits. Wood specific gravity
was an important predictive variable in all regressions.

To test the consistency of our model, we compared
the summed AGB as measured at each site and as esti-
mated by our regression models (Table 3). All models
tended to overestimate the true biomass by 0.5–6.5%
when averaged across sites. The models’ predictions
made an error over ±20% at five sites out of 21:

BraRond, Kaliman1, Llanosol, NewGuinea, and Puer-
toRi. Small sample size and the presence of a few very
large trees may help explain some of this overall poor
performance at these sites. The model that best predicted
the stand level AGB was model I.3, similar to that of
Brown et al. (1989). In the case of moist forests, the
predicted value for b was very close to 1, and model I.5
was chosen instead. The standard deviation of all
divergences between observed and predicted stand bio-
mass, was within 11.8–15.6%, and complex models did
not produce better results than simpler ones. For trees
‡20 cm only, the models were also correct to within 15%
with a bias of �1–6.2% (results not shown).

Biomass-diameter regression (model II)

Model II was tested for 27 sites, and 2,410 trees (Fig. 3).
The most important predictive variables were D, q, and
forest type. In this case, the model’s predictive power was
improved if mangrove forests were considered as a fourth
group. Forest type was an important predictive variable,
as it contributed to significantly reduce both RSE and
AIC. The most parsimonious model was obtained when
the parameters a and b varied with forest type, but not c
and d. As for models of type I, we provided a comparison
with simpler models (Table 4). Averaged across sites, the
models all overestimated the true AGB by 5.5–16.4%,
and the standard deviation of error was 19–30.7%, sub-
stantially larger than for models of type I (Table 5). The
six models predicted site-level AGB with an error of over
±20% for 8–14 sites out of 27, depending on the model.
Models that did not include forest type as a predictive
variable (models II.2, II.4, and II.6) systematically over-
estimated the AGB of wet forest sites, sometimes by over
50%. Models that did not include higher order polyno-
mial terms in D (models II.5 and II.6) led to the most
serious overestimation in AGB, due to an overestimation
of the biomass of the largest trees (results not shown).

Choice of the best predictive models

The overall best model, depending on whether total tree
height H is available, was: Dry forest stands:

AGBh iest ¼ exp �2:187þ 0:916� ln qD2H
� �� �

� 0:112� qD2H
� �0:916

AGBh iest ¼ q� exp �0:667þ 1:784 lnðDÞð
þ 0:207 ln Dð Þð Þ2�0:0281 ln Dð Þð Þ3

�
Moist forest stands:

AGBh iest¼ exp �2:977þ ln qD2H
� �� �

� 0:0509� qD2H

AGBh iest ¼ q� exp �1:499þ 2:148ln Dð Þð
þ 0:207 ln Dð Þð Þ2�0:0281 ln Dð Þð Þ3

�

Fig. 2 Regression between the logarithm of qD2H and the
logarithm of aboveground biomass (AGB) for the three forest
types (wet, moist and dry forests). Each dot corresponds to an
individually weighed tree. The corresponding regression models are
summarized in Table 2
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Moist mangrove forest stands:

AGBh iest¼ exp �2:977þ ln qD2H
� �� �

� 0:0509� qD2H

AGBh iest ¼ q� exp �1:349þ 1:980ln Dð Þð
þ 0:207 ln Dð Þð Þ2�0:0281ðln Dð ÞÞ3Þ

Wet forest stands:

AGBh iest ¼ exp �2:557þ 0:940� ln qD2H
� �� �

� 0:0776� qD2H
� �0:940

AGBh iest ¼ q� exp �1:239þ 1:980ln Dð Þð
þ 0:207 ln Dð Þð Þ2�0:0281ðlnðDÞÞ3Þ

These equations already include the correction factor
(Eq. 7). The symbol ” means a mathematical identity:
both formulas can be used in the biomass estimation
procedure. The standard error in estimating stand bio-
mass was 12.5% if H is available, and 19.5% if H is not
available. For these two models, smoothed residuals
with the lowess method were plotted in Fig. 4. We found
that locally, the error on the estimation of a tree’s bio-
mass was on the order of ±5%.

Discussion

AGB regression models with tree height

A number of previous studies have attempted to
produce general biomass regression models for the
tropics. Dawkins (1961) collected data from forests in
Trinidad, Puerto Rico, and Honduras. He used 38
trees from 8 different species. He predicted that a

single biomass equation, ÆAGB æest � 0.0694 (qD2H),
should hold across these species. Later, Ogawa et al.
(1965), contrasted results from four forests stands in
Thailand, a dry monsoon forest, a mixed savanna-
monsoon forest, a savanna forest, and a tropical rain
forest. They found that the variable D2 H was a
suitable predictor of total tree AGB across this gra-
dient and proposed the general equation ÆAGBæest
=0.0430 (D2 H)0.950 (n = 119). More recently, Brown
et al. (1989) constructed two different models includ-
ing dbh and height as predictive variables, one for
moist forests (n=168, RSE=0.341), and one for wet
forests (n=69, RSE=0.459). They also proposed an
equation including wood specific gravity, only for
moist forests (n=94, RSE=0.247). This last model
had a much smaller RSE. This suggests, that including
wood specific gravity leads to an important improve-
ment for AGB estimation models, as confirmed in the
present study. We should also mention Cannell’s
(1984) model relating stand level basal area and
maximal tree height to stand level AGB. This model
was validated with a large compilation of studies
published across broadly variable vegetation types.
Malhi et al. (2004) recently followed a strategy similar
to Cannell’s and developed a stand-level regression
model. This approach is potentially very useful, but it
also needs to be calibrated across regions with tree-
level studies.

The present work generalizes these previous results in
several ways. We assessed the validity of the regression
model ln(AGB)=a+b1 ln(D)+b2 ln(H)+b3 ln(q)
across a number of different forests, and asked whether
a single model could be used across all sites. Based on
criteria of goodness of fit and of parsimony, we selected
a regression model using the compound variable q D2 H

Table 3 Validation of model I. Total aboveground biomass (AGB) was estimated for each of the six models summarized in Table 2
(model I.1–I.6), and the departure between estimated and measured was reported (in %)

Site Nb trees Total biomass I.1 I.2 I.3 I.4 I.5 I.6

Australia 46 3240 9.66 0.76 8.81 �3.63 12.30 �3.20
BraMan1 315 147,928 10.16 6.76 9.75 7.35 7.44 11.33
BraMan2 123 13,004 �0.56 1.11 �8.70 �6.28 �8.82 �5.52
BraPara1 127 105,147 5.07 0.77 3.29 0.09 0.73 4.38
BraPara3 21 15,982 0.27 �1.96 0.42 �0.70 �1.24 2.33
BraRond 8 20,117 �25.58 �28.78 �27.18 �29.60 �29.05 �26.48
Cambodia 71 25,739 �17.20 18.10 �18.04 9.89 11.90 15.61
FrenchGu 360 138,029 �0.50 �3.63 �2.75 �4.71 �4.72 �1.27
IndiaCha 23 5,954 �4.01 6.94 �0.39 �3.69 13.56 �2.10
Kaliman1 23 44,376 27.73 21.50 26.56 22.56 23.39 27.86
Kaliman2 69 99,027 13.17 5.81 16.00 9.77 12.03 16.08
Llanosec 24 1,040 16.99 19.78 �6.11 �1.83 �5.52 �2.10
Llanosol 27 119,886 �9.84 �14.99 �22.08 �25.76 �24.54 �21.80
Malaysia 139 121,488 4.43 �0.40 5.21 1.93 2.60 6.31
MfrenchG 29 5,495 7.28 7.03 9.15 9.35 7.92 11.83
MGuadel 55 9,110 11.05 12.99 10.27 12.12 9.70 13.67
NewGuinea 42 27,640 12.84 49.21 9.46 36.67 37.11 41.65
PuertoRi 30 3,506 2.41 21.02 �0.81 12.79 11.05 14.73
Sumatra 29 9,477 6.41 5.37 �1.85 �1.72 �2.98 0.53
Yucatan 247 51,438 1.99 4.34 0.49 �0.09 18.29 1.98
Mean error 3.59 6.59 0.57 2.23 4.56 5.29
Standard error 11.85 15.63 12.82 14.58 15.21 15.26
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as a single predictor. The goodness of fit of our model
was measured by the residual standard error of the fit
(RSE), and by a penalized likelihood criterion (AIC).
This model estimated accurately the AGB at most sites,
although they encompassed dry, moist, and wet forests,
lowland and montane forests, and secondary and old-
growth forests. Hence, provided that diameter, total

height and wood specific gravity of a tree are available,
its AGB is easily estimated, irrespective of the tree spe-
cies and of the stand location. We emphasize that the
site name was not a significant factor in the linear model.
This shows that there was no detectable investigator’s
effect in our dataset (see Wirth et al. 2004 for a related
discussion).

Table 4 Results of the regression analyses with model II, assuming that all five parameters depend on the type of forest, or that some of
them are fixed

Model Forest type a b c d b 3 df RSE r2 AIC

ln(AGB)=a+b ln (D)+c(ln (D))2+d(ln (D))3+b3 ln(q)
II.1 Dry �1.023 1.821 0.198 �0.0272 0.388 401

Moist �1.576 2.179 1.036 1,501 0.353 0.995 1,837
Wet �1.362 2.013 0.956 415
Mangrove �1.265 2.009 1.700 81

II.2 All types �1.602 2.266 0.136 �0.0206 0.809 2,405 0.377 0.958 2,145
ln(AGB)=a+b ln(D)+c(ln(D))2+d(ln(D))3+ln(q)
II.3 Dry �0.730 1.784 0.207 �0.0281 – 402

Moist �1.562 2.148 – 1,502 0.356 0.996 1,869
Wet �1.302 1.980 – 416
Mangrove �1.412 1.980 – 82

II.4 All types �1.589 2.284 0.129 �0.0197 – 2,408 0.377 0.958 2,146
ln(AGB)=a+bln(D)+ln(q)
II.5 Dry �1.083 2.266 – – – 402

Moist �1.864 2.608 – – – 1,502 0.357 0.996 1,883
Wet �1.554 2.420 – – – 416
Mangrove �1.786 2.471 82

II.6 All types �1.667 2.510 – – – 2,408 0.378 0.957 2,159

Parameters a, b, c, d, and b 3 are the model’s fitted parameters. The best fit parameters are reported for each model, together with the
degrees of freedom (df), residual standard error (RSE), squared coefficient of regression, and Akaike Information Criterion (AIC)

Fig. 3 Regression between the
logarithm of D and the
logarithm AGB for the four
forest types (wet, moist, dry,
and mangrove forests). Each
dot corresponds to an
individually weighed tree. The
corresponding regression
models are summarized in
Table 4
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The simplest predictive model was: ÆAG-
Bæest=0.0509 · q D2 H (model I.6). We did not select
this model because our statistical analyses showed that
this model should depend on forest type. Yet, it is
interesting to discuss this very simple model in detail.
According to our result, the form factor F in Eq. 1
should be equal to 0.0648, close to the predictions of
Dawkins (1961) and Gray (1966) for broadleaf tree
species. Engineering arguments (MacMahon and Kro-
nauer 1976) suggest that trees taper as a power law
along the main stem: that is, trunk diameter at height z

should be Dz= D0 (1�z/H)c. The exponent c charac-
terizes the stem shape, being 0 in the case of a pole, and
1 in the case of a perfectly conical stem. It is a simple
matter of calculus to show that F and c are related
through F=0.1/(2c+1), and that for our model, c =
0.271. This result should be compared to the area-
preserving branching hypothesis of West et al. (1999),
which would amount to setting c = 0 (no taper), and
to ignoring structural considerations. Our regressions
were not improved by the inclusion of a cross-continent
variation. Thus, we have shown that tree allometry is

Table 5 Validation of model II. Total AGB was estimated for each of the six models summarized in Table 4 (model II.1 to II.6), and the
departure between estimated and measured was reported (in %)

Site Nb trees Total biomass II.1 II.2 II.3 II.4 II.5 II.6

Australia 133 26847 0.57 1.41 1.58 33.61 2.81 34.69
BraMan1 315 147928 18.39 22.99 17.26 �1.43 25.10 5.96
BraMan2 123 13004 20.70 17.63 21.37 10.83 18.88 12.62
BraMatoG 34 26158 34.89 38.38 34.23 13.46 40.49 20.70
BraPara1 127 105147 4.98 14.64 4.10 �13.19 16.55 �2.77
BraPara2 15 5741 �18.41 �21.11 �18.67 �28.20 �19.97 �27.48
BraPara3 21 15982 5.15 2.25 4.45 �10.24 3.88 �8.80
BraRond 8 20117 �23.94 �18.18 �24.55 �37.94 �16.83 �31.01
Cambodia 71 25739 �24.37 �10.56 �25.30 �0.39 �10.70 24.66
Colombia 52 136122 �28.18 �25.52 �28.76 �8.81 �25.52 0.61
CostaRica 96 177466 17.33 24.18 16.32 50.17 24.18 69.06
FrenchGu 362 138048 1.78 6.25 1.25 �14.57 7.87 �7.69
IndiaCha 23 5954 32.62 31.67 34.66 72.51 34.21 71.31
IndiaKarna 188 125855 14.67 10.22 13.44 �1.31 12.17 �0.95
Jamaica 86 6109 52.89 48.35 51.58 78.94 47.94 82.24
Kaliman1 23 44376 8.48 13.24 8.24 �10.61 14.85 �2.97
Kaliman2 69 99027 �5.55 11.80 �6.81 �24.76 13.90 �9.30
Llanosec 24 1040 21.05 22.03 24.48 16.22 22.14 22.02
Llanosol 27 119886 �11.89 14.27 �11.73 �29.38 15.60 �7.52
Malaysia 139 121488 �7.81 �3.36 �8.36 �23.87 �1.84 �17.28
MfrenchG 29 5495 �12.34 26.48 �12.74 16.23 �11.60 15.65
MGuadel 55 9110 9.88 51.80 9.21 43.39 9.46 41.94
NewGuinea 42 27640 8.67 12.06 6.70 35.25 11.08 50.35
PuertoRi 30 3506 17.72 13.67 16.81 39.60 13.47 42.00
Sumatra 29 9477 21.80 19.21 22.22 6.36 20.60 8.81
Venezuela 41 27379 �0.90 �2.65 �0.92 22.46 �2.11 26.44
Yucatan 248 51937 �1.26 �0.28 �1.17 29.42 0.11 30.72
Mean error 5.81 11.88 5.51 9.77 9.88 16.44
Standard error 19.28 19.05 19.48 30.67 17.66 29.46

Fig. 4 Structure of the residuals
(percent difference between real
and predicted biomass for
individual trees) plotted against
the logarithm of predicted
AGB, smoothed by a lowess
method. Left panel shows
results of the best type I model
including q, D, and H as
predictors and coefficients
tailored to four forest types;
right panel corresponds to the
best type II model, which
includes q, and D as predictors
and coefficients by forest type
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conserved across sites on different continents. These
sites typically contained no species in common, thus
this character is highly conserved across the phylogeny
of self-supporting woody plants. Plant form is strongly
selected, as photosynthetic production should be allo-
cated optimally into construction features. It would be
important to further test this model for temperate
broadleaf trees. Published single-species regression
models suggest that this is indeed the case (Tritton and
Hornbeck 1982).

AGB regression models without tree height

Tree height measurements are often difficult to make
because treetops are hidden by the canopy layer. Also,
historical tree inventories are very valuable in ecological
research, but they may not have recorded tree height.
For these various reasons, it has often been claimed that
it was better to simply use the trunk diameter as a pre-
dictive variable for the AGB (cf. for instance Ter-Mi-
kaelian and Khozurkhin 1997, and references therein,
however see Wirth et al. 2004 for different conclusions).
Here, we show that the situation is more complex for the
tropical forest biome, where mixed-species regression
models should be used, than the temperate forest biome,
where single species models are used. The best predictive
models were forest type-dependent. Also, as previously
noted by Chambers et al. (2001b), AGB does not follow
a simple power-law scaling relation with stem diameter
alone. The ‘universal’ power-law allometry proposed by
West et al. (1999) considerably overestimates the mass of
the largest trees. The polynomial terms in our model II,
although yielding only small improvements in the
goodness of fit measures (RSE and AIC), enable us to
offset the overestimation observed with West et al.’s
(1999) power-law model.

This departure from ideal power-law allometry can
be interpreted as follows. The largest trees in an old-
growth moist tropical forest can be older than 100–
200 years (indeed some trees have been 14C dated over
1,000 years, Chambers et al. 1998). These trees tend to
be smaller and lighter than predicted by the ideal model
because throughout life span they have been subject to
the ‘forces of nature’, that often cause them to develop
hollow trunks and/or lose large branches. Further,
contrary to understory trees, canopy trees have no
incentive to outgrow but continue to increase their
crown size to maximize light interception.

On finding the ‘best’ statistical model

A considerable amount of literature has sought to find
the ‘best’ biomass regression model for mixed-species
forests (c.f. Brown et al. 1989; Shepashenko et al. 1998),
or for single-species forests (c.f. Wirth et al. 2004). Most
of these studies constructed complex models, with many
fitted parameters, in order to minimize the goodness of

fit measures. However, the principle of parsimony stip-
ulates that the quality of a fit should depend on the
model complexity, as measured by the number of
parameters in the models (Burnham and Anderson
2002). To account for this principle, we selected only two
sets of nested models (I and II) based on their mathe-
matical simplicity, and discussed the performance of
these models using the AIC as a selection criterion.
However, it is important to realize that no simple sta-
tistical procedure permits to unambiguously decide
which model is the best in the case of complex, inho-
mogeneous datasets (Burnham and Anderson 2002).
Our dataset is almost certainly not free of measurement
error, and it is not homogeneous either, being a collec-
tion of independent studies led by different investigators,
and collected during a time span of over 40 years. These
limitations usually tend to favor complex models over
simple ones: simple model may be incorrectly rejected.
Therefore, we do not exclude that more parsimonious
models than the ones we recommend here, may in fact
predict correctly the AGB of tropical trees. Our models
represent a consensus among many studies, and the
current state of knowledge; further field work should be
carried out for improving their quality and their regional
coverage.

Among type II models, the simplest relationship is
II.6: ln(AGB)=a+ln(q)+b ln(D), with a and b constant
across forest types. However, not only was this model a
poor fit of the data (RSE = 0.378), it also poorly esti-
mated the aboveground stand biomass of over 50% of
the sites. That the model parameters should vary across
forests is easily interpretable, because forest types with
similar diametric structure may vary considerably in
canopy height.

During the validation procedure, the predicted total
aboveground stand biomass differed by over 20% from
themeasured value in several sites.Most of these sites had
less than 30 trees, and in such small samples, only a few
trees may bias the overall prediction. Our models tend to
overestimate the AGB by 0–5%. Several authors have
already noticed that such models tend to overestimate
aboveground biomass (Magdewick and Satoo 1975). We
believe that this overestimation cannot be offset without
explicitly accounting for the log-transform correction
factor CF=exp(RSE2/2) (Saldarriaga et al. 1988). In-
deed, a regression model should account for as many
known sources of bias as possible, even if they result in a
slightly worse fit. We therefore included this correction
term in our final statistical model. Duan (1983) suggested
an even better correction procedure for back-transform-
ing the data (see Wirth et al. 2004). This could be another
way of improving the models reported here.

Recommendations for measuring AGB in tropical
forest stands

The motivation for this study was to provide consensus
mixed-species AGB regression models for a broad range
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of forest types, and to reduce the likelihood of estima-
tion errors due to the use of improper models. Here, we
focused only on total AGB. Models for belowground
biomass estimation can be found in Cairns et al. (1997).
It should also be mentioned that most studies are con-
cerned with evaluating forest carbon pools, not biomass
pools. It has traditionally been assumed that the carbon
content of dry biomass of a tree was 50% (Brown and
Lugo 1982; Roy et al. 2001; Malhi et al. 2004), however
it should be emphasized that wood carbon fraction may
exhibit some small across species variation (Elias and
Potvin 2003).

The general method for estimating AGB from
tropical forest stands and for assessing error in these
protocols is described in Chave et al. (2004), and Fig. 5
summarizes the necessary information for this proce-
dure. We assume here that the forest plots have been
correctly designed, are large enough, and the tree
diameters are measured accurately (above buttresses, if
necessary). Depending on the data available, one of the
two models presented above should be used. If D, H,
and q are available for each tree, then the model using
qD2H as a predictive compound variable should be
used (three different models for dry, moist, or wet
forest types). If total tree height is missing, then a
model using q and D as predictive variables should be
used instead, with four different models for dry, moist,
mangrove, or wet forest types. The AGB estimate
should be accompanied by an estimation of the error
due to both data measurement and model uncertainty
(Cunia 1987; Chave et al. 2004). The error due to the
measurement of dbh, height, or wood density can be
factored in just one error term (Chave et al. 2004,
Appendix A). The standard deviation measuring the
error due to the regression model is given
by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CF2 � 1

p
� AGBh i;where CF is the correction fac-

tor and ÆAGB æ is the AGB estimate (Parresol 1999;
Chave et al. 2004).

Wood specific gravity is an important predictive
variable in all of these models. Its importance may not
be obvious if one is interested in estimating the biomass
in an old-growth forest dominated by hardwood species,
spanning a narrow range of wood densities. However,
Baker et al. (2004) have shown that ignoring variations
in wood density should result in poor overall prediction
of the stand AGB. Direct wood density measurements
are seldom available for the trees in permanent forest
stands. It is recommended to use a species-level average
(Brown et al. 1989; Nelson et al. 1999; Chave et al.
2003), or, if detailed floristic information is unavailable,
a stand-level average (Baker et al. 2004). Compilations
of species-specific wood specific gravity are being made
available to facilitate this procedure (Reyes et al. 1992;
Wood Density database http://www.worldagroforest-
ry.org/sea/Products/AFDbases/WD; J. Chave et al. in
preparation).

The use of tree height as a predictive variable also
improved the quality of the model. However, this vari-
able is usually not available for censused trees. While
models ignoring total tree height should be applicable in
most forests, caution should be exerted when using
them. For instance, the wet forest equation II.3 pre-
dicted a very large AGB stock for the montane forest at
Blue Mountains, Jamaica (see Table 5). This forest is
regularly impacted by hurricanes and is dominated by
short trees. In this case, height is a crucial variable, and
ignoring it would result in an overestimation of the
forest AGB. The alternative solution is to construct a
stand-specific diameter-height allometry between dbh
and total height to estimate the total height of each tree
in permanent plots (Ogawa et al. 1965; Brown et al
1989). The estimated tree height could in turn be used in
the biomass regression model I.3 (cf. Fig. 5) although
this of course will increase the regression error in the
biomass estimate.

Regression models should not be used beyond their
range of validity. The models proposed here are valid in
the range 5–156 cm for D, and 50–1,000,000 for q D2 H.
We stress that in the models presented here, D should be
measured in centimeter, H in meter, and q in grams per
cubic meter. The resulting AGB estimated from the
equation is then in kilograms. Moreover, q should rep-
resent an oven dry mass (103�C) divided by green vol-
ume, not an air-dry wood density. Finally, these
equations should in principle only be used for broadleaf
tree species, and different models should hold for coni-
fers, palms, and lianas. We are hoping that these will
improve the quality of tropical biomass estimates, and
bring consensus regarding the contribution of this biome
to the global carbon cycle.
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