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Abstract: Many analyses of ecological networks in recent years have introduced new indices to describe network 

properties. As a consequence, tens of indices are available to address similar questions, differing in specific detail, 

sensitivity in detecting the property in question, and robustness with respect to network size and sampling intensity. 

Furthermore, some indices merely reflect the number of species participating in a network, but not their interrelationship, 

requiring a null model approach. Here we introduce a new, free software calculating a large spectrum of network indices, 

visualizing bipartite networks and generating null models. We use this tool to explore the sensitivity of 26 network indices 

to network dimensions, sampling intensity and singleton observations. Based on observed data, we investigate the 

interrelationship of these indices, and show that they are highly correlated, and heavily influenced by network dimensions 

and connectance. Finally, we re-evaluate five common hypotheses about network properties, comparing 19 pollination 

networks with three differently complex null models: 1. The number of links per species (“degree”) follow (truncated) 

power law distributions. 2. Generalist pollinators interact with specialist plants, and vice versa (dependence asymmetry). 

3. Ecological networks are nested. 4. Pollinators display complementarity, owing to specialization within the network. 5. 

Plant-pollinator networks are more robust to extinction than random networks. Our results indicate that while some 

hypotheses hold up against our null models, others are to a large extent understandable on the basis of network size, rather 

than ecological interrelationships. In particular, null model pattern of dependence asymmetry and robustness to extinction 

are opposite to what current network paradigms suggest. Our analysis, and the tools we provide, enables ecologists to 

readily contrast their findings with null model expectations for many different questions, thus separating statistical 

inevitability from ecological process. 
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INTRODUCTION 

 The long-standing quest of community ecology is to find 
patterns in species assemblages (Strong et al. 1984; 
Diamond and Case 1986). A first step is to understand why 
species are as abundant as they are, why they occur where 
they occur, and how species richness emerges from 
evolution and environmental constraints (Krebs 2002). A 
second step is to find generalizable pattern beyond these 
first-order processes: how communities assemble (Diamond 
1975; Weiher and Keddy 1999), which species traits make 
communities stable (May 1973; McCann 2000), and which 
processes govern community structure (Berlow 1999; 
Berlow et al. 2004).  

 In recent years, bipartite interaction networks (in ecology 
mainly interaction networks with two trophic levels) gained  
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more prominence. This research has produced new indices 
for interaction networks (e.g. Bersier et al. 2002; Blüthgen et 
al. 2006), detected various patterns in them (e.g. Dunne et al. 
2002; Olesen and Jordano 2002; Jordano et al. 2003; 
Vázquez and Aizen 2004) and provided new stimulus to 
research into evolutionary mechanisms within communities 
(e.g. Lewinsohn et al. 2006; Rezende et al. 2007; Mouillot et 
al. 2008) and to the link between land use/landscape 
structure, network structure and ecosystem function 
(Vázquez and Simberloff 2003; Fortuna and Bascompte 
2006; Tylianakis 2008). 

 While many of the proposed indices may provide insight 
into ecologically or evolutionary important aspects of 
bipartite networks, most of them have not been scrutinized 
for their sensitivity to first-order aspects of the network 
analyzed, such as its dimensions (number of species in 
higher or lower trophic level), asymmetry of network 
dimensions (Blüthgen et al. 2007), marginal abundance 
distributions (Vázquez and Aizen 2003; Blüthgen et al. 
2008) or number of observations per species (interaction 
density: Nielsen and Bascompte 2007). There is a real risk 



8    The Open Ecology Journal, 2009, Volume 2 Dormann et al. 

that some indices heralded as ecologically significant 
descriptors of networks may actually be mere reflections of 
the sampling properties of the underlying network (Blüthgen 
et al. 2008). If so, the ecological interest of network would 
lie in the question of why a network has a given number of 
species, and why they are as abundant as they are, but not in 
the way they interact, since that would have to be considered 
as random. To correct for such artifacts, null models should 
and can be employed (Gotelli and Graves 1996; Vázquez and 
Aizen 2003, 2004; Vázquez et al. 2007). Finally, there are 
very few studies that assess several different network indices 

(Blüthgen et al. 2007; Nielsen and Bascompte 2007; 
Vázquez et al. 2007; Blüthgen et al. 2008), hence it remains 
unclear how correlated their response are and thus whether 
they respond to the same network properties. 

 In this study, we provide A) a brief overview of common 
indices and metrics of bipartite interaction networks and B) a 
systematic evaluation of how first-order network features 
and scarce observations affect them. Specifically, we 
investigate how network indices are affected by network 
dimensions, sampling intensity, singleton observations and 

 

 
Fig. (1). A network matrix (top) and its bipartite graph (bottom). Shading of matrix entries indicates number of observations. Sequence of 

species is identical in both network visualizations (minimized crossing of lines). Dataset: Motten (1982). 
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errors. This leads to C) an analysis of the interrelationship of 
bipartite network indices. Finally, D), we re-assess some of 
the most prominent hypotheses on network topology with 
data from 19 pollination networks by comparing observed 
pattern to expectations based on different null models. To 
allow for maximum reproducibility, standardization and 
transparency, we also provide a new software tool for the 
visualization and analysis of bipartite networks. 

BIPARTITE NETWORK INDICES 

 For simplicity, we refer to all pattern-reporting statistics, 
metrics, indices and statistics as indices. We compiled a list 
of indices from the literature on interaction networks, which 
is unlikely to be exhaustive, nor will every index describe an 
ecological process or hypothesis. Furthermore, not all 
indices used in the exploration of multitrophic food webs 
have an ecological meaning for bipartite networks. On the 
other hand, some indices invented for biogeographical 
analyses can be employed for bipartite networks, since they 
describe pattern caused by (lack of) competition within a 
trophic level. 

 We define the following entities: 

L number of realized links in a network 

I number of lower trophic level species (e.g. plants, 
prey) 

J number of higher trophic level species (e.g. 
pollinators, parasitoids) 

m total number of interactions for all species 

aij number of interactions between species i from the 
lower and species j from the higher trophic level, also 
referred as “link weight” 

Ai  total number of interactions of species i from the 

lower trophic level, thus

  

A
i

= a
ij

j=1

J

 

Aj  total number of interactions of species j from the 

higher trophic level, thus, 
=

=

I

i

ijj aA
1

 

 We refer to a “link” as one or several interactions 

between a pair of species (one from the lower, one from the 

higher trophic level), and to the number of observations of a 

link as “interactions”. For example, in Fig. (1a) the number 

of non-white cells equals L, while the width of the black bars 

in Fig. (1b) represents the number of observed interactions. 

On average, the number of interactions per species pair is 

  
a

ij
= m / ( IJ )  and referred to as “observation density”. 

 The network indices investigated here are defined as 
follows: 

(a) Indices Based on Unweighted Links (Qualitative 

Webs) 

Links per Species 

 Mean number of links per species, 
  
Lx = L / ( I + J ) . 

 

Connectance 

 Realized proportion of possible links. C = L/(IJ). This is 
the standardized number of species combinations often used 
in co-occurrence analyses (Gotelli and Graves 1996); also 
identical to 2-species motifs sensu Milo et al. (2002). 

Cluster Coefficient 

 Mean, across all species, of the number of realized links 
divided by the number of possible links for each species (i.e. 
average per-species connectance). The cluster coefficient 
was introduced by Watts and Strogatz (1998) as one of two 
criteria defining a small-world network. 

Web Asymmetry 

 Balance between numbers in the two levels W = (I–
J)/(I+J). Positive numbers indicate more lower-trophic level 
species, negative more higher-trophic level species; rescaled 
to [–1, 1] (see Blüthgen et al. 2007). 

Number of Compartments 

 Compartments are sub-sets of the web which are not 
connected (through either higher or lower trophic level) to 
another compartment (Jordan blocks in the mathematical 
nomenclature). Proposed by Pimm (1982) or, in a less strict 
version, by Dicks, Corbet and Pywell (2002), and argued to 
reveal evolutionary processes (Guimarães et al. 2007a). If 
several compartments exist, we can also compute 
compartment diversity as a measure of their size 
heterogeneity (Tylianakis et al. 2007). 

Extinction Slopes 

 Exponent (“slope” a) of a power function (y = 1 – x
a
) 

fitted to the secondary extinction sequence in one trophic 
level, following random extermination of species in the other 
trophic level (Memmott et al. 2004). The higher the slope 
estimate, the less the network is affected by extinctions. 

Degree Distribution 

 The number of links of a species is also called the 
species’ degree. Jordano et al. (2003) proposed that plant-
animal networks may show scale invariance, as indicated by 
the presence of a power law in species degrees. They report 
on consistently better fits of the truncated power law, 
hypothesizing that such patterns may arise from 
morphological mismatch or phenological uncoupling. The 
crucial step for this analysis is how often an exponential, 
power-law or truncated power-law provides the best fit to the 
data. We calculate degree distributions for the species of 
each trophic level separately. 

Mean Number of Shared Hosts 

 The simplest possible measure of co-occurrence and 
hence similarity in host preferences (Roberts and Stone 
1990; Stone and Roberts 1992). 

Togetherness 

 Mean number of co-occupancies across all species-host-

combinations; the whole matrix is scanned for submatrices 

of the form 
 

0 1

0 1
, representing perfect matches of co-



10    The Open Ecology Journal, 2009, Volume 2 Dormann et al. 

presences and co-absences. These are counted for each 

pairwise species combination, and averaged (Stone and 

Roberts 1992). 

C-Score 

 Mean (normalized) number of checkerboard combi-
nations across all higher trophic level species. Values close 
to 1 indicate that there is evidence for disaggregation, e.g. 
through competition. Value close to 0 indicate aggregation 
of species (i.e. no repelling forces between species) (Stone 
and Roberts 1992). In contrast, low co-occurrence values 
indicate competitive displacement among species (Diamond 

1975). 

V-Ratio 

 Variance-ratio of species numbers to individual numbers 
within species. Values larger than 1 indicate positive 
aggregation, values between 0 and 1 indicate disaggregation 

of species (Schluter 1984). 

Nestedness 

 A measure of departure from systematic arrangement of 
species by niche width. The nestedness ‘temperature’ T (0° – 
100°: Atmar and Patterson 1993), measures the departure 
from a perfectly nested interaction matrix. T = 0° is defined 
for maximum nestedness: when rows and columns are 
ordered by decreasing number of links, links of each row and 
column exactly match the previous ones or represent a subset 
of them. Originally proposed for species on islands of 
different size and distance from mainland (Patterson and 
Atmar 1986; Atmar and Patterson 1993; Hausdorf and 
Hennig 2007; Moore and Swihart. 2007), nestedness was 
recently introduced into the analysis of bipartite networks 
(Bascompte et al. 2003; Guimarães et al. 2006; Lewinsohn 
et al. 2006; Guimarães et al. 2007b). However, recently the 
concept of nestedness and its quantification has received 
criticism and extensions (Brualdi and Sanderson 1999; 
Almeida-Neto et al. 2007; Moore and Swihart 2007; 
Almeida-Neto et al. 2008). For example, Blüthgen et al. 
(2008) showed that nested patterns are expected by random 
associations between species and that null models underlying 

H2’ represent quantitatively nested networks. 

(b) Indices Based on Weighted Links (Quantitative 

Webs) 

Generality 

 Mean number of prey species per predator. If links are 

unweighted, generality is G = L/J. For weighted links, 

Bersier et al. (2002) proposed to use the ‘effective’ mean 

number of links as arithmetic mean 

  

G
q

=
1

J
2

H
j

j=1

J

 or as 

weighted mean 

  

G
qw

=

A
j

m
2

H
j

j=1

J

. Hj is the Shannon diversity 

of interactions for predator species j, i.e. 

  

H
j

=

a
ij

A
j

ln
a

ij

A
ji=1

I

. 

In the bipartite package, Gqw is implemented.  

 

Vulnerability 

 Mean number of predator per prey. Analogous to 
generality, Bersier et al. (2002) proposed the effective mean 
number of links (replace j by i and J by I in the equation for 
Gqw). 

Weighted Linkage Density  

 Mean number of links per species (see above), but 

weighted by the number of interactions. Bipartite uses the 

weighted mean across the species, following Bersier et al. 

(2002). Since generality and vulnerability are known, 

weighted linkage density is given as their arithmetic mean 

(Tylianakis et al. 2007): 

  

L
q

= 0.5
A

j

m
2

H
j

j=1

J

+
A

i

m
2Hi

i=1

I

 

Interaction Evenness 

 Shannon's evenness of network interactions: 

  
E

S
=

p
ij

ln

j

p
ij

i

ln L
. It may be preferable to divide by ln IJ, 

arguing that non-existing links are also contributing 

information. Several other measures of evenness can be 

considered. One, Alatalo interaction evenness (Alatalo 

1981), was proposed by Müller et al. (1999b) as particularly 

suitable for networks. Let pij = aij/m represent the proportion 

of interactions in a cell, 

  

N
1

= exp( p
ij

ln

j

p
ij

i

)  the 

antilogarithmic Shannon entropy, and

  

N
2

= p
ij
2

ji

1

the 

reciprocal of Simpson’s index. Then Alatalo’s evenness is 

defined as: F2.1 = (N2 – 1)/(N1–1) (see Alatalo 1981, p. 200, 

for origin of this index). 

 H2’: A network-level measure of specialization, based on 

the deviation of a species’ realized number of interactions 

and that expected from each species’ total number of 

interactions (Blüthgen et al. 2006). The underlying equation 

is the same as interaction diversity (Shannon H2), but the 

value computed for the given network (H2) is standardized 

against the minimum (H2min) and maximum (H2min) possible 

for the same distribution of interaction totals: 

  

H
2

' =
H

2max
H

2

H
2max

H
2min

. The resulting H2’ ranges between 0 (no 

specialization) and 1 (perfect specialisation for given 

interaction totals). 

Interaction Strength Asymmetry 

 Quantifies the imbalance between the interaction 

strengths of a species pair. Bascompte et al. (2006) argue 

that specialised pollinators will be matched up with 

generalist plants, and vice versa. Interaction strength (or 

‘dependence’ sensu Jordano (1987) and Bascompte et al. 

(2006)) for species i in terms of its partner species j can be 

defined by the proportion of their interactions aij of the total 

interactions recorded for i (Ai), thus 
 
b

ij
= a

ij
A

i
. The 

reciprocal interaction strength for species j to its partner i is 

then 
 
b

ji
= a

ij
A

j
. Asymmetries of interaction strength can 
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be defined as
 
AS

ij
= b

ij
b

ji( ) b
ij

+ b
ji( )  (see Bascompte et al. 

2006 for a similar definition of ‘dependence’ asymmetry 

where the absolute values of ASij are calculated). The 

interaction strength asymmetry of a network is the grand 

mean of ASij. One problem with this index is that singleton 

species receive very high influence, indicating high 

dependence, while in fact they only represent rare species. In 

our version of interaction strength asymmetry, all singleton 

species are omitted from the network. Blüthgen et al. (2007) 

showed that mean dependence asymmetry in a network can 

be almost entirely explained by web asymmetry (see above) 

and proposed a modification based on their species-level di’-

index which they call specialization asymmetry. We analyze 

both a variation on Bascompte et al.’s dependence 

asymmetry (where we allow values to be positive or 

negative) and specialization asymmetry (based on log-

transformed specialization values di’ for each species). In 

either case positive values indicate a higher specialization of 

the higher trophic level. 

Niche Overlap 

 Mean similarity in interaction pattern between species of 
the same trophic level, calculated e.g. as Horn-Morisita 
similarity (Krebs 1989) or as Bray-Curtis similarity 
(Mouillot et al. 2008). Values near 0 indicate no common 
use of niches, 1 indicates perfect niche overlap. 

 We have tried to incorporate as many of commonly used 
indices as possible, but this list will not be exhaustive. One 
index we had to exclude because we do not, yet, have an 
algorithm implementing it, is modularity (Watts and Strogatz 
1998; Olesen et al. 2007). 

METHODS 

The Bipartite Package 

 We provide software to calculate all of the above indices, 
visualize networks and create several different null models. 
This software comes in the form of the R-package bipartite 
and is available freely and open source (Dormann et al. 
2008). R itself is available at www.r-project.org (R 
Development Core Team 2008). bipartite comprises 
functions to calculate all network indices presented here 
(function networklevel) as well as several other calculated at 
the level of the individual species (function specieslevel, not 
presented in this study), along with two ways to visualize 
bipartite networks (functions visweb and plotweb: Fig. 1), 
two null models (functions shuffle.web and swap.web, the 
Patefield algorithm presented below is already implemented 
in another package) and a simple generic function to 
construct artificial networks with approximately log-
normally distributed marginal abundances (function 
genweb). We included 19 pollination networks as datasets in 
the bipartite package, both as resource and to illustrate the 
functionality of bipartite’s functions, taken from the 
interaction web database of the National Center for 
Ecological Analysis and Synthesis (NCEAS), which are 
introduced below. Most importantly, all functions are 
documented in detail and the source code can be inspected 
for implementation details. Since bipartite is an open source 
product users can modify and add functionality and thus 

adapt the package to meet their own requirements. Please 
contact the authors for any further questions.  

 For some indices presented here, other software is 
available. In particular, nestedness can be calculated by the 
Nestedness Temperature Calculator (Atmar and Patterson 
1993), Aninhado (Guimarães and Guimarães 2006) and 
Binmatnest (Rodríguez-Gironés and Santamaría (2006), 
which is the program underlying the nestedness calculations 
presented here and also implemented in the R-package vegan 
(Oksanen et al. 2008). Ecosim (Gotelli and Entsminger 
2001) allows the calculation of biogeographic indices (such 
as C-score and V-ratio), while Pajek (Batagelj and Mrvar 
2003) is a software for food web analysis and visualization. 
Degree distributions can also be fit using the degreenet 
package (Handcock 2003) of the statnet bundle for R 
(Handcock et al. 2003), which specifically addresses 
exponential family random graph models. 

Simulations and Analyses 

 We carried out a systematic simulation study on random 
networks to compare the above-listed indices and to evaluate 
the effect of several network properties on the indices. 
Specifically, we were interested in two properties that differ 
widely between published pollination networks, network 
dimensions and sampling intensity, and the effect of 
singleton observations on the index estimates (since 
Kossinets 2006 has shown missing data to cause instability 
of network indices). In addition, we analyzed 19 published 
pollination networks for all the above indices and compared 
their values with those from two different null models. 

Generating Synthetic Networks 

 Our simulations are based on observed values, as found 
in the pollination networks published in the NCEAS 
interaction webs database (http://www.nceas.ucsb.edu/ 
interactionweb and included in the R-package bipartite). At 
the time of this study, 19 different quantitative pollination 
networks were available. Since our data are based on 
pollination networks, we refer to the higher and lower 
trophic level as pollinators and plants, respectively, although 
the results are independent of the study system and hence 
also apply to non-mutualistic networks (such as host-
parasitoid systems). 

 Each network is characterized by four values: number of 
plants, number of pollinators (the two dimensions of the 
network), sampling intensity (mean number of interactions 
per possible links in the network) and the standard deviation 
of the marginal distributions. To generate a network, we 
assumed log-normal distribution of plant and pollinators 
with a sampling intensity of m = 2 (median of NCEAS’ 
pollination webs) and a standard deviation of s = 1.5 (the 
median of both rows and columns of NCEAS’ pollination 
webs). With I J representing the total number of possible 
interactions in a network, the mean of each trophic level’s 
lognormal marginal distribution is I = log(J m) – 0.5 s

2
 and 

J = log(I m) – 0.5 s
2
 for plants and pollinators, respectively. 

We drew random numbers from the thus specified marginal 
distributions, observing that each of the marginal sums had 
to add to exactly L (which may lead to deviations from a 
lognormal distribution for low sampling intensities), and 
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used them as input for a Patefield algorithm for constructing 
random 2-way tables with given marginal totals (Patefield 
1981, implemented in R as function r2dtable and also the 
basis for most re-sampling-based contingency table tests 

such as 
2
 or Fisher test). 

 For the analysis of network dimensional effects, we 
varied I and J independently from 4 to 238, yielding 110 
different network dimensions. I and J were chosen in such a 
way that network asymmetry was independent of network 
size but systematically explored the full range of possible 
asymmetries (see Fig. 2, second row, fifth panel). For the 
analysis of effects of sampling intensity, we varied m in 9 
levels in the range observed in the NCEAS pollination 
networks: SI= 0.1, 0.2, 0.3, 0.5, 1, 2, 3, 5 and 10. I and J 
were set to 10 and 30, respectively, representing the median 
sizes of NCEAS pollination networks. For both analyses, 20 

replicates were generated. 

 All randomly generated webs were stored and pooled for 
the third analysis, that of singleton observation removal 
effects. Here we deleted all links recorded with only one 
interaction and then removed all species with no remaining 
link from the network.  

Real Pollination Networks and Null Models 

 We used all 19 pollination networks with quantitative 
data from the NCEAS database (see http://www.nceas.ucsb. 
edu/interactionweb for details). To investigate how much of 
the observed pattern in the different indices were due to 
network dimensions, sampling intensity, marginal 
distributions and realized number of links, we ran three null 
models (Gotelli and Graves 1996; for other examples of null 
models in network analysis see, e.g., Burns 2007, Ulrich and 
Gotelli 2007, Vázquez et al. 2003 and Guimarães et al. 
2007a). As long as only phenomenological models for 
generating food web structure are available (Allesina et al. 
2008; Clauset et al. 2008; Williams and Martinez 2008), null 
models are a valuable aid in testing the success of pattern 

generating processes. 

 Null model I is the same as for the artificial networks, i.e. 
the Patefield algorithm, based on the observed network 
marginal totals (Blüthgen et al. 2008 showed that different 
modifications of this approach yield near-identical findings). 
This null model is also called Rff (see Moore and Swihart 
2007, for a detailed discussion). Null model II is a shuffling 
algorithm, which scatters the observed interaction values in 
the matrix while maintaining the network dimensions. 
Technically this is achieved by first filling the network 
matrix diagonal and then randomly allocating the remaining 
interactions. Null model III is a swapping algorithm 
employed on a network generated by null model I, but it 
additionally constraints connectance to the same value as 
found in the original web. Technically, it starts with a 
Patefield-generated matrix and then randomly selects 2  2 
submatrices without zeros and subtracts the minimum values 
of the diagonal from the diagonal (thereby generating an 
empty cell) and adds this value to the values on the minor 
diagonal. This maintains marginal totals while reducing the 
number of links (see Gotelli 2000, whose binary version of 
this swapping algorithm inspired our null model III). This 

procedure is repeated until the number of links in the null 
model is equal to that of the observed network. Our null 
model III should yield similar results to the null model of 
Vázquez and Aizen (2003), although it is based on a 

different principle. 

 Null models will always be contentious (Gotelli and 
Graves 1996), because the level of detail they contain and 
the degree of constraint they impose is somewhat arbitrary. 
Our three null models are not comprehensive, but they allow 
us to elucidate which role marginal abundance distributions 
and realized number of links play for the various network 
indices presented here. These three null models are designed 
to be complementary, because they constrain the random 
network generation in different ways. The comparison that is 
most important to grasp is that between null model I 
(Patefield) and III (swap). The Patefield algorithm creates 
null models with marginal totals identical to those of the 
observed web, i.e. some species are common, other rare. In 
most cases, however, these null model matrices are less 
sparse than the observed, i.e. they contain more links. Null 
model III additionally constraints this property: here, the 
number of links in the null model is equal to those of the 
observed network, as are the marginal totals. Constraining 
the number of links is analogous to some characteristic 
ecological and/or evolutionary processes, variously 
described as “trait mismatch”, “morphological barriers” or 
“forbidden links” (Jordano et al. 2006; Stang et al. 2006; 
Santamaría and Rodríguez-Gironés 2007; Stang et al. 2007), 
and attributed to co-evolution of flowers and pollinators or 
hosts and parasitoids, respectively (but see Vázquez et al. 
2005). Thus, if null model I does not reproduce the observed 
data while null model III does, this may be interpreted as a 
real ecological property of the network, not a mere 
consequence of the fact that some species are more common 

than others. 

 The shuffle-algorithm (null model II) also keeps the 
number of links constant, but yields marginal distributions 
very different from the original. Comparing null model II to 
null model III allows us to elucidate if the number of links is 
more important than the marginal distributions. That means 
if both, null model II and III, reproduce the observed pattern, 
then it must be attributed primarily to the degree of realized 
links in the network, not to the shape of species abundance 
distributions. The null networks from algorithm “shuffle” are 

often highly “unrealistic”.  

 Finally, we investigated the effect of perturbing the 
observed network for the network indices, simulating for 
example misidentification, typos or aberrant behavior of 
pollinators. To do so, we randomly selected one of the 
observed interactions and added it to a random cell of the 
interaction matrix (allowing re-assignment to the cell of 
origin). The chance of assigning it to an unobserved, new 
pollinator species was set to 1/(J+1). This procedure was 
repeated until 5, 10 or 20% of all interactions were re-
arranged, thus simulating moderate to strong errors in the 

data. 

 Null models and perturbations were replicated 1000 
times, which took a desktop computer approximately four 
weeks (four days for generating the networks and three and a 
half weeks for computing the indices).  



Indices, Graphs and Null Models The Open Ecology Journal, 2009, Volume 2    13 

Analyzing Networks 

 The (110 + 9)*20*2=4760 artificial networks, the 19 
observed networks, the 1000*(3 +3)*19 = 114 000 null and 
the perturbed networks were analyzed for the indices listed 
above. Means and standard deviations across replicates were 
calculated. For the fits of the degree distributions, we 
counted the proportion of replicates which were best fitted 
by the different fitting models. No formal statistical tests of 
simulated data were carried out, since given large enough 
sample sizes any effect will be significant. Instead, we 
interpret depicted trends conservatively. 

RESULTS 

Changes in Network Indices: Simulated Networks 

 Both network dimensions and sampling intensity affect 
many of the indices introduced above (Fig. 2 and 3). Most 
indices were systematically influenced by network 
dimensions, with the exceptions of number of compartments, 
C-score and niche overlaps. For interaction strength 
asymmetry, degree distribution fits and nestedness it was 
important which trophic level contained more species and 
network dimensions in general were not very conclusive. 

Some indices were noticeably more sensitive to asymmetry 
in network dimensions when networks were small (less than 
50 species in both levels together): interaction evenness, 
connectance, cluster coefficients, H2’, interaction strength 
asymmetry, togetherness and C-score. This suggests a 
minimum network size before there indices can be used with 
confidence. 

 The patterns were even clearer for the effects of sampling 
intensity (Fig. 3; see also the similar simulations of Banasek-
Richter et al. 2004). Only interaction strength and 
specialization asymmetry showed no clear response to 
sampling intensity, all other indices were substantially 
affected.  

 The observed networks contain, on average, 39% (± 19% 
1 standard deviation) of singleton interactions, i.e. pollinator 
species that were only once observed on a specific plant 
species (although there may be further records on other plant 
species). Excluding singletons had only minor effect on 
index values (usually less than 10% change), both for 
artificial and real networks (see Fig. S1). There were some 
indices however, for which singleton observations seemed 
very influential, in particular extinction slopes, the co-

 

Fig. (2). Network dimension effects on index values. Indices insensitive to network dimensions can be interpreted at face value, while those 

sensitive require comparison with a null model. Lines in degree distribution plots are cubic regressions; dashed lines are not significant (i.e. 

P > 0.05). Error bars are ± 1 standard deviation of the mean (based on 20 replicates per datum). Note that y-axis is log-transformed for 

extinction slopes and V-ratio. Our setup limits the total number of species in both trophic levels to 280. Networks with many (>200) species 

in one trophic level will necessarily contain fewer in the other (visible as a “dent” at the right hand side in the web asymmetry scatter plot). 

This dent is also visible in several other network indices (e.g. generality, V-ratio), indicating that upper and lower limits of these indices are 

determined by the number of species in the higher and lower trophic level. 
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occurrence measures togetherness and C-score, and 
nestedness. Overall, artificial and real networks responded 
consistently to removal of singletons.  

 Another way to investigate the robustness of network 
indices was to perturb the original matrix by randomly 
allocating an observed interaction to another cell in the 
network matrix (“re-wiring”). Different levels of re-wiring 
(5, 10 or 20%) showed that most indices were little affected 
(Fig. S2). Most noticeably, links per species, connectance, 
interaction strength asymmetry and extinction slopes were 
altered by matrix perturbation. 

 The comparison of networks of different dimensions, 
different sampling intensity and the observed networks also 
reveals another point (Fig. S1): For most indices, network 
dimensions are crucial for reproducing the pattern observed 
in the real pollination networks, but sampling intensity is 
not: When network dimensions were varied widely, then 
index values are usually very different from those observed 
(first group of bars). Networks with the median dimensions 
of the observed webs but varying sampling intensity are 
usually rather similar to the observed networks (middle 
group of bars in Fig. S1). This suggests that null models 
correcting for the network dimensions are crucial, correction 
for sampling intensity are optional. However, there are 
exceptions from this pattern. Connectance, compartment 

structure, H2’, niche overlap and togetherness show moderate 
to pronounced deviations between observed and artificial 
networks. 

Changes in Network Indices: Real Networks and Null 
Models 

 From the previous analysis of artificial webs we 
hypothesized that some pattern in observed indices may be 
explicable by the networks dimensions, and to a lesser 
extend by sampling intensity. The values for all 19 
pollination networks plotted against network dimensions 
(Fig. S3) and sampling intensity (Fig. S4) are depicted in the 
appendix. 

 Fig. (4) shows a comparison of indices for the observed 
networks together with the three null models controlling for 
(1) network dimensions and marginal distributions 
(Patefield), (2) network dimensions and connectance 
(shuffle), and (3) network dimensions, interaction distri-
bution and connectance (swap). Correlations between 
observed and null model means increased from Patefield 
(|r|=0.62±0.29; Pearson correlation coefficient of null model 
vs. observed, averaged across all indices ± 1 SD) over 
shuffle (|r|=0.74±0.27) to swap (|r|=0.80±0.25), indicating 
that constraints on connectance are more important than 
those on marginal totals.  

 

Fig. (3). Sampling intensity effects on index values. Error bars are ± 1 SD based on 20 replicates. Reference lines indicate critical values (see 

index description). Degree distributions depict proportion of best fitting regression models for the 20 replicates at each level of sampling 

intensity. Note that x-axis and some y-axis were log-transformed. 
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DISCUSSION 

Sensitivity of Bipartite Network Indices to Network 

Dimensions, Dimensional Asymmetry, Sampling 
Intensity, Singletons and Errors 

 Our simulations show that most indices are strongly 
affected by network dimensions and sampling intensity. The 
importance of network dimensions was previously 
documented for dependence asymmetry and connectance by 
Olesen and co-workers (2002; 2006) and Blüthgen et al. 
(2007), who also showed that the H2’-index was robust. For 
sampling intensity, and thus realized number of links, our 
results are concordant with the findings of Banasek-Richter 
et al. (2004) and Nielsen and Bascompte (2007), who report 
on moderate to strong effects. Blüthgen et al. (2006) report 
on strong effects of the number of interactions on 
connectance, while their proposed H2’ was unaffected. For 
the biogeographic indices C-score and nestedness, Ulrich 
and Gotelli (2007a) showed an effect of matrix filling, but 
also of the distribution shape of marginal abundances. 
Simulation studies suggest that a high proportion of truly 
occurring interactions need to be recorded to accurately 
describe the network (Novak and Wootton 2008). 

 The exclusion of singleton observations has not been 
analyzed previously for networks, while it has received 

considerable attention in multivariate analysis of community 
data (Jongman et al. 1995; Legendre and Legendre 1998; 
McGarigal et al. 2000; McCune et al. 2002). Our simulations 
indicate that the removal of singleton observations had 
generally little effect, neither for artificially generated 
networks nor for observed networks. This is somewhat 
surprising, given the high proportion of singleton 
observations (around 40%) and the fact that they may 
heavily dominate some indices (see, e.g., the discussion of 
singleton species (not singleton observations) and their effect 
on dependence asymmetry in Blüthgen et al. 2007). For 
qualitative indices this insensitivity to singleton observations 
gives evidence of a random distribution of rare interactions. 
For qualitative indices however, it suggests domination by 
cells with high interactions values. If true, the flip side of 
this interpretation is a low sensitivity to changes in any cell 
apart from those with high values. An alternative explanation 
is that rare species do not contribute substantially to second-
order patterns, even questioning their ecological importance 
in pollination networks. Further research is needed to 
investigate the sensitivity of different indices to changes in 
species specialization and their interactions. 

 Similarly, error in the form of noise (caused for example 
by typos and misidentification) led to very little bias in 
network indices (Fig. S2). Only interaction strength 

 

Fig. (4). Comparison of observed network (dark gray) properties and null model values (light gray). Based on 19 pollination networks and 

means of 1000 replicate null models for each observed network. Error bars are 1 standard deviation across the 19 networks; † and * indicate 

P-values of the power of a t-test of <0.1 and < 0.05, respectively. In contrast to a t-test itself, its power indicates the probability that observed 

and null model are from different distributions. § indicates identity of values, due to constraints on null models. 
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asymmetry and extinction slopes were noticeably affected. In 
a multi-year study of pollination webs, Petanidou et al. 
(2008) reports on fluctuations in network indices larger than 
those introduced in our perturbation simulations. They 
attribute this variance to a high level of species turnover and 
less to specialization flexibility, which is the component our 
perturbation approach tests. 

 Overall, our simulations indicate a definite need for a 
careful interpretation of absolute index values. Following the 
pledges by Gotelli and Graves (1996), we strongly 
encourage the use of null models to provide a baseline for 
expectations based on non-informative network properties 
alone (see also Vázquez and Aizen 2003, 2006). Before 
addressing some current hypotheses on network structure by 

 
Fig. (5). Relationship between indices of the observed pollination networks as depicted in a cluster analysis (top: distance based on squared 

Spearman’s rank correlation coefficient) and a PCA (bottom). These two-dimensional representations hide the fact that variables plotted here 

as distant may well be correlated in other dimensions. In both cases the large network of Kato et al. (1990) was omitted, because it distorts 

the presentation (although not the outcome: see Fig. (S5)). 
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means of null models, we investigate patterns among indices 
in the following section. 

Interrelationship between Indices 

 The high correlation between connectance and several 
other indices (see Fig. (3) for simulated and Table S1 for 
observed networks) may have two causes: either connectance 
is a critical feature of networks, or the network indices 
depicted mostly measure the same property as connectance. 
The latter option is a re-wording of the claim that the various 
different indices really all measure one of two network 
features: dimensionality (i.e. number of species in various 
forms) or specialization of species (which is also related to 
connectance). By performing a cluster and a principle 
component analysis (PCA), we grouped network indices 
based on their (standardized) values for the observed 
pollination networks (Fig. 5). In the PCA, 78% of the total 
variance is captured by the first axis, which is dominated by 
the effect of number of higher level species. The second, 
much less important axis (18%) is driven by the number of 
lower trophic level species, V-ratio and generality. This 
result alone indicates that network dimensions are of 
fundamental influence on virtually all network indices. The 
cluster analysis additionally depicts significant correlations 
between several indices (i.e. high correlation between two or 
more indices). Fig. (5) shows that vulnerability and linkage 
density essentially measure the same property; so do 
connectance and cluster coefficient; and higher trophic level 
niche overlap and C-score (see also table S1 for all 
correlations). Only very few indices provide independent 
network descriptions, among them specialization asymmetry, 
nestedness and (Alatalo’s) interaction evenness.  

 Finally it is noteworthy that the response of pollination 
networks to random extinctions is highly correlated with the 
mean number of shared hosts (for the higher trophic level) 
and the number of lower trophic level species (for the lower 
trophic level). That simple network indices are highly 
correlated with extinction slopes has probably more to do 
with the simulation of extinction events than with the 
networks true ability to buffer pollinator loss: since we have 
no information on likely extinction sequences we simulated a 
random extinction sequence. Also, our correlative analysis 
does not support the view that “patterning of IS [interaction 
strength] is essential to maintaining community persistence” 
(Garcia-Domingo and Saldaña 2008, p. 342). Assuming that 
community persistence can be measured by extinction slopes 
and that interaction strengths find their representation in 
generality, interaction evenness or interaction strength 
asymmetry, no close relationship between these latter 
variables and extinction slopes was evident from the cluster 
analysis (Fig. 5). 

Testing Specific Patterns with Pollination Webs and Null 
Models 

 Our analysis above shows that some network indices are 
strongly affected by first-order properties of the network, 
such as number of species and their respective abundance. 
Second-order properties, such as connectance or nestedness, 
are hence to some extent results of first-order characteristics. 
Following the logic of Occam’s razor, interaction patterns 
that do not exceed the descriptive power of simpler, first-
order properties, may not represent a meaningful alternative 

explanation. In this section we explore to which extent first- 
and second-order properties are required to reproduce 
observed values of several established paradigms about 
properties of ecological networks by comparing observed 
quantitative pollination networks with three null models 
(Patefield = constant marginal sums; shuffle = constant 
connectance; and swap = constant marginal sums and 
constant connectance). The comparison of observed values 
and null model predictions across all networks is depicted in 
Fig. (4) (as mean values ± sd). However, averages across all 
19 pollination networks may give an incomplete and even 
misleading picture, since underestimation of high and 
overestimation of low values may well yield similar averages 
for observed and null model. Therefore, we here use 
calibration plots of null model versus observed index values 
for each network as our key statistic. 

Pattern 1: In Real Pollination Webs, Interactions have 
Degree Distributions following a (Truncated) Power 

Law, Reflecting Ecological Adaptation 

 Pattern in degree distributions have been proposed as 
presenting information on the structure of ecological 
networks (Dunne et al. 2002; Jordano et al. 2003; Montoya 
et al. 2006; Sun et al. 2006). Whatever the possible 
ecological interpretation of this phenomenon, the 19 
pollination networks support previous studies claiming 
(truncated) power law distribution of species degrees to be 
prevalent among ecological networks (but see Burns 2007).  

 Fig. (6) (bottom panels) shows that exponential and 
power fits were observed in seven networks each, but only 
exponential fits were predicted well by null models I and III. 
All null models failed to accurately predict the power and 
truncated power function fits. Overall, null model III had the 
highest success in reproducing the observed patterns in 
degree distributions: Fisher’s sign test found no significant 
difference between null model III and observed fits (74% 
correct: P = 0.168). Null models I and II were significantly 
different from observed (49 and 33% correct fits: P < 0.01 
and < 0.001, respectively). This means that first-order effects 
alone (i.e. species abundances) are insufficient to reproduce 
the observed degree distribution pattern. 

 For pollinators a similar pattern emerged (Fig. 6, top 
panels), although here null model II was more successful 
than for plants. 41, 64 and 70% of null models were correct 
(Fisher’s test for significance of difference between null and 
observed: P < 0.001, P = 0.9035 and P = 0.3515, for null 
model I, II and III, respectively).  

Conclusion 

 Degree distributions cannot be reproduced without taking 
second-order properties (in this case connectance) into 
account. Since connectance has been argued to be in itself 
the result of co-evolutionary processes (Petanidou and Potts 
2006), we tentatively conclude that also power law-type 
degree distributions may have evolutionary origin. 

Pattern 2: Pollination Network Display Asymmetry in 
their Dependencies: Specialists Interact more with 

Generalists and vice versa 

 In the evolution of specialization, pollinators that became 
specialised on a rare plant species will have been selected 
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against by population fluctuations of their hosts. Hence, we 
would expect extant pollinators to be specialised on very 
common species (Vázquez and Aizen 2006). On the other 
hand, rare plant species benefit most from attracting many 
different pollinators. As a consequence, Jordano (1987), 
Vázquez and Simberloff (2002) and Bascompte et al. (2006) 
proposed that plants and pollinators show asymmetry in their 
dependence on the mutualist, with generalist pollinators 
having specialist host plants, and vice versa. From an 
evolutionary perspective, dependence asymmetry is very 
interesting (Tylianakis 2008), because it depicts the net 

effect of a long-term evolutionary adaptation process. Their 
findings have received criticism, both for the statistic 
employed (Blüthgen et al. 2007; Vázquez et al. 2007) and 
the population consequences claimed (Holland et al. 2006).  

 Our null models explain large proportions of the variance 
in observed dependence asymmetry (Pearson’s correlation 
coefficient of r = 0.80 for all three null models). Calibration  
plots indicate null model II underestimates the observed 
pattern, while null model I and III replicate the observed 
pattern well (Fig. (7), see also Fig. (4) “Interaction strength 
asymmetry”, for a different result, where null models II and 

 

Fig. (6). Results of the three null models for degree distributions in pollination networks. Each panel depicts the percentage (of 1000 

replicate runs) of null models that yielded the same degree distribution as the observed. Observed networks were best fitted by either 

exponential (light gray), power function (middle gray) and truncated power function (dark gray). Each network is represented by one bar, top 

row are pollinators, bottom row plants. See text for statistics and Fig. (4) for a summary across all 19 networks. 

 

Fig. (7). Calibration plot for the three null models against observed dependence asymmetry. Diagonal represents a perfect reproduction of the 

observed values by the null model. Error bars are 95% confidence intervals of the 1000 replicates. Regressions are weighted by the reciprocal 

of the standard deviation of the null models (dark gray) or unweighted (light gray), and are hatched when not significant. Average distance 

between unweighted regression and diagonal is equivalent to differences between bars in Fig. (4). R
2
-values for weighted regressions are 

0.71, 0.67 and 0.64, respectively. 
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III are reproducing the pattern in the improved measure 
“interaction strength asymmetry”). The lack of difference in 
fit between null models I and III indicates that second-order 
properties are of minor importance for reproducing 
dependence asymmetry. 

Conclusion 

 Observed patterns of dependence asymmetry could be 
reproduced based on species abundances alone, with a slight 
improvement after constraining for connectance. Hence, we 
conclude that first-order effects explain most of the 
dependence asymmetry observed in pollination networks, 
but that connectance adds additional fine tuning. 

Pattern 3: Ecological Communities are Nested 

 Pollination networks have been described as being nested 
(Bascompte et al. 2003; Santamaría and Rodríguez-Gironés 
2007). In nested networks, pollinator communities on plants 
with few pollinators are subsets of plants with more 
pollinators. This measure was transferred from 
biogeography, where it is used to describe e.g. species 
assemblages on different-sized islands. It has also been 
employed in other ecological communities (Gotelli and 
Graves 1996; Brualdi and Sanderson 1999; Rohde 2001; 
Gotelli and Rohde 2002; Almeida-Neto et al. 2007). 
Recently, nestedness has been found within network 
compartments and modules, rather than across the entire 
network (Lewinsohn et al. 2006; Olesen et al. 2007). 
Previous null model analyses indicated that nestedness is a 
consequence of marginal distribution (Burns 2007; Blüthgen 
et al. 2008), which are often lognormal (Blüthgen et al. 
2008). 

 Null model I (Patefield) constructs networks with higher 
nesting (and hence lower temperature) than observed (Fig. 
(8); Pearson’s r = 0.27). The contrary is true for null model II 
(shuffle), which is consistently less nested (= higher 
nestedness temperature) than the observed networks, but in a 
similar sequence (r = 0.85). Null model III (swap) generated  
 

networks with nestedness temperature very similar to those 
observed (r = 0.87). 

Conclusion 

 Nestedness as such can easily be produced by null model 
I. However, connectance needs to be taken into account to 
yield networks similar to those observed. We thus confirm 
the specific nestedness temperature as a property of the 
network rather than of first-order properties alone. 

Pattern 4: Specialization-Induced Separation of Species 
is Rare Compared to Positive Associations among Species 

 Pollinator specialization has seen a paradigm shift over 
the last several decades. Previously heralded as a showcase 
for co-evolution by ecologists (Darwin 1862), evidence has 
now accumulated that shows strict specialization to be the 
exception rather than the rule (Waser et al. 1996; Waser 
2006). Also other communities display more often positive 
associations than specialization-induced complementarity 
(Rohde 2001; Gotelli and Rohde 2002). In the context of 
pollination networks this could mean that plants are similarly 
attractive to pollinators, even though pollinators may slightly 
differ in their preferences. Still, specialization may be higher 
than in null models (Vázquez and Aizen 2003). 

 Using the C-score as a measure of non co-occurrence, 
complementarity or “dis-occurrence”, we find observed 
levels of dis-occurrence to be significantly higher than 
predicted by marginal totals (points are below the calibration 
line in Fig. (9), upper left panel), but lower than predicted by 
connectance (points are above the line; upper middle panel). 
Again, constraining the null model both by marginal sums 
and connectance leads to the closest reproduction of 
observed values (null model III: swap). The correlation 
between observed and null model values is moderate to high 
for Patefield, shuffle and swap (Pearson’s r = 0.75, 0.68 and 
0.81, respectively), indicating that these algorithms only 
capture parts of the structuring mechanisms.  

 A similar picture emerged for the network-wide 
specialization index H2’ (Fig. 9, lower panels). Again, none 

 

Fig. (8). Calibration plot for the three null models against observed network nestedness temperature (the lower the temperature, the more 

nested). Diagonal represents a perfect reproduction of the observed values by the null model. Error bars are 95% confidence intervals of the 

1000 replicates. Regressions are weighted by the reciprocal of the standard deviation of the null models (dark gray) or unweighted (light 

gray), and are hatched when not significant. Average distance between unweighted regression and diagonal is equivalent to differences 

between bars in Fig. (4). R
2
-values for weighted regressions are 0.49, 0.73 and 0.92, respectively. 
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of the null models fully captured the pattern observed, and 
correlations were absent to high. The poor correlation 
between null model I and observed must be attributed to the 
fact that H2’ was designed to correct for species abundance, 
and hence its values should be unaffected by null model I. 

 Specialization and separation are also the basis of 
dependence asymmetry discussed under pattern 2 (Fig. 7). 
Clearly, these indices are conceptually related, but differ in 
their focus on single trophic levels (H2’ and C-score) or the 
relationship between both trophic levels (DA). As a 
consequence, their values are not correlated (DA vs. H2’: 
r=0.04; DA vs. C-score: 0.05; H2’ vs. C-score: 0.24, all P > 
0.3). 

Conclusion 

 Specialization, and hence dis-occurrence, is more 
common than would be expected from random pairing of 
species, but less than the observed connectance would 
suggest. Moderate network-wide specialization seems to be 
pervasive in pollination networks. 

Pattern 5: Real Webs are more Robust to Extinction than 
Random Webs 

 Members of ecological networks are under constant 
evolutionary pressure. Fluctuations in species abundance are 

likely to purge stiff connections from the network, in favor 
of weaker, more diffuse interactions (Berlow 1999; Berlow 
et al. 2004). Hence, we may expect real networks to be more 
stable to extinction of species than random webs (Memmott 
et al. 2004; Srinivasan et al. 2007). On the other hand, any 
step towards specialization makes a pollinator more 
vulnerable to the extinction of its forage plant. Hence, 
pollination networks that show specialization may also show 
reduced stability to extinctions. 

 Our null models I and II overestimate extinction slopes 
for secondary plant extinctions (Fig. 10 lower panels), i.e. 
plants in observed networks go extinct sooner than would be 
expected on the basis of marginal distributions or 
connectance alone. Only null model III, with its constraints 
on marginal sums and connectance, has extinction slopes 
slightly lower than those of the observed network. Similarly, 
secondary extinction slopes for pollinators are over-
estimated, meaning that observed networks are less robust to 
random extinctions than would be expected under null model 
assumptions. This pattern seems to be a logical consequence 
of specialization in networks: any increase in specialization 
will necessarily lead to a higher vulnerability to extinction of 
the mutualist (Pearson’s correlation between slopes and 
specialization index H2’: r = –0.41, P = 0.077 for plants and 
r = –0.48, P = 0.036 for pollinators: higher specialization 

 

 

Fig. (9). Calibration plot for the three null models against observed co-occurrence (C-score, upper row) and network-wide specialization 

(H2’, lower row). Diagonal represents a perfect reproduction of the observed values by the null model. Error bars are 95% confidence 

intervals of the 1000 replicates. Regressions are weighted by the reciprocal of the standard deviation of the null models (dark gray) or 

unweighted (light gray), and are hatched when not significant. Average distance between unweighted regression and diagonal is equivalent to 

differences between bars in Fig. (4). R
2
-values for weighted regressions are for 0.81, 0.79 and 0.84 for C-scores, and 0.07, 0.34 and 0.54 for 

H2’. 
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leads to shallower extinction slopes, i.e. earlier secondary 
extinctions). 

Conclusion 

 In contrast to the paradigm of more-stable-than-random-
networks, plants and pollinators in real pollination networks 
are less robust to extinction than those in our null models. 

 Overall, our test of current network pattern paradigms 
yields two general results. Firstly, although most of the 
tested patterns (degree distributions for plants (but not for 
pollinators); dependence asymmetry; specialization and co-
occurrence) are not reproducible fully by our null models, a 
substantial part of their pattern can be, at least across many 
networks (Fig. 4). Null models usually are moderately to 
highly correlated with observations, indicating that network 
dimensions and marginal distributions (i.e. first-order 
descriptions of the network) contribute substantially to 
network patterns (second-order descriptions). In practice this 
means that we should attempt to subtract these first-order 
influences from network description before we start 
interpreting processes at the network level. In addition, some 
network pattern are at best uninformative (dependence 
asymmetry can be predicted largely from the marginal 
distributions of the network: Fig. 8) or even opposing current 

ecological view (null model networks are more stable under 
random extinction than observed networks: Fig. 10).  

 Secondly, our null model III (“swap”), which is 
constrained by first-order properties (abundance distribution 
of network participants) and second-order properties 
(network connectance), overall yields very high agreement 
between observation and null model. This indicates that the 
role of connectance, one of the very first and most simple 
network descriptors (Pimm 1982; Jordano 1987), is possibly 
still crucial to furthering our understanding of the ecology 
and evolution of bipartite network. In how far other second-
order indices are required for further fine-tuning of null 
model III remains to be seen. 

Future Directions in Bipartite Network Analysis 

 In this study we have highlighted both potentials and 
problems of bipartite network analysis. The plethora of 
largely correlated network indices makes communication 
between analysts more difficult, since each of them may 
have his or her favorite index. Our analysis software at least 
allows the calculation of all these indices and visualizes the 
bipartite networks, even if there will rarely be the journal 
space to depict them. While over time certainly several more 

 

Fig. (10). Calibration plot for the three null models against extinction slopes for the observed networks (random loss of plants and 

pollinators, upper and lower panels, respectively). Diagonal represents a perfect reproduction of the observed values by the null model, 

points above the line indicate higher robustness of null model networks. Error bars are 95% confidence intervals of the 1000 replicates. 

Regressions are weighted by the reciprocal of the standard deviation of the null models (dark gray) or unweighted (light gray), and are 

hatched when not significant. Average distance between unweighted regression and diagonal is equivalent to differences between bars in Fig. 

(4). R
2
-values for weighted regressions are for 0.30, 0.44 and 0.89 for pollinators, and 0.41, 0.75 and 0.81 for plants. Note that both axes are 

logarithmically scaled, leading to curvi-linear regression lines. 
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indices will be developed and incorporated, these are likely 
to be tailored to specific questions. To date, a seemingly 
simple question such as “How specialised are pollinators?” 
(Petanidou and Potts 2006) can be addressed by several 
different network indices, both at the individual level (using 
a species’ degree or d-value: see function specieslevel in 
bipartite) and at the network level (e.g. using the indices H2’, 
C-score, niche overlap). Our analysis of their inter-
relationship indicates that they are likely to deliver 
qualitatively similar results. 

 The litmus test for our understanding of the mechanisms 
structuring networks is their reproduction by simple 
algorithmic rules (null models, pattern-oriented modeling, 
and inverse modeling). The three null models presented here 
are only first steps on the way towards more complex rules 
that may eventually reproduce patterns observed in real 
networks. By comparing nested null models (such as the 
Patefield and the swap algorithm) we shall be able to 
elucidate the role the new feature plays. 

 In our real data analysis we focused on pollination 
networks, but host-parasitoid networks are almost as 
intensively studied (see, e.g., Müller et al. 1999a; Morris et 
al. 2004; Tylianakis et al. 2007). We expect these networks 
to differ fundamentally (Vázquez et al. 2007), since antago-
nistic interactions should exert stronger evolutionary 
pressures and depict a higher level of specialization (Abrams 
2000; Berlow et al. 2004). Hence, potential pattern need to 
be interpreted considering the purpose of each index, since 
indices derived with antagonistic interactions in mind (such 
as generality, vulnerability and niche overlap) may be less 
suitable for mutualistic networks. 

 Finally, Bascompte et al. (2006), building on earlier 
concepts of May (1973) and Pimm (1982), propose to 
investigate the consequences of observed network pattern for 
the population dynamic of its participants. Predictions thus 
generated and validated against field data would provide a 
strong test of our ability to infer processes from patterns 
(Gaston and Blackburn 2000; Ings et al. 2008). 
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