Published in Proceedings of 2nd International Conference on Knowledge Discovery and Data Mining (KDD-96)

A Density-Based Algorithm for Discovering Clusters
in Large Spatial Databases with Noise

Martin Ester, Hans-Peter Kriegel, Jorg Sander, Xiaowei Xu

Institute for Computer Science, University of Munich
Oettingenstr. 67, D-80538 Muinchen, Germany
{ester | kriegel | sander | xwxu} @informatik.uni-muenchen.de

Abstract

Clustering algorithms are attractive for the task of classiden-
tification in spatial databases. However, the application to
large spatial databases rises the following reguirements for
clustering agorithms: minimal requirements of domain
knowledge to determine the input parameters, discovery of
clusters with arbitrary shape and good efficiency on large da-
tabases. The well-known clustering algorithms offer no solu-
tion to the combination of these requirements. In this paper,
we present the new clustering algorithm DBSCAN relying on
a density-based notion of clusters which is designed to dis-
cover clustersof arbitrary shape. DBSCAN requiresonly one
input parameter and supports the user in determining an ap-
propriate value for it. We performed an experimental evalua-
tion of the effectiveness and efficiency of DBSCAN using
synthetic data and real data of the SEQUOIA 2000 bench-
mark. The results of our experiments demonstrate that (1)
DBSCAN is significantly more effective in discovering clus-
tersof arbitrary shape than the well-known algorithm CLAR-
ANS, and that (2) DBSCAN outperforms CLARANS by a
factor of more than 100 in terms of efficiency.

Keywords: Clustering Algorithms, Arbitrary Shape of Clus-
ters, Efficiency on Large Spatial Databases, Handling Noise.

1. Introduction

Numerous applications require the management of spatial
data, i.e. data related to space. Spatial Database Systems
(SDBYS) (Gueting 1994) are database systems for the man-
agement of spatial data. Increasingly large amounts of data
are obtained from satellite images, X-ray crystallography or
other automatic equipment. Therefore, automated know-
ledge discovery becomes more and moreimportant in spatial
databases.

Several tasks of knowledge discovery in databases (KDD)
have been defined in the literature (Matheus, Chan & Pi-
atetsky-Shapiro 1993). The task considered in this paper is
classidentification, i.e. the grouping of the objects of adata-
base into meaningful subclasses. In an earth observation da-
tabase, e.g., we might want to discover classes of houses
along someriver.

Clustering algorithms are attractive for the task of class
identification. However, the application to large spatial data-
bases rises the following requirements for clustering algo-
rithms:

(2) Minimal requirements of domain knowledge to deter-
mine the input parameters, because appropriate values

are often not known in advance when dealing with large
databases.

(2) Discovery of clusters with arbitrary shape, because the
shape of clustersin spatial databases may be spherical,
drawn-out, linear, elongated etc.

(3) Good efficiency on large databases, i.e. on databases of
significantly morethan just afew thousand objects.

The well-known clustering algorithms offer no solution to

the combination of these requirements. In this paper, we

present the new clustering algorithm DBSCAN. It requires
only one input parameter and supports the user in determin-
ing an appropriate value for it. It discovers clusters of arbi-
trary shape. Finally, DBSCAN iséefficient evenfor large spa-
tial databases. The rest of the paper is organized as follows.
We discuss clustering algorithms in section 2 evaluating
them according to the above requirements. In section 3, we
present our notion of clusters which is based on the concept
of density in the database. Section 4 introduces the algo-
rithm DBSCAN which discovers such clusters in a spatial
database. In section 5, we performed an experimental evalu-
ation of the effectiveness and efficiency of DBSCAN using
synthetic data and data of the SEQUOIA 2000 benchmark.

Section 6 concludeswith asummary and somedirectionsfor

future research.

2. Clustering Algorithms

Therearetwo basic typesof clustering algorithms (Kaufman
& Rousseeuw 1990): partitioning and hierarchical algo-
rithms. Partitioning algorithms construct a partition of ada-
tabase D of nobjectsinto aset of k clusters. kisan input pa
rameter for these algorithms, i.e some domain knowledgeis
required which unfortunately is not available for many ap-
plications. The partitioning algorithm typicaly starts with
an initial partition of D and then uses an iterative control
strategy to optimize an objective function. Each cluster is
represented by the gravity center of the cluster (k-means al-
gorithms) or by one of the objects of the cluster |ocated near
its center (k-medoid algorithms). Consequently, partitioning
algorithms use atwo-step procedure. First, determine k rep-
resentatives minimizing the objective function. Second, as-
sign each object to the cluster with its representative “ clos-
est” to the considered object. The second step impliesthat a
partition is equivalent to avoronoi diagram and each cluster
iscontained in one of thevoronoi cells. Thus, the shape of all

clustersfound by apartitioning algorithmisconvex whichis
very restrictive.

Ng & Han (1994) explore partitioning algorithms for
KDD in spatial databases. An algorithm called CLARANS
(Clustering Large Applications based on RANdomized
Search) isintroduced which is an improved k-medoid meth-
od. Compared to former k-medoid algorithms, CLARANS
is more effective and more efficient. An experimental evalu-
ation indicatesthat CLARANS runs efficiently on databases
of thousands of objects. Ng & Han (1994) al so discuss meth-
ods to determine the “natural” number k4 of clustersin a
database. They propose to run CLARANS once for each k
from 2 to n. For each of the discovered clusterings the sil-
houette coefficient (Kaufman & Rousseeuw 1990) is calcu-
lated, and finally, the clustering with the maximum silhou-
ette coefficient is chosen as the “natura” clustering.
Unfortunately, the run time of this approach is prohibitive
for large n, becauseit implies O(n) callsof CLARANS.

CLARANS assumesthat all objectsto be clustered canre-
side in main memory at the same time which does not hold
for large databases. Furthermore, theruntime of CLARANS
is prohibitive on large databases. Therefore, Ester, Kriegel
& Xu (1995) present several focusing techniques which ad-
dress both of these problems by focusing the clustering pro-
cess on the relevant parts of the database. First, the focusis
small enough to be memory resident and second, the run
time of CLARANS on the objects of the focusissignificant-
ly lessthan its run time on the whol e database.

Hierarchical algorithms create a hierarchical decomposi-
tion of D. The hierarchical decomposition is represented by
a dendrogram, a tree that iteratively splits D into smaller
subsets until each subset consists of only one object. In such
a hierarchy, each node of the tree represents a cluster of D.
The dendrogram can either be created from the leaves up to
the root (agglomerative approach) or from the root down to
the leaves (divisive approach) by merging or dividing clus-
ters at each step. In contrast to partitioning algorithms, hier-
archical algorithmsdo not need k asan input. However, ater-
mination condition has to be defined indicating when the
merge or division process should be terminated. One exam-
ple of atermination condition in the agglomerative approach
isthe critical distance Dy, between all the clusters of Q.

So far, the main problem with hierarchical clustering al-
gorithms has been the difficulty of deriving appropriate pa-
rameters for the termination condition, e.g. avalue of Dpyip
which issmall enough to separate all “natural” clustersand,
at the sametimelarge enough such that no cluster issplitinto
two parts. Recently, in the area of signal processing the hier-
archical algorithm Ejcluster has been presented (Garcia,
Fdez-Valdivia, Cortijo & Molina1994) automatically deriv-
ing atermination condition. Itskey ideaisthat two pointsbe-
long to the same cluster if you can walk from the first point
to the second one by a “sufficiently small” step. Ejcluster
follows the divisive approach. It does not require any input
of domain knowledge. Furthermore, experiments show that
it isvery effectivein discovering non-convex clusters. How-
ever, the computational cost of Ejcluster is O(nz) due to the
distance calculation for each pair of points. This is accept-
able for applications such as character recognition with

moderatevaluesfor n, butitisprohibitivefor applicationson
large databases.

Jain (1988) explores a density based approach to identify
clusters in k-dimensional point sets. The data set is parti-
tioned into anumber of nonoverlapping cellsand histograms
are constructed. Cellswith relatively high frequency counts
of points are the potential cluster centers and the boundaries
between clustersfall in the “valleys’ of the histogram. This
method has the capability of identifying clusters of any
shape. However, the space and run-time requirements for
storing and searching multidimensional histograms can be
enormous. Even if the space and run-time requirements are
optimized, the performance of such an approach crucially
dependson the size of thecells.

3. A Density Based Notion of Clusters

When looking at the sample sets of points depicted in
figure 1, we can easily and unambiguously detect clusters of
points and noise points not belonging to any of those clus-
ters.

database 1 database 2 database 3
figure 1. Sample databases

The main reason why we recognize the clusters is that
within each cluster we have atypical density of pointswhich
is considerably higher than outside of the cluster. Further-
more, the density within the areas of noise islower than the
density in any of the clusters.

In the following, we try to formalize this intuitive notion
of “clusters’ and “noise” in adatabase D of points of some
k-dimensional space S. Notethat both, our notion of clusters
and our algorithm DBSCAN, apply aswell to 2D or 3D Eu-
clidean space as to some high dimensional feature space.
Thekey ideaisthat for each point of a cluster the neighbor-
hood of a given radius has to contain at least a minimum
number of points, i.e. the density in the neighborhood hasto
exceed some threshold. The shape of a neighborhood is de-
termined by the choice of a distance function for two points
p and q, denoted by dist(p,q). For instance, when using the
Manhattan distance in 2D space, the shape of the neighbor-
hood is rectangular. Note, that our approach works with any
distance function so that an appropriate function can be cho-
sen for some given application. For the purpose of proper vi-
sualization, all examples will be in 2D space using the Eu-
clidean distance.

Definition 1: (Eps-neighborhood of a point) The Eps-
neighborhood of apoint p, denoted by Neps(p), isdefined by
Neps(p) ={q LID | dist(p,q) < Eps}.

A naive approach could require for each point in a cluster
that there are at least a minimum number (MinPts) of points
in an Eps-neighborhood of that point. However, this ap-

proach fails because there are two kinds of pointsin aclus-
ter, pointsinside of the cluster (core points) and pointson the
border of the cluster (border points). In general, an Eps-
neighborhood of a border point contains significantly less
points than an Eps-neighborhood of a core point. Therefore,
wewould have to set the minimum number of pointsto arel-
atively low value in order to include all points belonging to
the same cluster. Thisvalue, however, will not be character-
isticfor therespective cluster - particularly inthe presence of
noise. Therefore, we require that for every point pin aclus-
ter C thereisapoint g in C so that p isinside of the Eps-
neighborhood of ¢ and Ngpg(q) contains at least MinPts
points. Thisdefinition is elaborated in the following.

Definition 2: (directly density-reachable) A point p isdi-
rectly density-reachable from apoint g wrt. Eps, MinPtsif

1) p LI Nepg(@) and

2) INgp<(@)| = MinPts (core point condition).
Obvioudly, directly density-reachable is symmetric for pairs
of core points. Ingeneral, however, itisnot symmetricif one
core point and one border point areinvolved. Figure 2 shows
the asymmetric case.

(a) P (b) p directly density—
P . Q s reachable from g

p: border point = q

. e . o
ve e Lt . b .
. ot * . ¢ * qnot directly density-

b * ° ' reachable from p

q: core point

figure 2: core points and border points

Definition 3: (density-reachable) A point p is density-
reachable from a point g wrt. Eps and MinPts if thereis a
chain of points py, ..., Py, P1 = 0, Pp = P such that p;4 isdi-
rectly density-reachable from p;.

Density-reachability is a canonical extension of direct
density-reachability. This relation is transitive, but it is not
symmetric. Figure 3 depicts the relations of some sample
points and, in particular, the asymmetric case. Although not
symmetric in general, it is obvious that density-reachability
issymmetric for core points.

Two border points of the same cluster C are possibly not
density reachable from each other because the core point
condition might not hold for both of them. However, there
must be acore point in C from which both border pointsof C
are density-reachable. Therefore, we introduce the notion of
density-connectivity which covers this relation of border
points.

Definition 4: (density-connected) A point p is density-
connected to apoint g wrt. Epsand MinPtsif thereisapoint
o such that both, p and q are density-reachable from o wrt.
Epsand MinPts.

Density-connectivity is a symmetric relation. For density
reachable points, the relation of density-connectivity isalso
reflexive (c.f. figure 3).

Now, we are able to define our density-based notion of a
cluster. Intuitively, a cluster is defined to be a set of density-
connected points which is maximal wrt. density-reachabili-
ty. Noise will be defined relative to a given set of clusters.
Noiseissimply the set of pointsin D not bel onging to any of
itsclusters.

p density—

reachable fromg # .
q not density— .
reachable fromp e .

p and q density—
connected to
cach other by o

figure 3: density-reachability and density-connectivity

Definition 5: (cluster) Let D be a database of points. A
cluster C wrt. Eps and MinPts is a non-empty subset of D
satisfying the following conditions:

DOp,qgifp Lcand g is density-reachable from p wrt.
Epsand MinPts, then g Lc. (Maximality)

2) O p, g O C: p is density-connected to q wrt. EPS and
MinPts. (Connectivity)

Definition 6: (noise) Let Cy ,. . ., Cy be the clusters of the
database D wrt. parameters Eps; and MinPts, i =1, .. ., k.
Then we define the noise as the set of pointsin the database
D not belonging to any cluster C; ,i.e. noise={p b |oi:p
0c}.

Notethat acluster C wrt. Epsand MinPts contains at | east
MinPts points because of the following reasons. Since C
contains at least one point p, p must be density-connected to
itself via some point o (which may be equal to p). Thus, at
least 0 has to satisfy the core point condition and, conse-
guently, the Eps-Neighborhood of o contains at least MinPts
points.

The following lemmata are important for validating the
correctness of our clustering algorithm. Intuitively, they
state the following. Given the parameters Eps and MinPts,
we can discover a cluster in a two-step approach. First,
choose an arbitrary point from the database satisfying the
core point condition as a seed. Second, retrieve al points
that are density-reachable from the seed obtaining the clus-
ter containing the seed.

Lemma 1: Let p beapoint in D and [Ngug(p)| =2 MinPts.
Thentheset O={0| o LID and o isdensity-reachable from
p wrt. Epsand MinPts} isacluster wrt. Epsand MinPts.

It is not obvious that a cluster C wrt. Eps and MinPts is
uniquely determined by any of its core points. However,
each point in C is density-reachable from any of the core
points of C and, therefore, a cluster C contains exactly the
points which are density-reachable from an arbitrary core
point of C.

Lemma 2: Let C beacluster wrt. Epsand MinPts and let
p be any point in C with [Ngpg(p)| = MinPts. Then C equals
totheset O ={ 0| oisdensity-reachablefrom p wrt. Epsand
MinPts} .

4. DBSCAN: Density Based Spatial Clustering
of Applicationswith Noise

In this section, we present the algorithm DBSCAN (Density
Based Spatial Clustering of Applicationswith Noise) which
is designed to discover the clusters and the noise in a spatial
database according to definitions 5 and 6. Ideally, we would
have to know the appropriate parameters Eps and MinPts of
each cluster and at least one point from the respective clus-
ter. Then, we could retrieve all pointsthat are density-reach-
able from the given point using the correct parameters. But

thereisno easy way to get thisinformation in advancefor al
clusters of the database. However, there is a simple and ef-
fective heuristic (presented in section section 4.2) to deter-
mine the parameters Eps and MinPts of the "thinnest”, i.e.
least dense, cluster in the database. Therefore, DBSCAN
uses global values for Eps and MinPts, i.e. the same values
for all clusters. The density parameters of the “thinnest”
cluster are good candidatesfor these global parameter values
specifying the lowest density which is not considered to be
noise.

4.1 TheAlgorithm

To find a cluster, DBSCAN starts with an arbitrary point p
and retrieves all points density-reachable from p wrt. Eps
and MinPts. If pisacore point, this procedureyields aclus-
ter wrt. Epsand MinPts (seeLemmaZ2). If pisaborder point,
no points are density-reachable from p and DBSCAN visits
the next point of the database.

Sincewe useglobal valuesfor Epsand MinPts, DBSCAN
may merge two clusters according to definition 5 into one
cluster, if two clusters of different density are“close” to each
other. Let the distance between two sets of points S; and S,
bedefined asdist (S;, S,) = min{dist(p,q) |p 1 Sy, q I S,}.
Then, two sets of points having at least the density of the
thinnest cluster will be separated from each other only if the
distance between the two sets is larger than Eps. Conse-
guently, arecursive call of DBSCAN may be necessary for
the detected clusterswith ahigher value for MinPts. Thisis,
however, no disadvantage because the recursive application
of DBSCAN yields an elegant and very efficient basic algo-
rithm. Furthermore, the recursive clustering of the points of
acluster isonly necessary under conditions that can be easi-
ly detected.

In the following, we present abasic version of DBSCAN
omitting details of data types and generation of additional
information about clusters:

DBSCAN (Set O Poi nts, Eps, M nPts)

/1 Set O Points is UNCLASSI FI ED
Clusterld := nextld(NJ SE);
FOR i FROM 1 TO Set O Points. size DO
Point := SetOf Points.get(i);
IF Point.d1d = UNCLASSI FI ED THEN
| F ExpandC ust er (Set Of Poi nts, Point,
Clusterld, Eps, MnPts) THEN
Clusterld := nextld(d usterld)
END | F
END | F
END FOR
END; // DBSCAN

Set O Poi nt s is either the whole database or a dis-
covered cluster from apreviousrun. Eps and M nPt s are
the global density parameters determined either manually or
according to the heuristics presented in section 4.2. The
function Set O Poi nt s. get (i) returns the i-th ele-
ment of Set OF Poi nt's. The most important function

used by DBSCANis ExpandC ust er whichis present-
ed below:

Expandd ust er (Set Of Poi nts, Point, CId, Eps,
M nPts) : Bool ean;
seeds: =Set O Poi nt s. r egi onQuer y(Poi nt, Eps) ;
| F seeds. sizesM nPts THEN // no core point
Set O Poi nt . changeC | d(Poi nt, NO SE);
RETURN Fal se;
ELSE // all points in seeds are density-
/'l reachabl e from Point
Set Of Poi nt s. changed | ds(seeds, d 1d);
seeds. del et e(Point);
WHI LE seeds <> Enpty DO
currentP : = seeds.first();
result := SetOf Points.regi onQuery(currentP,
Eps) ;
IF result.size >= M nPts THEN
FORi FROM 1 TO result.size DO
resultP :=result.get(i);
IF resultP.d Id
I N {UNCLASSI FI ED, NO SE} THEN
IF resultP.d1d = UNCLASSI FI ED THEN
seeds. append(resul tP);
END | F;
Set Of Poi nts. changed I d(resultP,d1d);
END I F; // UNCLASSI FI ED or NO SE
END FOR;
END IF; // result.size >= MnPts
seeds. del ete(currentP);
END WHI LE; // seeds <> Enpty
RETURN Tr ue;

END | F
END; // Expandd uster

A call of Set O Poi nt s.r egi onQue-
ry(Poi nt, Eps) returns the Eps-Neighborhood of
Poi nt in Set O Poi nts asalist of points. Region que-
ries can be supported efficiently by spatial access methods
such as R*-trees (Beckmann et al. 1990) which are assumed
to be available in a SDBS for efficient processing of several
typesof spatial queries (Brinkhoff et al. 1994). The height of
an R*-treeis O(log n) for a database of n pointsin the worst
case and aquery with a“small” query region hasto traverse
only alimited number of pathsintheR -tree. Sincethe Eps-
Neighborhoods are expected to be small compared to the
size of the whole data space, the average run time complexi-
ty of a single region query is O(log n). For each of the n
points of the database, we have at most one region query.
Thus, the average run time complexity of DBSCAN is
O(n* logn).

TheC | d (clusterld) of points which have been marked
tobeNO SE may be changed later, if they are density-reach-
ablefrom some other point of the database. Thishappensfor
border points of a cluster. Those points are not added to the
seeds-list because we aready know that a point with a
Clld of NO SE is not a core point. Adding those points to
seeds would only result in additional region querieswhich
would yield no new answers.

If two clusters C, and C, are very close to each other, it
might happen that some point p belongsto both, C; and C,.
Then p must be aborder point in both clusters because other-
wise C; would be equal to C, since we use global parame-

ters. In this case, point p will be assigned to the cluster dis-
covered first. Except from these rare situations, the result of
DBSCAN isindependent of the order in which the points of
the database are visited due to Lemma 2.

4.2 Determining the Parameters Epsand MinPts

In this section, we devel op asimple but effective heuristic to
determine the parameters Eps and MinPts of the "thinnest"
cluster in the database. This heuristic is based on the follow-
ing observation. Let d be the distance of apoint p to itsk-th
nearest neighbor, then the d-neighborhood of p contains ex-
actly k+1 pointsfor almost all points p. The d-neighborhood
of p contains more than k+1 points only if several points
have exactly the same distance d from p which is quite un-
likely. Furthermore, changing k for a point in a cluster does
not result in large changes of d. Thisonly happensif the k-th
nearest neighborsof pfork=1, 2, 3, .. . arelocated approxi-
mately on a straight line which is in general not true for a
point in acluster.

For agiven k we define afunction k-dist from the database
D to the real numbers, mapping each point to the distance
fromitsk-th nearest neighbor. When sorting the points of the
database in descending order of their k-dist values, the graph
of thisfunction gives some hints concerning the density dis-
tribution in the database. We call this graph the sorted k-dist
graph. If we choose an arbitrary point p, set the parameter
Epsto k-dist(p) and set the parameter MinPtsto k, all points
with an equal or smaller k-dist value will be core points. If
we could find athreshold point with the maximal k-dist val-
ue in the “thinnest” cluster of D we would have the desired
parameter values. Thethreshold point isthefirst point in the
first “valley” of the sorted k-dist graph (see figure 4). All
points with a higher k-dist value (left of the threshold) are
considered to be noise, all other points (right of the thresh-
old) are assigned to some cluster.

. _—
4ds 4 - threshold
o point
/

noise clusters

» points

figure 4: sorted 4-dist graph for sample database 3

Ingeneral, itisvery difficult to detect thefirst “valley” au-
tomatically, but it is relatively smple for a user to see this
valley in a graphical representation. Therefore, we propose
to follow aninteractive approach for determining the thresh-
old point.

DBSCAN needs two parameters, Eps and MinPts. How-
ever, our experimentsindicate that the k-dist graphsfor k >4
do not significantly differ from the 4-dist graph and, further-
more, they need considerably more computation. Therefore,
we eliminate the parameter MinPts by setting it to 4 for all
databases (for 2-dimensional data). We propose the follow-
ing interactive approach for determining the parameter Eps
of DBSCAN:

« The system computes and displays the 4-dist graph for
the database.

« |f the user can estimate the percentage of noise, this per-
centage is entered and the system derives a proposal for
thethreshold point from it.

« The user either accepts the proposed threshold or selects
another point as the threshold point. The 4-dist value of
thethreshold point isused asthe Epsvaluefor DBSCAN.

5. Performance Evaluation

In this section, we evaluate the performance of DBSCAN.
We compare it with the performance of CLARANS because
thisisthefirst and only clustering algorithm designed for the
purpose of KDD. In our future research, we will perform a
comparison with classical density based clustering algo-
rithms. We haveimplemented DBSCAN in C++ based on an
implementation of the R*-tree (Beckmann et al. 1990). All
experiments have been run on HP 735 / 100 workstations.
We have used both synthetic sample databases and the data-
base of the SEQUOIA 2000 benchmark.

To compare DBSCAN with CLARANS I n terms of effec-
tivity (accuracy), we use the three synthetic sample databas-
es which are depicted in figurel. Since DBSCAN and
CLARANS are clustering algorithms of different types, they
have no common quantitative measure of the classification
accuracy. Therefore, we evaluate the accuracy of both algo-
rithms by visual inspection. In sample database 1, there are
four ball-shaped clusters of significantly differing sizes.
Sample database 2 contains four clusters of nonconvex
shape. In sample database 3, there are four clusters of differ-
ent shape and size with additional noise. To show the results
of both clustering algorithms, we visualize each cluster by a
different color (seewww availability after section 6). To give
CLARANS some advantage, we set the parameter k to 4 for
these sample databases. The clusterings discovered by
CLARANS aredepictedinfigure 5.

database 1 database 2 database 3
figure5: Clusterings discovered by CLARANS

For DBSCAN, we set the noise percentage to 0% for sam-
ple databases 1 and 2, and to 10% for sampl e database 3, re-
spectively. The clusterings discovered by DBSCAN are de-
picted infigure 6.

DBSCAN discovers all clusters (according to definition
5) and detects the noise points (according to definition 6)
from all sample databases. CLARANS, however, splitsclus-
tersif they are relatively large or if they are close to some
other cluster. Furthermore, CLARANS has no explicit no-
tion of noise. Instead, all points are assigned to their closest
medoid.

database 1 database 2 database 3

figure 6: Clusterings discovered by DBSCAN

To test the efficiency of DBSCAN and CLARANS, we
use the SEQUOIA 2000 benchmark data. The SEQUOIA
2000 benchmark database (Stonebraker et al. 1993) usesreal
datasetsthat are representative of Earth Sciencetasks. There
arefour types of datain the database: raster data, point data,
polygon dataand directed graph data. The point data set con-
tains 62,584 Californian names of landmarks, extracted
from the US Geological Survey’s Geographic Names Infor-
mation System, together with their location. The point data
set occupiesabout 2.1 M bytes. Sincetheruntime of CLAR-
ANS on the whole data set is very high, we have extracted a
series of subsets of the SEQUIOA 2000 point data set con-
taining from 2% to 20% representatives of the whole set.
The run time comparison of DBSCAN and CLARANS on
these databasesis shownin table 1.

Table 1. runtimein seconds

number of | 050 | 2503 | 3010 | 5213 | 6256
points

DBSCAN | 31 6.7 113 | 160 | 178
CLAR-

NS 758 | 3026 | 6845 | 11745 | 18029
number of | zeon | gos7 | 10426 | 12512

points

DBSCAN | 245 | 282 | 327 | 417
CLAR-

NS 29826 | 39265 | 60540 | 80638

The results of our experiments show that the run time of
DBSCAN is dlightly higher than linear in the number of
points. Theruntimeof CLARANS, however, iscloseto qua-
dratic in the number of points. The results show that DB-
SCAN outperforms CLARANS by afactor of between 250
and 1900 which growswith increasing size of the database.

6. Conclusions

Clustering algorithmsare attractivefor thetask of classiden-
tification in spatial databases. However, the well-known al-
gorithms suffer from severe drawbacks when applied to
large spatial databases. In this paper, we presented the clus-
tering algorithm DBSCAN which relies on a density-based
notion of clusters. It requires only one input parameter and
supports the user in determining an appropriate value for it.
We performed a performance evaluation on synthetic data

and on real data of the SEQUOIA 2000 benchmark. There-
sults of these experiments demonstrate that DBSCAN issig-
nificantly more effective in discovering clusters of arbitrary
shape than the well-known algorithm CLARANS. Further-
more, the experiments have shown that DBSCAN outper-
forms CLARANS by afactor of at least 100 in terms of effi-
ciency.

Future research will haveto consider thefollowing issues.
First, we have only considered point objects. Spatial data-
bases, however, may also contain extended objects such as
polygons. We have to develop a definition of the density in
an Eps-neighborhood in polygon databases for generalizing
DBSCAN. Second, applications of DBSCAN to high di-
mensional feature spaces should be investigated. In particu-
lar, the shape of the k-dist graph in such applications has to
be explored.

WWW Availability

A version of this paper in larger font, with large figures and
clusterings in color is available under the following URL:
http://ww. dbs. informatik. uni - nuenchen. de/
dbs/ proj ect/ publ i kati onen/ veroef fentlichun-
gen. htnm .

References

Beckmann N., Kriegel H.-P, Schneider R, and Seeger B. 1990. The
R*-tree: An Efficient and Robust Access Method for Points and
Rectangles, Proc. ACM SIGMOD Int. Conf. on Management of
Data, Atlantic City, NJ, 1990, pp. 322-331.

Brinkhoff T., Kriegel H.-P, Schneider R., and Seeger B. 1994
Efficient Multi-Step Processing of Spatial Joins, Proc. ACM
SIGMOD Int. Conf. on Management of Data, Minneapolis, MN,
1994, pp. 197-208.

Ester M., Kriegel H.-P, and Xu X. 1995. A Database Interface for
Clustering in Large Spatial Databases, Proc. 1st Int. Conf. on
Knowledge Discovery and Data Mining, Montreal, Canada, 1995,
AAAI Press, 1995.

GarciaJ.A., Fdez-Vadivia J., Cortijo F. J., and MolinaR. 1994. A
Dynamic Approachfor Clustering Data. Sgnal Processing, Vol. 44,
No. 2, 1994, pp. 181-196.

Gueting R.H. 1994. An Introduction to Spatial Database Systems.
The VLDB Journal 3(4): 357-399.

Jain Anil K. 1988. Algorithmsfor Clustering Data. Prentice Hall.
Kaufman L., and Rousseeuw P.J. 1990. Finding Groupsin Data: an
Introduction to Cluster Analysis. John Wiley & Sons.

Matheus C.J.; Chan PK_.; and Piatetsky-Shapiro G. 1993. Systems
for Knowledge Discovery in Databases, |EEE Transactions on
Knowledge and Data Engineering 5(6): 903-913.

Ng R.T., and Han J. 1994. Efficient and Effective Clustering
Methods for Spatial Data Mining, Proc. 20th Int. Conf. on Very
Large Data Bases, 144-155. Santiago, Chile.

Stonebraker M., Frew J., Gardels K., and Meredith J.1993. The
SEQUOIA 2000 Storage Benchmark, Proc. ACM SIGMOD Int.
Conf. on Management of Data, Washington, DC, 1993, pp. 2-11.

