


Statistics for Biology and Health
Series Editors
M. Gail, K. Krickeberg, J. Sarmet, A. Tsiatis, W. Wong



Statistics for Biology and Health

Bacchieri/Cioppa: Fundamentals of Clinical Research
Borchers/Buckland/Zucchini: Estimating Animal Abundance: Closed Populations
Burzykowski/Molenberghs/Buyse: The Evaluation of Surrogate Endpoints

Everitt/Rabe-Hesketh: Analyzing Medical Data Using S-PLUS
Ewens/Grant: Statistical Methods in Bioinformatics: An Introduction, 2nd ed.
Gentleman/Carey/Huber/Irizarry/Dudoit: Bioinformatics and Computational Biology

Solutions Using R and Bioconductor
Hougaard: Analysis of Multivariate Survival Data
Keyfitz/Caswell: Applied Mathematical Demography, 3rd ed.
Klein/Moeschberger: Survival Analysis: Techniques for Censored and Truncated

Data, 2nd ed.
Kleinbaum/Klein: Survival Analysis: A Self-Learning Text, 2nd ed.
Kleinbaum/Klein: Logistic Regression: A Self-Learning Text, 2nd ed.
Lange: Mathematical and Statistical Methods for Genetic Analysis, 2nd ed.
Manton/Singer/Suzman: Forecasting the Health of Elderly Populations
Martinussen/Scheike: Dynamic Regression Models for Survival Data
Moyé: Multiple Analyses in Clinical Trials: Fundamentals for Investigators
Niels.en: Statistical Methods in Molecular Evolution

Parmigiani/Garrett/Irizarry/Zeger: The Analysis of Gene Expression Data: Methods
and Software

Proschan/LanWittes: Statistical Monitoring of Clinical Trials: A Unified Approach
Siegmund/Yakir: The Statistics of Gene Mapping
Simon/Korn/McShane/Radmacher/Wright/Zhao: Design and Analysis of DNA

Microarray Investigations
Sorensen/Gianola: Likelihood, Bayesian, and MCMC Methods in Quantitative

Genetics
Stallard/Manton/Cohen: Forecasting Product Liability Claims: Epidemiology and

Modeling in the Manville Asbestos Case
Sun: The Statistical Analysis of Interval-censored Failure Time Data
Therneau/Grambsch: Modeling Survival Data: Extending the Cox Model
Ting: Dose Finding in Drug Development
Vittinghoff/Glidden/Shiboski/McCulloch: Regression Methods in Biostatistics:

Linear, Logistic, Survival, and Repeated Measures Models
Wu/Ma/Casella: Statistical Genetics of Quantitative Traits: Linkage, Map and QTL
Zhang/Singer: Recursive Partitioning in the Health Sciences
Zuur/Ieno/Smith: Analyzing Ecological Data

Cook/Lawless : The Statistical Analysis of Recurrent Events
Duchateav/Janssen: The Fraility Model

'O Quigley: Proportional Hazards Regression



Richard J. Cook
Jerald F. Lawless

The Statistical Analysis 
of Recurrent Events



Printed on acid-free paper.

© 2007 Springer Science + Business Media, LLC
All rights reserved. This work may not be translated or copied in whole or in part without the
written permission of the publisher (Springer Science + Business Media, LLC, 233 Spring
Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or
scholarly analysis. Use in connection with any form of information storage and retrieval,
electronic adaptation, computer software, or by similar or dissimilar methodology now known
or hereafter developed is forbidden.
The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or
not they are subject to proprietary rights.

9 8 7 6 5 4 3 2 1

springer.com

Series Editors
M. Gail K. Krickeberg
National Cancer Institute Le Chatelet Department of Epidemiology
Rockville, MD 20892 F-63270 Manglieu School of Public Health
USA France Johns Hopkins University

615 Wolfe Street
Baltimore, MD 21205-2103
USA

A. Tsiatis W. Wong
Department of Statistics Department of Statistics
North Carolina State Stanford University

University Stanford, CA 94305-4065
Raleigh, NC 27695 USA
USA

ISBN 978-0-387-69809-0 e-ISBN 978-0-387-69810-6

Richard J. Cook

Waterloo, Ontario
Dept. Statistics & Actuarial Science

Canada

200 University Avenue W.
University of Waterloo,

Waterloo N2L 3G1

rjcook@uwaterloo.ca

Jerald F. Lawless

Waterloo, Ontario
Dept. Statistics & Actuarial Science

Canada

200 University Avenue W.
University of  Waterloo,

Waterloo N2L 3G1

jlawless@uwaterloo.ca

Library of Congress Control Number: 2007929451

J. Sarmet



To Joan and John Cook

To Jill, Kim, and Sarah



Preface

Recurrent event data arise in fields such as medicine and public health, busi-
ness and industry, reliability, the social sciences, and insurance. The literature
on the statistical analysis of recurrent events has grown rapidly over the past
twenty years and a variety of models and methods has been developed. This
book provides a comprehensive treatment of the area. We describe impor-
tant models, explain their underlying assumptions and properties, consider
settings where they are appropriate, and discuss in detail how to fit and base
inferences on these models. Parametric, nonparametric, and semiparametric
methods are covered. Many illustrative examples are given, most of which are
taken from health or industrial settings.

This book is intended as a resource for persons interested in the modeling
and analysis of recurrent events and as a text for a graduate course in statistics
or biostatistics. We discuss results and models from stochastic processes in
some detail, and have attempted to present the material in an accessible way
with discussion of model formulation, estimation and inference, and numerous
applications. The importance of model assessment is emphasized. Chapters are
concluded with Problems and Supplements sections which give exercises as
well as extensions to material in the text. An important feature of this book
is the coverage of practical issues such as observation and subject-selection
schemes, the planning of randomized experiments, incomplete data, and the
prediction of future events. Areas needing further methodological development
are also discussed.

Likelihood methods are emphasized as a basis for inference whenever
possible. Estimating function theory is also used, especially for inference about
marginal features when models are not fully specified. Appendix A provides a
summary of relevant material on likelihood and estimating function method-
ology, but familiarity with statistical inference is assumed. Martingale repre-
sentations are used for certain estimating functions, but we do not discuss
asymptotic theory used to rigorously justify large sample results. Our ap-
proach is to indicate clearly the statistical basis of methodology without
dwelling on regularity conditions and detailed proofs of asymptotic results.
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Some background in survival analysis is beneficial, inasmuch as many
methods for recurrent events are related to survival analysis and can be im-
plemented with software for that area. Kalbfleisch and Prentice (2002) and
Lawless (2003a) are references with a similar style of presentation to this
book. Books which discuss models for recurrent event data include Cox and
Lewis (1966), Cox and Isham (1980), Daley and Vere-Jones (1988), and other
books on point processes. Andersen et al. (1993) provide a rigorous discus-
sion of models and methods for the analysis of data arising from counting
processes, and emphasize Markov processes. Therneau and Grambsch (2000)
present methods for the analysis of recurrent event data along with applica-
tions using S-PLUS R©, R and SAS. Nelson (2003) gives graphical procedures
and simple methods for the analysis of recurrent events based on rate or mean
functions. Other recent books which include some discussion of the analysis
of recurrent event data include Hougaard (2000), Kalbfleisch and Prentice
(2002), Martinussen and Scheike (2006), and Sun (2006). The present book
goes beyond these treatments in the breadth of models addressed and in the
attention paid to practical issues of design and analysis.

The data in examples are analyzed using S-PLUS, although identical code
can be used in R (see www.r-project.org). In most cases there exist analo-
gous procedures in SAS software. Datasets that are available to the public
are listed in Appendix D and are posted at www.stats.uwaterloo.ca/cook-
lawless/book.shtml along with sample code for S-PLUS or R and SAS.

Our interests in statistical methods for recurrent events have developed
from working with several colleagues in various areas of research. We would
like to acknowledge Nancy Heddle (McMaster University), Pierre Major (Mc-
Master University), and Jeff Robinson (General Motors) for stimulating col-
laborations which have led to methodological development in this area. We
also wish to thank colleagues at GlaxoSmithKline Inc., Novartis Pharmaceu-
ticals Inc., and Bayer Canada Inc. for permission to use the data from clinical
trials in several examples.

We are grateful to the faculty, visiting fellows, graduate students, and
staff at University of Waterloo who help create a stimulating environment
for research. In particular we would like to acknowledge collaborations in-
volving recurrent events with Jean-Marie Boher, Bingshu Chen, Charmaine
Dean, Daniel Fong, Marc Fredette, Joan Hu, Jack Kalbfleisch, Claude Nadeau,
Edmund Ng, Wei Wei, Grace Yi, and Min Zhan. Mary Lou Dufton and Joan
Hatton provided secretarial assistance in the preparation of this book, for
which we are grateful. We would especially like to thank Ker-Ai Lee, whose
expert statistical programming helped in the preparation of the examples, and
who provides important support to our research.

Much of the work here was developed while the first author held an Investi-
gator Award from the Canadian Institutes of Health Research and a Canada
Research Chair in Statistical Methods for Health Research, and while the
second author held an Industrial Research Chair co-sponsored by General
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Motors Canada and the Natural Sciences and Engineering Research Council
of Canada. This support is gratefully acknowledged.

Finally we would like to thank our wives Alison (R.J.C.) and Liz (J.F.L.)
for their patience and support during the preparation of this book.

University of Waterloo Richard Cook
December 2006 Jerry Lawless



Glossary

The following is a summary of the notation used throughout this book.

• I(A) is the indicator function, equaling 1 if A is true and 0 otherwise

• Pr(A) is the probability of event A

• E(·) denotes expectation, var(·) denotes variance, cov(·) denotes covari-
ance, corr(·) denotes correlation, asvar(·) and ascov(·) denote asymptotic
variance and covariance, respectively

• mX(t) = E(exp(Xt)) is the moment generating function of X

• Γ (a) =
∫∞
0

ua−1 exp(−u)du is the gamma function, where a > 0

• B(a, b) = Γ (a)Γ (b)/Γ (a + b) is the beta function, where a > 0 and b > 0

• g(x) ∼ o(x) means g(x)/x → 0 as x → 0

• The transpose of a matrix A is A′

• Vectors are written in column form so, for example, θ = (θ1, . . . , θr)′

• If g(θ) = (g1(θ), . . . , gk(θ))′ is a vector of functions, then ∂g(θ)/∂θ′ is the
k × r matrix with (i, j) element ∂gi(θ)/∂θj

•
∏

[a,b]{1 + g(u)du} is a product integral; see Section 2.1

• The integral
∫ b

a
dG(u) is a Riemann–Stieltjes integral; see Section 2.1.

• L(θ), �(θ), U(θ), I(θ), and I(θ) represent the likelihood, log-likelihood,
score, observed information, and expected information functions, respec-
tively; see Appendix A

• θ̂ denotes an estimate of the parameter θ

• If θ = (θ′1, θ
′
2)

′, then θ̃1(θ2) is the profile likelihood estimate of θ1 for fixed
θ2
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• Tk is the time of the kth event for an individual

• Wk = Tk − Tk−1 is the duration of time between the (k − 1)st and kth
events for an individual

• B(t) = t − TN(t−) is the backwards recurrence time, or the time since the
last event before t

• Yk(t) = I(Tk < t ≤ Tk+1) indicates whether an individual is at risk of
a (k + 1)st event at time t; if there are J types of events then Yjk(t)
indicates whether an individual is at risk of a (k+1)st type j event at time
t, j = 1, . . . , J .

• {N(t), 0 ≤ t} is a right-continuous counting process giving the number of
events in [0, t]

• N(s, t) = N(t) − N(s) records the number of events over (s, t]

• ∆N(t) = N(t + ∆t−) − N(t−)

• dN(t) = lim
∆t↓0

[N(t + ∆t−) − N(t−)]

• [τ0, τ ] is an interval of observation measured on the scale of process age t
and when τ0 = 0, τ denotes the right-censoring or end-of-followup time

• Y (t) indicates whether an individual is under observation at time t; often
Y (t) = I(τ0 ≤ t ≤ τ)

• {N̄(t), 0 ≤ t}, where N̄(t) =
∫ t

0
Y (u)dN(u), is the observable counting

process

• Ȳk(t) = Y (t)Yk(t) indicates whether an individual is observed and at risk
of a (k + 1)st event at time t ; Ȳjk(t) = Y (t)Yjk(t)

• x(t) = (x1(t), x2(t), . . . , xp(t))′ is a p× 1 column vector denoting external,
possibly time-dependent, covariates, which are assumed left-continuous

• z(t) = (z1(t), z2(t), . . . , zp(t))′ is a p× 1 column vector used to denote x(t)
and possibly derived covariates

• x(t) = {x(s) : 0 ≤ s ≤ t} is the history of the covariate process at t and
x(∞) = {x(s) : 0 ≤ s} is the realization of the entire covariate process

• H(t) = {N(s) : 0 ≤ s < t} is the history of the counting process at time t,
which we sometimes also denote N (t)

• H(t) = {N(s) : 0 ≤ s < t;x(s) : 0 ≤ s ≤ t} is also used

• An intensity function for an event process is denoted λ(t|H(t)) ; see Sec-
tion 1.2

• The intensity function for the observable event process is λ̄(t|H̄(t)), where
H̄(t) = {N̄(s) : 0 ≤ s < t;Y (s) : 0 ≤ s ≤ t}; We have λ̄(t|H̄(t)) =
Y (t)λ(t|H(t)) if ∆N(t) and Y (t) are conditionally independent
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• S(t) = Pr(T ≥ t) is the survivor function and F (t) = Pr(T ≤ t) is
the cumulative distribution function for a random variable T ; h(t) =
−d log S(t)/dt is the hazard function. Sometimes we define S(t)=Pr(T > t)

• µ(t) = E{N(t)} and µ(t|x) = E{N(t)|x} are mean functions

• ρ(t) = dµ(t)/dt and ρ(t|x) = dµ(t|x)/dt are rate functions; we often write
E{dN(t)} = ρ(t)dt

• β is a vector of regression coefficients

• {Z(t), 0 ≤ t} is a multistate stochastic process where Z(t) is the state
occupied at t

• Q(t) is a K × K matrix of transition intensities for a multistate process
with K states

• P(s, t) is a K×K matrix of transition probabilities for a multistate process
with K states, with (k, �) entry pk�(s, t) = Pr(Z(t) = �|Z(s) = k)

• Under a discrete time scale t = 0, 1, 2, . . . , n(t) = N(t) − N(t − 1)

• If {N(t), 0 ≤ t} is a multivariate counting process then Nj(t) counts the
number of events of type j and N(t) = (N1(t), . . . , NJ (t))′
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1

Introduction

1.1 The Scope of Recurrent Events

In science and technology, interest often lies in studying processes which gen-
erate events repeatedly over time. Such processes are referred to as recurrent
event processes and the data they provide are called recurrent event data.

In some settings interest may lie in a relatively small number of processes
generating a large number of events. This is the case when studying stoppages
to assembly lines, when analyzing processes for software fault detection and re-
moval, or when investigating the incidence of injuries in manufacturing plants.
In other settings data may be available for a larger number of processes ex-
hibiting a relatively small number of recurrent events. These types of processes
arise frequently in medical studies, where information is often available on
many individuals, each of whom may experience transient clinical events re-
peatedly over a period of observation. Examples include the occurrence of
asthma attacks in respirology trials, epileptic seizures in neurology studies,
and fractures in osteoporosis studies. In business, examples include the filing
of warranty claims on automobiles, or insurance claims for policy holders.

In this book we focus primarily, but not exclusively, on situations in which
data are available from a large number of individuals under study. Frequent
objectives in analyzing recurrent event data include (i) understanding and
describing individual event processes, (ii) identifying and characterizing varia-
tion across a population of processes, (iii) comparing groups of processes, and
(iv) determining the relationship of fixed covariates, treatments, and time-
varying factors to event occurrence.

In most applications the scale used to characterize the distributions of
events is in units of time, but other scales may be used. For example, early
work on the development of models for point processes was in the textile
industry where the unit of measurement was fibre length and the event of
interest was a flaw in the fibre. Other time-related scales include distance
driven for automobile warranty claims and hours or cycles of operation in
manufacturing processes.
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Before providing some notation and describing modeling concepts for
recurrent events, we give some examples of recurrent event data.

1.2 Some Preliminary Examples

We present here several examples of recurrent event data, and introduce some
simple graphical and numerical summaries that display basic features of the
data. The data presented here are subjected to more formal methods of analy-
sis in subsequent chapters.

1.2.1 Mammary Tumors in a Carcinogenicity Study

Gail et al. (1980) presented data from a carcinogenicity experiment on the
times to the development of mammary tumors for 48 female rats. Rats were
exposed to a carcinogen and further conditioned for 60 days prior to random-
ization to receive either a treatment or control. A followup period of 122 days
began after randomization, during which they were examined every few days
for the development of new tumors. The data given in Gail et al. (1980) are
displayed in Table 1.1 except we report the times from the beginning of the
period of examination instead of from the time of exposure to the carcino-
gen. Following each identifier are times corresponding to days on which new
tumors were detected.

Figure 1.1 displays the data in separate event plots for each rat where dots
are placed on the days that events occurred. In cases where there was more
than one event for a given animal on a given day, the events are separated
slightly. Such plots, which are feasible when there are not too many individual
processes, convey an impression of the frequency and patterns of events. They
also show the total followup times for each process; in this case they are all
the same at 122 days, but in many settings they vary considerably.

Plots like Figure 1.1 have limitations, however, because it is often not easy
to determine visually whether a trend or other pattern exists. Another useful
plot is a cumulative sample mean function plot, defined as follows. Suppose
that m individual processes are observed, with each process being observed
over the time interval [0, τ ]. Let Ni(t) represent the number of events over
the time interval [0, t] for the ith process. Then the cumulative sample mean
function is

µ̂(t) =
1
m

m∑

i=1

Ni(t) . (1.1)

A cumulative sample variance function

v̂ar{N(t)} =
m∑

i=1

{Ni(t) − µ̂(t)}2/(m − 1)
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Table 1.1. Times to tumor (in days) for laboratory rats (numbers in parentheses
indicate number of tumors detected).

Treatment Group Control Group

ID Days of Tumor Detection ID Days of Tumor Detection

1 122 1 3, 42, 59, 61(2), 112, 119

2 - 2 28, 31, 35, 45, 52, 59(2), 77, 85, 107, 112

3 3, 88 3 31, 38, 48, 52, 74, 77, 101(2), 119
4 92 4 11, 114

5 70, 74, 85, 92 5 35, 45, 74(2), 77, 80, 85, 90(2)

6 38, 92, 122 6 8(2), 70, 77
7 28, 35, 45, 70, 77, 107 7 17, 35, 52, 77, 101, 114

8 92 8 21, 24, 66, 74, 101(2), 114

9 21 9 8, 17, 38, 42(3)

10 11, 24, 66, 74, 92 10 52

11 56, 70 11 28(2), 31, 38, 52, 74(2), 77(2), 80(2), 92(2)

12 31 12 17, 119
13 3, 8, 24, 35, 92 13 52

14 45, 92 14 11(2), 14, 17, 52, 56(2), 80(2), 107
15 3, 42, 92 15 17, 35, 66, 90

16 3, 17, 52, 80 16 28, 66, 70(2), 74

17 17, 59, 92, 101, 107 17 3, 14, 24(2), 28, 31, 35, 48, 74, 77, 119

18 45, 52, 85, 101, 122 18 21, 28, 45, 56, 63, 80, 85, 92, 101(2), 119

19 92 19 28, 35, 52, 59, 66(2), 90, 97, 119

20 21, 35 20 8(2), 24, 42, 45, 59, 63(2), 77, 101, 119, 122
21 24, 31, 42, 48, 70, 74 21 80

22 - 22 92, 122(2)

23 31 23 21
24 3, 28, 74
25 24, 74, 122

may similarly be defined. Figure 1.2 shows plots of µ̂(t) and of v̂ar{N(t)}
for each treatment group. The left panel shows the cumulative sample mean
functions to be roughly linear, with the control group having a little over
twice as many events (tumors) per animal as the treatment group at any
given time. The variance function plot shows the variability in cumulative
tumor occurrences per animal, at different times.

Cumulative mean and variance functions may correspondingly be defined
for recurrent event process models; this is discussed in Chapter 2. An impor-
tant question, addressed in Chapter 3, is how to estimate a process mean or
variance function when individual processes are not all observed over the same
time interval, as they are here.
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Fig. 1.1. Event plots for tumor occurrences in 48 rats.
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1.2.2 Testing and Debugging a Large Software System

Dalal and McIntosh (1994) describe a testing and debugging process for a large
software system consisting of roughly seven million noncommentary source
lines (NCSL) of code. During testing which was carried out by different in-
dividuals, the testers recorded the amount of time they spent each day on
testing, and the number of faults found. Faults found were generally not fixed
immediately, but instead were repaired at convenient times. When faults were
repaired, and for other reasons, additional lines of code (NCSL) were added
to the software system over time. Testing covered 160 calendar days, during
which 870 faults were detected and over 342,000 new NCSL were added.

For purposes of analysis we treat this as a single large process, with fault
detections being the events of interest. The most relevant time scale for as-
sessing these events is the cumulative staff time spent testing the system. The
data given by Dalal and McIntosh (1994), and reproduced in Table D.2 of
Appendix D, show the cumulative staff days of testing (t) and the cumulative
number of faults detected (N(t)) at the end of different test days. Because
the introduction of new NCSL can affect the number of faults in the system,
the cumulative number of source lines added during the testing period is also
given.

Figure 1.3 is a plot of N(t) versus t, which shows that the rate of fault
detection has decreased over the testing period. A major issue for the soft-
ware developers is when to stop testing. This decision problem is discussed in
Section 3.8.3; an important factor is prediction of the number of new faults
that would be detected if the testing period were extended.

1.2.3 Pulmonary Exacerbations in Cystic Fibrosis

Therneau and Hamilton (1997) discussed data that arose in a clinical trial
involving persons with cystic fibrosis (Fuchs et al. 1994). These individuals
are susceptible to an accumulation of mucus in the lungs, which leads to
pulmonary exacerbations and deterioration of lung function. In a randomized
clinical trial, a purified recombinant form of the human enzyme DNase I, called
rhDNase, was administered daily to patients in an rhDNase treatment group
and the remaining patients were administered a placebo; patients and their
physicians did not know which treatment (rhDNase or placebo) they were
receiving. Most subjects were followed for approximately 169 days, and the
occurrences of exacerbations over the study period were recorded for each.
Subjects had as many as five exacerbations, and Table 1.2 shows the total
number experienced by the 324 and 321 subjects in the placebo and rhDNase
groups, respectively.

A main objective of the study was to compare the two treatment groups
in terms of exacerbation occurrence. Because the subjects were randomly as-
signed to treatment and the length of followup for almost all subjects was
close to 169 days, a simple comparison could be based on the counts in Table
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Fig. 1.3. Cumulative software faults detected versus staff days of testing.

1.2. The patterns of exacerbations are also of interest, however, and there is in
addition a baseline measurement of forced expiratory volume taken for each
subject at the start of the study; this is a measure of lung function and is
expected to be related to the frequency of exacerbations. This suggests that
some type of regression modeling would be useful.

Table 1.2. Distribution of the numbers of exacerbations by treatment group for
subjects in the rhDNase study.

Number of Number of Patients

Exacerbations Placebo Group rhDNase Group

0 185 217
1 97 65
2 24 30
3 13 6
4 4 3
5 1 0
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A final noteworthy point is that when an exacerbation occurs, the sub-
ject receives antibiotics and is not considered at risk for a new exacerbation
until the end of antibiotic therapy. The majority of periods of antibiotic ther-
apy are in the 10–15-day range, but there is considerable variation in their
lengths. With the event defined as the onset of an exacerbation, this creates
a complication with the construction of cumulative plots such as Figures 1.2
and 1.3, and with model-based analysis. The complication is easily addressed
by careful consideration of when individuals are at risk of an exacerbation.
Periods “at risk” are discussed in Section 1.4.2.

1.2.4 Automobile Warranty Claims

Manufacturers whose products are covered by warranties collect and track
information on warranty claims. This is done for financial reasons, because
claims incur costs to the manufacturer, which must be understood and pre-
dicted, but also because claims data reflect certain dimensions of product
quality and reliability, and may suggest areas for improvement. Lawless and
Nadeau (1995) examined data on cars of one model year and type, which
were sold over a period of 60 weeks. A slightly updated database with 38,401
vehicles generating 5760 claims is considered in this book. The warranty data
are for one system on the vehicle, and there were one-year and 12,000-mile
limits on coverage. At the time the claims database was finalized, not all ve-
hicles had been in service for 365 days, and for simplicity we consider in this
section only those cars which had; there were 15,775 such cars. All vehicles
are considered in later analyses in Chapter 3.

There were 2620 claims among the 15,775 cars, and Table 1.3 shows the
frequency distribution of claims per vehicle. It is generally of interest to ex-
amine warranty claims according to the date of manufacture of the product,
because quality problems occasionally arise over certain limited periods. Fig-
ure 1.4 shows a plot of the 2620 claims across the 15,775 cars. The cars in the
plot are numbered from 1 to 15,775 according to their date of manufacture;
the manufacturing period covered 209 days. The event (claim) “times” are
the age of the car at the time of the claim, where age is the number of days
since the vehicle was sold. It is noted that some claims in the figure are at age
zero; this is because claims were made by the dealer before the car was sold.
This figure is analogous to the the plot used in Figure 1.1 for a much smaller
number of individual processes.

As with Figure 1.1, certain patterns are suggested by Figure 1.4, but sum-
maries of the data provide a clearer picture. We could, for example, show a
cumulative sample mean function plot, as in Figure 1.2. As another illustra-
tion, we show in Figure 1.5 a histogram of the 2620 claim times, with times
(ages) grouped into 20-day intervals. Smoothed histograms, or data density
plots, could similarly be given. It is noted that the claims frequency is lower
for the higher ages. The main reason for this is that many cars are no longer
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Table 1.3. Frequency distribution of car warranty claims.

Number Number of
of Claims Cars (frequency)

0 13,987
1 1,243
2 379
3 103
4 34
5+ 29

Total 15,775

covered by the warranty at ages close to 365 days because they passed the
12,000-mile limit some time earlier.
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Fig. 1.4. Warranty claim occurrences for 15,775 cars.



1.3 Notation and Frameworks 9

0 100 200 300

0

50

100

150

200

F
R

E
Q

U
E

N
C

Y
  O

F
  C

LA
IM

S

AGE  OF  VEHICLE  AT  TIME  OF  CLAIMS  (DAYS  SINCE  SALE)

Fig. 1.5. Histogram of warranty claim occurrence times (ages).

1.3 Notation and Frameworks

Modeling of recurrent events can be approached in a number of ways, which
are described in books on stochastic processes and, more specifically, point
processes. For purposes of both modeling and statistical analysis, the con-
cepts of intensity functions and counting processes are especially useful. In
the following discussion and throughout the book we consider events that oc-
cur in continuous time, but discrete time models are also considered in specific
places.

For a single recurrent event process starting for simplicity at t = 0, let 0 ≤
T1 < T2 < · · · denote the event times, where Tk is the time of the kth event.
The associated counting process {N(t), 0 ≤ t} records the cumulative number
of events generated by the process; specifically, N(t) =

∑∞
k=1 I(Tk ≤ t) is

the number of events occurring over the time interval [0, t]. More generally,
N(s, t) = N(t) − N(s) represents the number of events occurring over the
interval (s, t].

In this framework, note that we use square and round brackets to indicate
whether the endpoint of an interval is in or not in the interval, respectively.
In addition, we use t− and t+ to denote times that are infinitesimally smaller
or larger than t, respectively. As defined here, counting processes are right-
continuous; that is, N(t) = N(t+). Figure 1.6 portrays a realization of an
event process in terms of its counting process.
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Models for recurrent events can be specified very generally by considering
the probability distribution for the number of events in short intervals [t, t +
∆t), given the history of event occurrence before time t. To set up some
essential notation, we let ∆N(t) = N(t+∆t−)−N(t−) denote the number of
events in the interval [t, t+∆t), and let H(t) = {N(s) : 0 ≤ s < t} denote the
history of the process at time t. For events occurring in continuous time we
make the mathematically convenient assumption that two events cannot occur
simultaneously. Then, the event intensity function gives the instantaneous
probability of an event occuring at t, conditional on the process history, and
defines the process mathematically. The intensity is defined formally as

λ(t|H(t)) = lim
∆t↓0

Pr{∆N(t) = 1|H(t)}
∆t

. (1.2)

Throughout the book we use intensity functions to model event processes.
Section 2.1 develops mathematical background and relates intensity functions
to other characteristics of a recurrent event process. The assumption that
two events cannot occur at exactly the same time is plausible in most set-
tings and is retained throughout the book. Processes that allow simultaneous
occurrences can be handled using approaches described in Section 8.1.

When a heterogeneous group of individuals or processes is considered,
the assumption of a common event intensity may be implausible. Greater
generality can be obtained by broadening the definition of the process history
to include information on fixed or time-varying covariates and by letting the
event intensity function depend on such covariates. Covariates are discussed
in Section 1.3.4 and throughout the book.

The definition (1.2) is very general and accommodates any possible depen-
dence of the intensity on the process history H(t). Models which make explicit
assumptions about the dependence of λ(t|H(t)) on H(t) are used throughout
this book to facilitate analysis. Two fundamental ways of describing and mod-
eling event occurrences are through event counts and through gaps or waiting
times between successive events. These are discussed in the following subsec-
tions. Sometimes the most natural framework is clear for a particular problem
but it may be driven by features of the underlying process, the objectives of
analyses, or the results of model checking. In many contexts, analyses based
on both counts and waiting times may be relevant.

Two process features that are often of interest are time trends and event
clustering. Broadly, a time trend in a process refers to a tendency for the rate
of event occurrence to change over time in some systematic way. Monotone
trends are common, but nonmonotonic trends can also occur. For example,
seasonal fluctuations in the occurrence of bronchial infections have been noted
in respiratory disease. Figure 1.3 in Section 1.2 shows a decreasing trend in
the rate of detection of software faults as testing time increases and Figure 1.5
indicates a decreasing trend in the population rate of car warranty claims as
the ages of vehicles approach one year. Figure 1.2, on the other hand, shows
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Fig. 1.6. Counting process representation of data on recurrent events.

an absence of trend in the average rate of occurrence of tumors in the animal
carcinogenicity study described in Section 1.2.1.

Clustering refers to the tendency for events to cluster together in time. To
some extent clustering is similar to nonmonotonic fluctuations in the event oc-
currence rate; the broad distinction is that clusters of events (i.e. several events
close together in time) are considered to occur randomly in time whereas
trends in the event rate are more time related. Time trends are rather easily
built into models discussed below, but dealing with clustering is often more
complicated.

1.3.1 Methods Based on Event Counts

Models and methods based on counts are often useful when individuals fre-
quently experience the events of interest, and the events are “incidental” in the
sense that their occurrence does not materially alter the process itself, either
directly or through resulting interventions. Examples of incidental events in-
clude mild epileptic seizures or asthmatic attacks in humans and most war-
ranty claims for cars. Events which may recur but which are not incidental
include myocardial infarction and stroke in cardiovascular studies, or the de-
velopment of new sites of metastatic disease in cancer trials. In these latter
settings the events may substantially alter the condition of the individual, thus
affecting the event process in the future; physicians may also alter treatment
in response to these events.
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The canonical framework for the analysis of event counts is the Poisson
process. Poisson models typically use calendar time or the age of the process
as the time scale. The independent increments property of Poisson processes
states that N(s1, s2) is independent of N(s3, s4) provided s2 < s3. This implies
that for Poisson processes the process history at time t does not affect the
instantaneous probability of events at time t, and in the absence of covariates
the only factor determining the intensity is t. Poisson processes are therefore
Markov, with intensity function of the form

λ(t|H(t)) = lim
∆t↓0

Pr{∆N(t) = 1}
∆t

= ρ(t) . (1.3)

In addition to being the intensity function, ρ(t) is the rate function giving the
marginal (i.e. unconditional) instantaneous probability of an event at time t.
Specifically, ρ(t)∆t

.= E{∆N(t)}, and if µ(t) denotes the expected cumulative
number of events at t, then

µ(t) = E{N(t)} =
∫ t

0

ρ(s)ds (1.4)

and ρ(t) = µ′(t) = dµ(t)/dt. Sections 1.2.1 to 1.2.4 all described settings
where event counts are relevant.

Extensions to accommodate between-subject variability in event rates
through fixed or time-varying covariates, or random effects are straightfor-
ward. Poisson processes and extensions are discussed extensively in Section
2.2 and in Chapter 3.

1.3.2 Methods Based on Waiting or Gap Times

We define Wj = Tj − Tj−1 as the waiting time or gap time between the
(j − 1)st and jth event. Analyses based on waiting times are often useful
when events are relatively infrequent, when some type of individual renewal
occurs after an event, or when prediction of the time to the next event is
of interest. Analyses based on waiting times are natural in studies of system
failures, where repairs made at each failure return the system to a working
state. In some studies involving bladder cancer, patients undergo transurethral
resection to remove all recently detected tumors, and prophylatic treatment
to retard the development of new tumors; this intervention makes waiting
time analyses reasonable. Other settings include studies of cyclical phenomena
where characterization of cycle length is of interest. These include studies of
recurrent phenomena such as infections, where an individual returns to a
similar state after the infection has been cleared, and recurrent episodes of
hospitalization or disability.

Renewal processes are the canonical models for waiting times and are de-
fined as processes for which
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λ(t|H(t)) = h(t − TN(t−)) . (1.5)

That is, h(·) is the hazard function for the gap times between events, which are
independent and identically distributed. Generalizations of renewal processes
that accommodate within-subject association or trends in gap times are often
useful. Renewal processes and extensions are discussed in Section 2.3 and in
Chapter 4.

Table 1.4. Lengths of successive bowel motility cycles.

Individual Complete Observed Periods Censored

1 112 145 39 52 21 34 33 51 54
2 206 147 30
3 284 59 186 4
4 94 98 84 87
5 67 131
6 124 34 87 75 43 38 58 142 75 23
7 116 71 83 68 125 111
8 111 59 47 95 110
9 98 161 154 55 44
10 166 56 122
11 63 90 63 103 51 85
12 47 86 68 144 72
13 120 106 176 6
14 112 25 57 166 85
15 132 267 89 86
16 120 47 165 64 113 12
17 162 141 107 69 39
18 106 56 158 41 41 168 13
19 147 134 78 66 100 4

Example: Study of Motility of the Small Bowel

Aalen and Husebye (1991) discuss the analysis of data from a study of small
bowel motility involving 19 healthy individuals. Catheters positioned in the
proximal small bowel were used to monitor intraluminal pressure. Individuals
were examined continuously from 5:45 p.m. to 7:25 a.m. on the next day, giving
a total of 13 hours and 40 minutes of observation. A standardized mixed meal
of 405 kcal was given to each individual at 6:00 p.m. to induce contraction
of the small bowel, a key feature of the digestive process. After a variable
length of time in which irregular bowel contractions occur, a “fasting state”
begins, with a cyclical bowel motility (activity) pattern. The time between
two consecutive fasting cycles is called the migrating motor complex (MMC)
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period. In this study, the start of the bowel motility cycles represents the
recurrent events, and it is of interest to analyze the durations of successive
cycles for an individual. These duration times are shown in Table 1.4. Note
that the end of the monitoring period leads to a censored, or incomplete,
observation of the last MMC period. Analysis of these data is considered in
Section 2.3.2 and in Chapter 4.

1.3.3 More General Models

It is sometimes convenient to consider models for recurrent events in terms
of multistate processes such as the one given in Figure 1.7. The states in
Figure 1.7 correspond to the cumulative number of events experienced by a
subject since the onset of the process. The event intensity function can then
be viewed as a “transition” intensity function. Generalizations of the Poisson
and renewal models discussed earlier are naturally formulated. For example,
one might adopt a Markov model λ(t|H(t)) = αk(t) where N(t−) = k, for
which the Markov transition intensity depends on the state occupied and the
time since the start of the process. This model generalizes the Poisson process
for which αk(t) = ρ(t), k = 0, 1, . . .. Alternatively, one could adopt a semi-
Markov model of the form λ(t|H(t)) = hk(B(t)) where again N(t−) = k
and B(t) = t − TN(t−). As in a renewal process, the time scale is based on
the time since entry to the current state, but here the distributions of the
sojourns in the states are not identical. This represents a generalization of a
simple renewal process for which hk(s) = h(s), k = 0, 1, 2, . . .. More general
intensity-based models where λ(t|H(t)) is affected by previous event history
are likewise conveniently interpreted within the framework of Figure 1.7.

0 1 2 3

Fig. 1.7. Multistate representation of a recurrent event process.

1.3.4 Covariates

In many applications an objective is to relate event occurrence to fixed or
time-varying covariates, or to adjust an analysis for the presence of covari-
ates. In the car warranty claims data of Section 1.2.4, for example, we may
want to relate the occurrence intensity or rate for claims to the time period
in which the car was manufactured. In Sections 1.2.1 and 1.2.3, studies were
described in which the comparison of treatment and control groups of subjects
was of interest. In such cases it is customary to use an indicator covariate to
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represent the group to which an individual belongs. In the study in Section
1.2.3, the frequency of pulmonary exacerbations for subjects is also related
to the person’s forced expiratory volume measurement at the time of ran-
domization, so it could be included as a covariate in the analysis of the data.
Time-varying covariates are also common. For example, in studies on the fre-
quency of visits to hospital emergency clinics because of breathing problems,
air pollution measures, temperature, and humidity may be important covari-
ates. In the software debugging example of Section 1.2.2, the number of lines
of code changed in response to previous faults that were detected generally
affects the fault intensity function, so it is in effect a time-varying covariate.

We typically use x or z to denote fixed covariates, and x(t) or z(t) for time-
varying covariates. An important distinction with a time-varying covariate is
whether it is external or internal. An external covariate is one whose values
are determined independently of the recurrent event process (fixed covariates
are therefore external). A covariate that is not external is called internal.
Thus, air pollution is an external covariate in a study on hospital visits due
to breathing problems. However, the number of lines of code changed in a
software debugging process is an internal covariate, because it depends on
prior events (i.e. faults detected) in the process.

Covariates in models for recurrent events are discussed in Chapter 2.

1.3.5 Factors Influencing Model Choice

Recurrent event analyses may have a range of objectives that are determined
by the setting, and this guides the formulation of models and methods for
analysis. In trials where patients are randomized to treatments upon study
entry and prospectively followed, for example, simple comparisons between
two or more treatment groups are often of interest based on marginal features.
Analyses based on expected event counts are appealing in such settings, be-
cause they provide a basis for simple treatment comparisons which exploit the
randomization and facilitate causal inferences regarding treatment effects.

In contrast, in prospective observational studies, interest may lie in de-
veloping intensity-based models in order to gain a better understanding of
factors that drive the event process. Fully specified models are also required
when models are to be developed for simulation purposes, or when probabilis-
tic predictions of future events are desired. Fixed and time-varying covariates
are often relevant in such settings.

One modeling distinction is between full probability models for the recur-
rent event processes and partial specifications that model only certain aspects
such as the mean function E{N(t)}. A second distinction is between paramet-
ric and nonparametric specifications. As noted above, full models are needed
for certain purposes and this often involves fully parametric specifications.
Conversely, simple comparisons of treatments or of groups of individuals is
often best done with easily interpreted, robust analysis of marginal features
that does not make many strong assumptions. The completeness and type of
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data are also factors; data with missing components often require more as-
sumptions for their analysis. We present a full range of methods for analysis
including parametric, semiparametric, and nonparametric methods, as well as
methods based on full and partial model specifications.

1.4 Selection of Individuals and Observation Schemes

In planning an event history study, one must decide on two key aspects: (i)
how individuals will be selected for the study, and (ii) what information will
be collected about the event histories for the individuals in the study.

An initial important distinction is between prospective and retrospective
observation of individuals. In a prospective study we take one or more indi-
vidual processes and follow them longitudinally over time; events and related
outcomes that are recorded during this “followup” period are the responses of
interest. Prospective studies can be experimental or observational. In the for-
mer, individuals selected for the study are often a random sample from some
population, but the defining characteristic is that control is exercised over
the assignment of treatments or other experimental factors. In observational
studies no such control is exercised. In a retrospective study, the time period
[τ0, τ ] over which events are recorded for an individual is physically prior to
the time the individual is selected, so they are inherently observational. Some
studies involve both retrospective and prospective observation.

Sections 1.2.1 and 1.2.3 give examples of prospective experimental studies
in which individuals are randomly assigned a treatment and then followed for a
specified period of time. Sections 1.2.2 and 1.2.4 describe observational studies;
the former involves a single process involving the detection of faults during
software development and testing and the latter involves warranty claims on a
large number of cars. These two studies could technically be either prospective
or retrospective, depending on when the data were assembled. However, both
are essentially prospective here because the processes were identified a priori
and data were collected as they occurred. An example of a retrospective study
is where women are selected randomly from some population, and their history
of pregnancies and live births determined. With such studies a key issue is
whether sufficiently good records exist to allow the history of past events and
covariates to be determined. Selection bias may also arise, as discussed in
Section 1.4.3.

In Section 2.6 we discuss the specification of likelihood functions or sam-
pling distributions, and how they are affected by the two study aspects above.
In the following subsections we introduce some related issues.

1.4.1 The Choice of Time Scale

In recording, modeling, and analyzing the occurrence of events it is necessary
to have an appropriate time scale. The time variable t is often chronological or
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calendar time, especially with processes that apply to humans or animals. In
technological areas, measures of usage or exposure are often used, for example
distance accumulated for motor vehicles or (discrete) usage cycles for printers
or copiers. In the software testing illustration in Section 1.2.2, cumulative staff
days of testing were deemed most appropriate.

The time scale also involves a choice of origin, and this requires some
care when multiple individuals are under study. Intensity-based analyses can
adapt to the choice of a time origin through specification of the intensity, but
it is nevertheless desirable to use an origin that is consistent across individuals
and facilitates interpretation and analysis. In many contexts this may be clear.
For example, in studies of car warranty claims the time origin for a car would
correspond to its purchase date, and analyses could be based on calendar
time or usage since purchase. In health research, the choice of time origin is
frequently less clear. Consider a study directed at modeling the development
of newly damaged joints among patients in an arthritis clinic. Possible time
origins include the time of birth of the patient (with age as the time scale),
the time of disease onset, or the time of entry to the clinic. In many senses
disease onset is a natural choice, although this is often difficult to determine
precisely; incorporating patient age into analyses as a covariate would then
be sensible. In randomized clinical trials, it is customary to consider the time
of randomization or start of treatment as the time origin. This is usually
reasonable because interest typically lies in making treatment comparisons,
but when interest lies in features of the disease process other time origins
may be preferred. It should also be noted that once an underlying time scale
is chosen, it is necessary to decide whether it is most suitable to develop
models based on the cumulative time or gap times between events. Although
this could be viewed as a model specification decision, it affects the analysis
and interpretation of results.

In studies, data are collected over some calendar time period, and different
individuals are not necessarily observed over the same intervals for their event
processes. That is, for individual i, we typically observe {Ni(t) : τi0 ≤ t ≤ τi},
for an interval [τi0, τi] that is determined by the calendar time period for the
study and the time origin for that individual’s event process. The examples in
Section 1.3 all involved situations where τi0 = 0 for each individual. However,
for settings such as the arthritis study mentioned above, we may have τi0 > 0,
depending on the choice of time origin.

Figure 1.8 shows the relationship between the process age (t) and calendar
time for two individuals with processes initiating at C10 and C20 in calendar
time and observed in a study over calendar time period [CS , CE ]. Unless stated
otherwise, in the subsequent development the term “time” refers to the time
scale t for individual event processes.

Sometimes it is useful to define more than one time scale. In studies of car
warranty claims, for example, one might wish to develop models with time
scales for both usage and age of the vehicle. Intensity models incorporating
both scales can provide insight into which is more appropriate for a given
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problem. Similarly, intensity functions that involve both cumulative time and
gap times are often useful.
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Fig. 1.8. Lexis diagram relating calendar time to process time t.

1.4.2 Defining Periods “At Risk”

Let us denote the time period over which an individual’s events are recorded
as [τ0, τ ] as in the preceding section. For now we suppose events occur and
are recorded in continuous time. Let I(·) be an indicator function such that
I(A) = 1 if A is true and I(A) = 0 otherwise and define Y (t) = I(τ0 ≤ t ≤ τ).
Thus, Y (t) = 1 if an individual is under observation and therefore at risk of
events being observed at time t, and Y (t) = 0 otherwise. The function Y (t)
is called an “at risk” indicator and is useful for denoting which individuals
provide information about event occurrence at a given time. The time τ is
sometimes referred to as a censoring or end-of-followup time for the observed
event process.

More general observational or censoring patterns can arise if subjects tem-
porarily cease to be under observation. This happens, for example, if individ-
uals are asked to record events on daily diary cards and stop doing so for a
period of time. It is also possible for an individual to cease to be at risk tem-
porarily because of the nature of the process. For example, in the clinical trial
involving pulmonary exacerbations described in Section 1.2.3, an individual



1.4 Selection of Individuals and Observation Schemes 19

who has an exacerbation is not at risk for another until a period of antibiotic
treatment has ended. Such observational schemes and processes are discussed
further in Section 2.6 and in Chapter 6.

1.4.3 Initial Conditions and Selecting Individuals for Study

Suppose the individual event processes of interest are considered to start at
time t = 0. The simplest type of study is where individuals are followed
prospectively starting from time τ0 = 0. In some settings, however, an in-
dividual is sampled and observation begins from a time τ0 after the event
process has begun, with events observed over the time interval [τ0, τ ]; see Fig-
ure 1.8. Moreover, the selection of the individual may depend on events prior
to τ0. If information on the history of the process over [0, τ0) is available, then
analyses based on intensity functions for the period τ0 ≤ t ≤ τ are easy to
carry out as discussed in Section 2.6. Difficulties can arise, however, if all the
necessary history over [0, τ0) is not available. The information for the interval
[0, τ0), including the values of any covariates, is sometimes referred to as the
initial conditions for the process {N(t), τ0 ≤ t}.

It is always important to be aware of any distinction between the target
population, which is the desired reference population for a study, and the
actual study population from which the individual processes in the study are
drawn. This can be problematic in observational studies.

In some settings the mechanism by which individuals are sampled or chosen
for a study is not fully specified. For example, consider a registry database
of osteoporosis patients attending one of a number of tertiary care clinics.
Information on the incidence of fractures, medication uses, and health care
resource utilization may be collected. Simple analyses of fracture rates may
be of interest, but for inferences about the general population such analyses
should incorporate the mechanism for referral to the tertiary care clinics and
the process which determines when individuals are sent to them.

If selection of individuals is completely independent of their event processes
then analyses involving full or partially specified models are both relatively
straightforward. If selection of an individual at τ0 depends on H(τ0), then this
must often be taken into account in the analysis by, for example, modeling
the intensity function for t > τ0. In retrospective studies, where an individual
is chosen for study after time τ0 and perhaps even after time τ , care must
be taken to reflect any conditions for selection in the analysis. In particular,
the inclusion of an individual in a study may depend on her event history
over [τ0, τ ] or on her satisfying a certain condition (e.g. being alive) at time
τ . These issues are discussed in subsequent chapters and, in particular, in
Section 7.3.
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1.4.4 Intermittent Observation and Interval Censoring

Frequently it is difficult to observe the precise times of events and all that is
known is how many events occurred between successive examination times.
In studies of osteoporosis, for example, interest may lie in the occurrence of
asymptomatic fractures which are only detectable upon radiographic exam-
ination at specific followup times. If examinations occur at common times
for each patient, analyses can be easily based on the interval event counts
(i.e. numbers of fractures), although considering gap times will be difficult.
However, if examination times vary between patients then the times between
assessments must be taken into account; we refer to this as interval-censored
data. Such data often arise in medical contexts, such as studies of metastatic
cancer where new metastases are detectable upon magnetic resonance imag-
ing, in radiographic studies of joint damage in arthritic patients, and in studies
of the development of tumors in superficial bladder cancer. Similar phenom-
ena occur in studies on the degradation of systems or materials, for example,
in the detection of cracks in metal surfaces during intermittent inspections.
Problems involving intermittent inspection are discussed in Chapter 7.

1.5 Multitype Event Data

1.5.1 Multivariate Event Processes

Multiple types of recurrent events arise frequently. In some cases the events
represent different severities of the same phenomenon (e.g. mild, moderate,
or severe epileptic seizures) or subtypes thought to be caused by different un-
derlying physiological processes (e.g. asthma exacerbations may be classified
according to the concentration of different cell counts in sputum samples), or
they may correspond to different types of problems (e.g. automobile insurance
claims may be due to theft, breakdown, collisions, etc.).

In some cases interest may lie in differentiating these events because they
have different implications; for example, severe epileptic seizures have more
serious consequences than milder ones. Interest may also lie in comparing or
understanding the relation between events; one may, for example, investigate
whether individual asthma patients tend to have predominantly one type of
exacerbation, whether one type of exacerbation increases the risk of the other,
or whether the same environmental factors are associated with both types of
exacerbations.

Multiple event types are discussed at length in Chapter 6. The following
subsections introduce some important special cases.

1.5.2 Recurrent Events with Termination

A special case of multiple types of events arises when a recurrent event process
is terminated by another event. An example is in organ transplant studies
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Fig. 1.9. Multistate diagram for recurrent events with a terminal event.

where transient graft rejection episodes are terminated by total graft rejection
or patient death. In studies of cancer patients with bone metastases, the de-
velopment of new metastases is terminated by patient death. Intensity-based
models handle this type of recurrent event data relatively easily. If marginal
process characteristics such as the expected number of recurrent events are of
interest, however, analyses are less straightforward if the terminating event is
related to the recurrent events. This is discussed in Section 6.6.

Example: Skeletal Complications from Bone Metastases

Breast cancer patients frequently develop bone metastases over the course
of the disease. These bone lesions reduce the integrity of the bone thereby
increasing risk of fractures, spinal cord compression, and bone pain, as well
as the need for clinical interventions including radiation therapy and ortho-
pedic surgery. An international multicenter randomized trial of 380 breast
cancer patients with bone metastases was designed to evaluate a bisphospho-
nate, pamidronate, for the prevention of skeletal-related events which included
fractures, spinal cord compression, need for radiation, and need for surgery
(Hortobagyi et al., 1998). Patients were randomized in a balanced fashion to
receive pamidronate or placebo medication via monthly infusions. Data on the
incidence of skeletal complications and survival were observed prospectively
and the exact dates of all these events were recorded. Figure 1.9 is a mul-
tistate diagram reflecting the event process in which death is the absorbing
state D, precluding the occurrence of future skeletal events. Analyses which
distinguish between different types of skeletal events (e.g. fractures, the need
for radiotherapy for bone pain) may also be conducted; these are considered
in Section 6.7.

1.5.3 Recurrent Episodes

Another special case involving multiple event types is when the events cor-
respond to the onset and termination of a relapsing and remitting condition.
This setting may be more appropriately characterized as recurrent episodes
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Fig. 1.10. Multistate diagram for recurrent episodic conditions.

or alternating states rather than recurrent events, but models and methods
similar to those for ordinary recurrent events can be used for analysis. For
example, Section 1.2.3 discussed a study on patients with cystic fibrosis who
are at risk of recurrent pulmonary exacerbations. When an individual experi-
ences an exacerbation, therapeutic interventions are provided to bring about
the resolution of symptoms, which then typically clear up after a relatively
short time. Figure 1.10 represents this type of process as a sequence of alter-
nating states where R0 is the initial state and Ek and Rk represent the states
of k episodes and recoveries, respectively, k = 1, 2, . . .. Similar phenomena
arise in studies of outbreaks of herpes simplex virus, exacerbations in bron-
chitis, recurrent hospitalizations among psychiatric patients, and failures in
systems which must be shut down in order for repair to take place. For such
data, the history H(t) is the collection of all event times and types over [0, t)
and the intensity function governing transitions between states can then be
defined. Sometimes interest may lie only in factors related to the intensity
for the onset of exacerbations and with a suitably defined “at risk” indicator,
analyses can be relatively straightforward. This topic is discussed in Section
6.5.

Example: Exacerbations in Chronic Bronchitis

Here we consider a multicenter randomized trial designed to examine the ef-
fect of a quinolone, Ciprofloxacin, versus standard care on the occurrence
and resolution of acute exacerbations of chronic bronchitis (Grossman et al.,
1998). In this study clinic visits for subjects were scheduled at three-month
intervals from the time of randomization, as part of a regular one-year fol-
lowup assessment program. In order to enter the study and be randomized,
patients were required to be experiencing an exacerbation. In addition, pa-
tients were required to visit a participating clinic when they perceived that a
new exacerbation had begun or when an exacerbation had been resolved. As
a result it was possible to determine the times of the onset and resolution of
the exacerbations prospectively, with the exception of the first one; the time
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of onset for this exacerbation was determined retrospectively at the time of
study entry.

One hundred and fifteen patients were randomized to take Ciprofloxacin
and 107 were randomized to receive standard care upon the development
of symptoms. The average duration of followup was 357 and 350 days for
the Ciprofloxacin and standard care groups, respectively. Figure 1.11 displays
the profiles of eight patients from the standard care arm in which the black
regions represent exacerbations during which treatment was taken, and the
white regions exacerbation-free periods. From this plot it is evident that there
is considerable variability in the frequency and duration of exacerbations be-
tween patients. Additional issues arising in this study include the fact that
patients entered during an exacerbation and this must therefore be handled
differently than the subsequent exacerbations. For example, the duration of
the first exacerbation is subject to “length-biased” sampling; individuals with
longer exacerbation episodes are more likely to be selected for the study. More-
over, the reliability of the reported onset times for this exacerbation may be
poor compared to the times for the subsequent exacerbations. Furthermore,
patients randomized to receive Ciprofloxacin received it after this first ex-
acerbation had been present for some time, rather than at the start of the
exacerbation. We consider the analysis of data from this study in Section 6.7.

1.6 Some Other Aspects of Analysis and Design

As discussed in the preceding sections, choices involving time scales and frame-
works for analysis must be made. These are driven by the objectives of the
study and to some extent by constraints on resources for the selection and
observation of the processes of interest. In subsequent chapters we cover a
broad range of models and methods of analysis, and consider applications
from various fields.

Many of the methods of analysis described in this book can be imple-
mented using widely available software for survival or lifetime data analysis.
Applications involving S-PLUS or R software are discussed within chapters
and some sample code is provided in Appendix C; SAS and other packages
are mentioned in Appendix B. Models that cannot be handled by survival
software are readily fitted using general-purpose optimization software that
is available in S-PLUS, R, SAS, and many other statistical or mathematical
computation packages. Illustrations are provided within chapters, with general
discussion in Appendix B.

Most of the book is about methods of analysis, but the planning of stud-
ies involving recurrent events is discussed in Chapter 8. Key issues are sam-
ple size, and the type of followup of individual processes that resources per-
mit. Increased attention is being given to longitudinal surveys (e.g. Korn and
Graubard 1999; Lawless 2003b) in which individuals are selected according to
a complex survey design and then interviewed at rather widely spaced times
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Fig. 1.11. Profiles of eight sample patients from a bronchitis study.

(e.g. annually) for the collection of information on events and other features.
These and other studies lead to interesting methodological questions regard-
ing design, clustering, missing data, and measurement error associated with
covariates or the timing or type of events. We provide some limited discussion
of these topics in Chapter 8.

1.7 Bibliographic Notes

Recurrent events are of interest in many fields of study. Much of the early
statistical history of recurrent events deals with single processes or popula-
tions, for example, the emission of particles from a radioactive source, the
occurrence of earthquakes, or the occurrence of accidents or cases of disease
in a human population. Models for such settings were developed under the
heading of point processes, and books on this topic provide extensive prob-
abilistic developments and many examples of applications; see, for example,
Cox and Lewis (1966), Cox and Isham (1980), Daley and Vere-Jones (1988,
2003), Lewis (1972), and Snyder and Miller (1991). Certain models, notably
Poisson and renewal processes, were also studied in connection with the re-
liability of repairable systems (Ascher and Feingold, 1984; Rigdon and Basu,
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2000) and of software (Singpurwalla and Wilson, 1999). Jiang et al. (2006)
review and reference several types of applications to repairable systems.

More recently, the modeling and analysis of recurrent events for multi-
ple individuals or systems has undergone extensive development (Andersen
et al., 1993; Lawless, 1995; Nelson, 2003) and methods that incorporate inter-
individual variability through covariates or random effects have become im-
portant. Application areas motivating these developments include medicine
(Gail et al., 1980; Prentice et al., 1981; Byar, 1980), social science (Allison,
1984; Blossfeld and Rohwer, 1995), and product or equipment reliability (Law-
less and Kalbfleisch, 1992; Nelson, 1988). Much of this later development has
taken place within the general framework of counting processes and event
history analysis, which encompasses events of multiple types and transitions
among defined states. Andersen et al. (1993) provide an authoritative account
of methodology and the underlying mathematical theory. There is relatively
little comprehensive material focused on recurrent events. Shorter treatments
providing coverage of specific topics include Blossfeld and Rohwer (1995),
Cai and Schaubel (2004a), Cook and Lawless (2002), Kalbfleisch and Pren-
tice (2002, Ch.7), Karr (1991), Nelson (2003), Rigdon and Basu (2000), and
Therneau and Grambsch (2000).

Issues concerning the selection and observation of individuals in a study
of recurrent events are discussed further in Section 2.6 and the Bibliographic
Notes for Chapter 2. Software for the analysis of recurrent event data is sur-
veyed in Appendix B.
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Models and Frameworks for Analysis
of Recurrent Events

2.1 Mathematical Background

From both a theoretical and a practical perspective, the counting process
notation introduced in Section 1.3 provides a convenient framework for the
treatment of recurrent events. For now we dispense with subscripts that de-
note individuals or units and let N(s, t) denote the number of occurrences of
some type of event over the time interval (s, t], for a specific individual. Unless
stated otherwise, for convenience we assume that the process starts at t = 0
with N(0) = 0 and define N(t) = N(0, t) for t > 0. The process {N(t), 0 ≤ t}
is then the counting process for the event occurrences. For this and the follow-
ing three chapters it is assumed that one type of event is of interest; multiple
event types are considered in Chapter 6. In this section we derive probabil-
ity distributions for observed event occurrence patterns and for gap times.
The results, which are used in developing statistical methods throughout the
book, are contained in Theorems 2.1 and 2.2. Readers who wish to focus on
applications can safely skip over the derivations of these results.

For most of this chapter it is assumed that events occur in continuous
time; special consideration of discrete time is provided in Section 2.5. In the
continuous time setting, models for recurrent events can be specified very
generally by considering the probability distributions for the number of events
in short intervals [t, t + ∆t), given the history of events before time t. As
described in Section 1.3, we define the history H(t) of the event process at
time t as

H(t) = {N(s) : 0 ≤ s < t} t > 0 ,

and let ∆N(t) = N(t+∆t−)−N(t−) denote the number of events in [t, t+∆t).
The value N(0) is included in H(t); this is typically equal to 0, but there are
situations where it may take on positive values as well. In such cases N(t)
may be defined as either the number of events in (0, t] or [0, t], according to
what is most useful.
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It is assumed in the continuous time case that two events cannot occur
simultaneously, and the intensity function (sometimes called the complete in-
tensity) for the event process as defined in (1.2) is

λ(t|H(t)) = lim
∆t↓0

Pr{∆N(t) = 1|H(t)}
∆t

. (2.1)

Mathematically, it is assumed that an intensity is bounded and continuous
except possibly at a finite number of points over any finite time interval. The
intensity function defines an event process, and all process characteristics can
be determined from it.

If observable fixed or time-varying covariates x(t) are related to event
occurrence they may be incorporated in the model by redefining the process
history to include covariate information. The covariates are all assumed to be
external (exogenous) in the development that follows. As discussed in Section
1.3.4, covariates that are internal (nonexternal) are more difficult to deal with
in terms of both modeling and interpretation; they are discussed in Section
2.5. We let x(t) = {x(s) : 0 ≤ s ≤ t} denote the history of the external
covariates over [0, t], and x(∞) denote the complete covariate path. Unless
stated otherwise, we assume that probabilities are conditional on the covariate
path, and include x(∞) in the initial information H(0) for convenience. It is
assumed, though, that λ(t|H(t)) depends only on x(t).

To facilitate the development that follows, we introduce the product in-
tegral of a continuous integrable function g(u) over the interval [a, b]. Let
a = u0 < u1 < · · · < uR = b partition [a, b] and define ∆ur = ur+1 − ur,
r = 0, 1, . . . , R, where uR+1 = u+

R. The product integral of g(u) over [a, b] is
defined as

∏

[a,b]

{1 + g(u)du} = lim
R→∞

R∏

r=0

{1 + g(ur)∆ur} , (2.2)

where as R → ∞,max(∆ur) approaches 0. By noting that log{1+g(u)∆u} =
g(u)∆u + o(∆u) we see that the log of (2.2) approaches the Riemann integral
∫ b

a
g(u)du in the limit, and so

∏

[a,b]

{1 + g(u)du} = exp

{∫ b

a

g(u)du

}

. (2.3)

It is also easily seen that

∏

[a,b]

{1 + g(u)du + o(du)} = exp

{∫ b

a

g(u)du

}

, (2.4)

a result which is useful below. This development also applies if g has a finite
number of discontinuities over [a, b].
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Another useful concept is the Riemann–Stieltjes integral, which allows ex-
tensions to deal with discrete and continuous cumulative functions G(t). Let
G(t) be a nondecreasing, right-continuous function with left-hand limits and
a finite number of discontinuities (jumps) in any finite interval. Assume that
g(t) = G′(t) exists except at points of discontinuity of G(·) and that at points
of discontinuity tj we have G(tj)−G(t−j ) = gj . The Riemann–Stieltjes integral
of dG(·) over the interval [a, b] is then defined as

b∫

a

dG(u) =

b∫

a

g(u)du +
∑

j:a≤tj≤b

gj ,

where the first integral on the right-hand side is a Riemann integral. The
Riemann–Stieltjes integral is therefore a Riemann integral when G(t) is con-
tinuous, and reduces to a sum when G(t) is a step function with jumps gj at a
countable set of points {tj}. More generally, it handles functions with discrete
and continuous components. The product integral can be similarly extended,
replacing g(u)du by dG(u) in (2.2) and g(ur)∆ur with G(ur+1) − G(ur).

We now derive the probability density function for an event process that is
observed over the fixed time interval [τ0, τ ], conditional on H(τ0). The proba-
bility density of the outcome “n events occur, at times t1 < t2 < · · · < tn ≤ τ ,”
where n ≥ 0, may be obtained by considering partitions τ0 = u0 < u1 < · · · <
uR = τ of [τ0, τ ], and then taking a limit. The probability distribution of
N(u1), . . . , N(uR), given H(u0), is

R∏

r=0

Pr{N(ur)|H(ur)} =
R∏

r=0

Pr{∆N(ur)|H(ur)} , (2.5)

where ∆N(ur) is the number of events in [ur, ur+1). It follows from the defin-
ition (2.1) of the intensity function and the property that events cannot occur
simultaneously that

Pr{∆N(ur) = 0|H(ur)} = 1 − λ(ur|H(ur))∆ur + o(∆ur) ,

Pr{∆N(ur) = 1|H(ur)} = λ(ur|H(ur))∆ur + o(∆ur) ,

and
Pr{∆N(ur) ≥ 2|H(ur)} = o(∆ur) .

Thus (2.5) equals

R∏

r=0
{λ(ur|H(ur))∆ur + o(∆ur)}∆N(ur) (2.6)

× {1 − λ(ur|H(ur))∆ur + o(∆ur)}1−∆N(ur) .

As R increases and the size of the ∆ur terms approach zero, the n inter-
vals that contain the event times t1, . . . , tn have ∆N(ur) = 1; for all others
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∆N(ur) = 0. By dividing (2.6) by
∏R

r=0(∆ur)∆N(ur) and letting R → ∞, we
obtain the following result.

Theorem 2.1. Conditional on H(τ0), the probability density of the outcome
“n events, at times t1 < · · · < tn,” where n ≥ 0, for a process with intensity
(2.1), over the specified interval [τ0, τ ], is

n∏

j=1

λ(tj |H(tj)) · exp
{

−
∫ τ

τ0

λ(u|H(u))du

}

. (2.7)

The exponential term in (2.7) is obtained from the product integration
result (2.4) with g(u) = −λ(u|H(u)), noting that the limit is unchanged by
the deletion of the vanishingly small intervals around the n event times.

A second result that is often useful is the following; it provides conditional
probabilities for interevent times and other waiting times.

Theorem 2.2. For an event process with integrable intensity (2.1),

Pr{N(s, t) = 0|H(s+)} = exp
{

−
∫ t

s

λ(u|H(u))du

}

. (2.8)

Proof. Partition the interval (s, t] as s = u0 < u1 < · · · < uR = t and note
as in the preceding development that

Pr{N(s, t) = 0|H(s+)} = lim
R→∞

R∏

r=1
Pr{∆N(ur) = 0|H(ur)}

= lim
R→∞

R∏

r=1
{1 − λ(ur|H(ur))∆ur + o(∆ur)} ,

where all ∆ur approach zero as R → ∞. The expression (2.8) follows imme-
diately from the product integration result (2.4). Note that it is implicitly
assumed under conditions stated following (2.1) that given H(s+), the inten-
sity λ(u|H(u)) in (2.8) is deterministic and integrable over (s, t], and that∫ t

s
λ(u|H(u))du is continuous.

Corollary. Let Wj = Tj − Tj−1 be the waiting time between the (j − 1)st
and jth events, where T0 = 0 and j = 1, 2, . . .. Then

Pr{Wj > w|Tj−1 = tj−1, H(tj−1)} = exp

{

−
∫ tj−1+w

tj−1

λ(u|H(u))du

}

. (2.9)

Proof. The left side of (2.9) equals Pr{N(tj−1, tj−1 + w) = 0|H(t+j−1)} and
so (2.9) follows directly from (2.8).

Knowledge of the intensity function allows us to write down the probability
of a specified event history and conditional probabilities for interevent times,
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as made explicit in Theorems 2.1 and 2.2. Other characteristics of an event
process are less readily obtained from the intensity. Chief among these are
the distribution of the event count N(s, t) in time interval (s, t], and the
joint distribution of counts N(sj , tj) in nonoverlapping intervals (sj , tj ], j =
1, . . . ,m. Even the mean function (1.4) and variance function for the counting
process {N(t), 0 ≤ t}, denoted

µ(t) = E{N(t)} and V (t) = var{N(t)} , (2.10)

are difficult to determine from general intensity functions. In settings where
there is a strong interest in distributions of event counts it may be preferable to
specify the process in ways other than through its intensity; this is considered
in Section 2.2.

The following sections describe some important families of recurrent event
processes, which serve as a basis for modeling and data analysis in subsequent
chapters. We start with processes for which properties of counts are easily
obtained.

2.2 Poisson Processes and Models for Event Counts

Two types of processes for recurrent events might be considered canonical.
One is the Poisson process, which describes situations where events occur
randomly in such a way that the numbers of events in nonoverlapping time
intervals are statistically independent. The other is the renewal process, in
which the waiting (gap) times between successive events are statistically in-
dependent; that is, an individual is “renewed” after each event occurrence.
Poisson processes tend to be appropriate in settings where events for an in-
dividual or system are triggered or influenced by random external factors,
whereas renewal processes tend to describe settings in which events flow from
physical cycles that are internal to an individual or system. Another aspect
is whether events are incidental. For incidental events, Poisson processes or
other models based on counts are often useful. In general the occurrence of
events may of course be driven by a variety of internal and external factors,
and the degree to which they are incidental may vary. As we show here and in
Section 2.3, the applicability of either type of process can be extended greatly
through the inclusion of covariates or random effects.

2.2.1 Poisson Processes

Poisson processes can be defined in various mathematically equivalent ways.
One way mentioned earlier is through the independent counts property for
nonoverlapping time intervals. Another way, which was described in Section
1.3.1, is via the intensity function: a Poisson process is one for which the
intensity is of the form
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λ(t|H(t)) = ρ(t) t > 0 , (2.11)

where ρ(t) is a nonnegative integrable function. It is also assumed that the
cumulative intensity

µ(t) =
∫ t

0

ρ(u)du t > 0 , (2.12)

is continuous and finite for all t > 0. In the important special case where
ρ(t) = ρ is a constant, the process is called homogeneous; otherwise it is
nonhomogeneous. We defer discussion of covariates to Section 2.2.2.

The Poisson process is seen from the definition (2.11) to be a Markov
process; the probability of an event in (t, t + ∆t) may depend on t but is
independent of H(t). The following properties ensue from the definition.

(i) N(s, t) has a Poisson distribution with mean µ(s, t) = µ(t) − µ(s), for
0 ≤ s < t.

(ii) If (s1, t1] and (s2, t2] are nonoverlapping intervals then N(s1, t1) and
N(s2, t2) are independent random variables.

To prove (i), note that by Theorem 2.1 we have from (2.7) that the proba-
bility density for the outcome “n events occur, at times t1 < · · · < tn in (s, t]”
is ⎧

⎨

⎩

n∏

j=1

ρ(tj)

⎫
⎬

⎭
exp{−µ(s, t)} , (2.13)

where n ≥ 0. The marginal probability of n events is then

Pr(n events in (s, t]) = (2.14)
{
∫
· · ·
∫
[

n∏

j=1

ρ(tj)

]

dt1 . . . dtn

}

exp{−µ(s, t)} ,

where the multiple integral is over the region s < t1 < · · · < tn ≤ t. Because
the integrand

∏
ρ(tj) is symmetric in t1, . . . , tn it follows that the integral in

(2.14) is

(n!)−1

∫ t

s

· · ·
∫ t

s

n∏

j=1

ρ(tj)dt1 · · · dtn = (n!)−1
n∏

j=1

{∫ t

s

ρ(tj)dtj

}

= (n!)−1µ(s, t)n .

Thus by (2.14),

Pr(n events in (s, t]) =
µ(s, t)n

n!
exp{−µ(s, t)} n = 0, 1, . . . (2.15)

which is the Poisson probability mass function as stated in (i).
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Property (ii) above easily follows by noting that t1 < s2 and using the
fact that the random variable N(s2, t2) is independent of the history H(s2)
of events prior to s2. It is therefore independent of N(s1, t1).

By (2.15) or (1.4) in Chapter 1, the counting process {N(t), 0 ≤ t} has
mean function µ(t):

E{N(t)} = µ(t) .

The rate function (also called the rate of occurrence function) for a process is
defined as ρ(t) = µ′(t), where µ′(t) = dµ(t)/dt. It follows that

E{∆N(t)} = ρ(t)∆t + o(∆t) , (2.16)

where ∆N(t) represents the number of events in the short interval [t, t + ∆t).
Thus for a Poisson process, the rate function equals the intensity function.
This property, which does not hold for other processes, reflects the fact that
∆N(t) is independent of H(t).

The conditional distributions of gap times Wj = Tj −Tj−1 are, from (2.9),
given as

Pr(Wj > w|Tj−1 = tj−1) = exp{−µ(tj−1, tj−1 + w)} j = 1, 2, . . . (2.17)

and so the gap times are not in general statistically independent. However, in
the important special case of the homogeneous Poisson process, where ρ(t) =
ρ, they are independent. In fact, because µ(t) = ρt in this case, it follows from
(2.17) that

(iii) For the homogeneous Poisson process with intensity ρ, the gap times Wj

(j = 1, 2, . . .) between events are independent and identically distributed
(i.i.d.) exponential random variables with mean ρ−1, and survivor func-
tion

Pr(Wj > w) = exp(−ρw) w > 0 . (2.18)

A final useful result is

(iv) Let {N(t), 0 ≤ t} be a Poisson process with mean function µ(t). Define
a new time scale (sometimes referred to as operational time) by s = µ(t)
and define the process {N∗(s), 0 ≤ s} by

N∗(s) = N(µ−1(s)) 0 < s .

Then {N∗(s), 0 ≤ s} is a homogeneous Poisson process with rate function
ρ∗(s) = 1.

This result is discussed in Problem 2.2.
The concept of trend is important in many applications, as described in

Chapter 1. For a Poisson process, ρ(t) determines whether there is a trend in
the rate of events; if ρ(t) is monotone increasing or decreasing then a monotone
trend is said to exist, but nonmonotone trends are also common.
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Poisson process models may be parametric or nonparametric. For para-
metric models ρ(t) is specified as a function of a finite-dimensional parame-
ter. Common models include the exponential and power law models, in which
ρ(t;α, β) = exp(α + βt) and ρ(t;α, β) = αβtβ−1, respectively.

2.2.2 Covariates in Poisson Processes

External covariates x(t), which include fixed covariates, can be incorporated
in a Poisson process by specifying the intensity as a function of t and the
covariate history x(t) = {x(u) : 0 ≤ u ≤ t}. This is usually done by defining
covariate vectors z(t) that are based on x(t) and then considering intensities
of the form

ρ(t|x(∞)) = ρ(t|x(t)) = ρ0(t) exp(z′(t)β) , (2.19)

where β is a vector of regression parameters of the same length as z(t). As
is the case throughout this book, vectors are written in column form. The
positive-valued function ρ0(t) is sometimes called the baseline rate or intensity,
and corresponds to an individual for whom z(t) = 0 for all t > 0. For this
function to have a practical interpretation it is common to center z(t) in some
way. Note that in (2.19) we make the reasonable assumption that given x(t),
the intensity is independent of covariate values after t.

The multiplicative model (2.19) is sometimes referred to as a log-linear
model and represents a flexible and convenient way to ensure positive-valued
multiplicative effects of z(t) for any β. The exponential term can be replaced
by some other function g(z(t);β) if desired. For example, g(z(t);β) = 1 +
z′(t)β is occasionally useful. In this case, the parameter space for β must be
constrained to guarantee that 1 + z′(t)β > 0.

If the baseline function ρ0(t) is specified parametrically, the model is
fully parametric, otherwise it is semiparametric. The semiparametric model
(2.19), with ρ0(t) an arbitrary positive-valued function, is sometimes called
the Andersen–Gill (1982) model, and statistical methods for it are discussed
in Chapter 3.

When all covariates are fixed, their effects have a simple interpretation,
because conditional on the covariate vector z, the process {N(t), 0 ≤ t} is
Poisson with rate function ρ0(t) exp(z′β) and mean function

E{N(t)|z} = µ0(t) exp(z′β) , (2.20)

where µ0(t) =
∫ t

0
ρ0(u)du is the baseline mean function. This is a log-linear

model, in which both the mean and rate functions for any two individuals are
proportional; the ratio of the functions for individuals with covariate vectors
z1 and z2 is exp{(z1 − z2)′β}.

When covariates are time-varying but external, the recurrent event process
is still Poisson, conditional on the associated covariate history x(∞). However,
although the effect of covariates on the rate function (2.19) is easy to interpret,
the effect on the mean function may be complex:
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E{Ni(t)|x(∞)
i } =

∫ t

0

ρ0(u) exp{z′i(u)β}du (2.21)

does not in general have a simple form.
In models (2.20) with fixed covariates, the mean functions for individuals

differ only in level (are proportional). Models for which both the shape and
level of the rate function depend on x can be formulated through derived
time-varying covariates z(t) that are functions of x and t. For example, if
z(t) = x · t then by (2.19) the rate functions ρ(t|x) = ρ0(t) exp(z′(t)β) are not
proportional for different x, nor are the mean functions. In many applications
it is of interest to determine whether the shape or level of the rate or mean
functions for N(t) vary with covariate values.

The multiplicative model (2.19) can also be extended by allowing z(t) to
include components based on prior event history, such as the time since the
most recent event or the number of previous events. In that case z(t) has
internal covariate components and the process is no longer Poisson, but it is
often referred to as a modulated Poisson process. For such processes, the event
intensity may depend on prior event history.

Nonmultiplicative regression models can also be formulated. Two promi-
nent types are additive models for which

ρ(t|x(t)) = ρ0(t) + g(z(t);β) (2.22)

and time transform models for which

ρ(t|x(t)) = ρ0

(∫ t

0

exp(z′(u)β)du

)

exp(z′(t)β) , (2.23)

where, in both cases, ρ0(·) is a baseline rate function. Time transform models
are analogous to accelerated failure time models for lifetime data. In particular

s = g(t) =
∫ t

0

exp(z′(u)β)du (2.24)

can be considered as a transformed time scale defined by the covariate process,
such that the process {N∗(s), 0 ≤ s}, where N∗(s) = N(g−1(s)), is a Poisson
process with intensity ρ0(s). Moreover, it follows from (2.23) that

E{N∗(g(t))|x(t)} = E{N(t)|x(t)} = µ0(g(t)) , (2.25)

where µ0(t) =
∫ t

0
ρ0(u)du.

2.2.3 Random Effects in Poisson Processes

Sometimes, even after conditioning on covariates, there is more interindivid-
ual variation in event occurrence than is accounted for by a Poisson process.
One sign of this is when var{Ni(t)} appears to be substantially larger than
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E{Ni(t)}; the two are identical under a Poisson model. If counts are of in-
terest and Poisson processes are still thought to be reasonable models for
individuals, we can consider the incorporation of unobservable random effects
ui for individuals i = 1, . . . , m, such that, given ui and fixed covariates zi, the
process {Ni(t), 0 ≤ t} is Poisson with rate function

ρ(t|zi, ui) = uiρ0(t) exp(z′iβ) . (2.26)

The terms u1, . . . , um are taken here to be i.i.d. with finite mean and distri-
bution function G(u). By including an intercept term in z′iβ, or absorbing it
in ρ0(t), we may assume without loss of generality that E(ui) = 1.

Random effects can also be incorporated in other ways. For example, if
both the shape and level of intensity functions vary across individuals in a
way that cannot be explained by observable covariates, we might consider
bivariate random effects (ui, vi) and conditional rate functions of the form

ρ(t|zi, ui, vi) = uiρ0(t; vi) exp(z′iβ) . (2.27)

Another option would be to consider fixed or time-varying covariates for which
the regression coefficients are random.

Models (2.26) where ui has a gamma distribution with mean 1, variance
φ, and density function

g(u;φ) =
uφ−1−1 exp(−u/φ)

φφ−1Γ (φ−1)
u > 0 , (2.28)

are especially convenient, because various process characteristics have closed-
form expressions. In particular, if we write

µi(s, t) =
∫ t

s

ρ0(v) exp(z′iβ)dv = µ0(s, t) exp(z′iβ)

then given zi and ui, the distribution of Ni(s, t) is Poisson with mean
uiµi(s, t). Given only zi the probability function is then

Pr(Ni(s, t) = n|zi) =
∫ ∞

0

[uµi(s, t)]n

n!
exp{−uµi(s, t)}g(u;φ)du (2.29)

=
Γ (n + φ−1)

Γ (φ−1)
[φµi(s, t)]n

[1 + φµi(s, t)]n+φ−1 n = 0, 1, 2, . . .

which is of negative binomial form. Note that the limit as φ → 0 gives the
Poisson distribution (2.15).

The unconditional mean and variance of Ni(s, t) can be obtained from
(2.29) or by noting that

E{Ni(s, t)} = E{E[Ni(s, t)|ui]}
= E{uiµi(s, t)} = µi(s, t) , (2.30)
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and

var{Ni(s, t)} = E{var[Ni(s, t)|ui]} + var{E[Ni(s, t)|ui]}
= E{uiµi(s, t)} + var{uiµi(s, t)}
= µi(s, t) + φµi(s, t)2 . (2.31)

The covariance for the event count in nonoverlapping intervals may similarly
be obtained as

cov{Ni(s1, t1), Ni(s2, t2)} = φµi(s1, t1)µi(s2, t2) . (2.32)

It should be noted that the relationships (2.30)–(2.32) hold for any model
(2.26) in which E(ui) = 1, var(ui) = φ.

The mean function µi(t) = µi(0, t) and rate function ρi(t) = µ′
i(t) for the

“negative binomial” process {Ni(t), 0 ≤ t} above are independent of φ and, in
particular, are the same as when φ = 0, that is, when the process is Poisson.
However, when φ > 0 the process is not Poisson, and the intensity function
at time t depends both on φ and on the process history prior to t. It is given
by (see Problem 2.6)

λ(t|Hi(t)) =
{

1 + φNi(t−)
1 + φµi(t)

}

ρi(t) t > 0 , (2.33)

and because it depends on the process history only through Ni(t−) it is still
Markov.

Under the model (2.26), the marginal rate and mean functions are

ρi(t) = ρ0(t) exp(z′iβ) and µi(t) = µ0(t) exp(z′iβ) , (2.34)

so we see from (2.33) that although the covariate zi has a simple multiplicative
effect on the process mean and rate function, it has a more complicated effect
on the process intensity. Note that the intensity at t increases with the value
of Ni(t−). This makes sense because large values of Ni(t−) are associated
with larger values of ui, which in turn are associated with larger event counts
beyond t.

2.2.4 Example: Mammary Tumors in Rats

Section 1.2.1 described a situation discussed by Gail et al. (1980), who pre-
sented data on the times to development of mammary tumors for 48 female
rats in a carcinogenicity experiment. The animals were randomly assigned to
two groups: treatment (23 animals) and control (25 animals). The data in
Table 1.1 give the days on which new tumors were discovered for each an-
imal; animals were inspected every few days for a period of 122 days. The
event (appearance of a new tumor) times are not known exactly because of
the intermittent inspections.
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The main objective of analysis is a comparison of the treatment and con-
trol animals with respect to the frequency of tumor occurrence. Figure 1.2
indicates that the average rate of tumor occurrence across animals is roughly
constant for both groups, so a very simple comparison can be based on the
expected total tumor counts over the 122-day observation period. Let µT (t)
and µC(t) represent the mean functions for tumors over (0, t] for animals in
the treatment and control groups, respectively, and VT (t) and VC(t) denote
the respective variance functions. If we let µT = µT (122), µC = µC(122),
VT = VT (122), and VC = VC(122), then a good measure of treatment effect is
the ratio ψ = µT /µC , which can easily be estimated from the observed data.

The sample means µ̂T = 2.65 and µ̂C = 6.04 for the treatment and con-
trol groups give the estimate ψ̂ = 0.44. These are the maximum likelihood
estimates under the assumption that individual tumor counts Ni(122) fol-
low identical Poisson distributions with means µT (122) and µC(122) for the
treatment and control animals, respectively.

Confidence intervals for ψ can be obtained under the Poisson model, but
this is not necessarily appropriate. In fact, the sample variances for the total
tumor counts in the two groups at 122 days are found to be V̂T = 3.7826
and V̂C = 15.5400. Under a Poisson model the mean and variance of Ni(122)
are the same, and the values of µ̂C and V̂C indicate that this may not be
true for the control group. More generally, Figure 1.2 suggests that VC(t)
is substantially larger than µC(t) for this group. Formal methods of testing
the Poisson assumption are given in Chapter 3 and we give a more detailed
analysis there; here we just compare the results from the Poisson model with
those of a simple robust analysis.

Exact small sample confidence interval procedures are available for Poisson
models (e.g. Cox and Lewis, 1966) but given the large total tumor counts in
the two groups, a simple large sample approach is satisfactory. Because µ̂T is
approximately normally distributed as N(µT , µT /23), it follows that log µ̂T is
approximately N(log µT , (23µT )−1); the latter approximation is typically bet-
ter when µT is small. Similarly log µ̂C is approximately N(log µC , (25µC)−1).
Thus the random variable W = log(µ̂T /µ̂C) = log ψ̂ is approximately normal:

W � N

(

log ψ,
1

23µT
+

1
25µC

)

. (2.35)

By treating W as exactly normal we can obtain approximate confidence in-
tervals for log ψ and thus for ψ. For example, an approximate 95% confidence
interval for log ψ is log ψ̂ ± 1.96{(23µ̂T )−1 + (25µ̂C)−1}1/2.

The above procedure is not robust to departures from the Poisson model.
A robust approach is to note that µ̂T and µ̂C , or log µ̂T and log µ̂C , are
approximately normally distributed even when the total counts (Ni(122)) are
not Poisson random variables. In particular, µ̂T � N(µT , VT /23) and µ̂C �
N(µC , VC/25), where VT and VC represent var{Ni(122)} for treatment and
control animals. This leads to
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W � N

(

log ψ,
VT

23µ2
T

+
VC

25µ2
C

)

(2.36)

and to the approximate 95% confidence interval

log ψ̂ ± 1.96

(
V̂T

23µ̂2
T

+
V̂C

25µ̂2
C

)1/2

for log ψ, where V̂T and V̂C are sample variance estimates given above.
The 95% confidence intervals obtained for log ψ and for ψ from the two

approaches are as follows.

Poisson method: −1.12 ≤ log ψ ≤ −0.526 and 0.326 ≤ ψ ≤ 0.591.

Robust method: −1.22 ≤ log ψ ≤ −0.429 and 0.296 ≤ ψ ≤ 0.651.

The robust confidence intervals are wider, reflecting the fact that the variance
of W in (2.36) is larger than that in (2.35) when VT /µT and VC/µC are greater
than one. This phenomenon is often referred to as overdispersion relative to
a Poisson model, or it is said that there is extra-Poisson variation. One way
to model this formally is to introduce random effects, as described in Section
2.2.3, and an alternative analysis would be to adopt a negative binomial model
(2.29) for each of the treatment and control groups. Large sample maximum
likelihood methods (Appendix A) could then be used to obtain confidence
intervals for ψ. This approach is illustrated in Section 3.4, where inference for
negative binomial and other mixed Poisson processes is considered. This gives
confidence intervals for ψ that are close to those for the robust method above.

The simple analysis here indicates strongly that tumor frequency over
the 122 day study is substantially lower under the treatment than under the
control. These results are most meaningful and easily interpreted when the
rate of occurrence functions ρ(t) for the two groups are constant; in that case
ρT (t) = αT , ρC(t) = αC , and ψ = αT /αC is the ratio of the rates as well as
the ratio of µT (t) = αT × t and µC(t) = αC × t. Conversely, if ρT (t) and ρC(t)
were markedly nonlinear and nonproportional, the ratio µT (t)/µC(t) would
vary over time and so the treatment effect ψ = µT (122)/µC(122) would be
dependent on the duration of the study and would not represent the effect
over a shorter or longer study. As noted above, Figure 1.2 in Section 1.2.1
shows plots of µ̂T (t) and µ̂C(t) and they are both close to linear, indicating
that the two rate functions are roughly constant.

2.3 Renewal Processes and Models for Gap Times

2.3.1 Models for Gap Times Between Events

Renewal processes are ones in which the gaps Wj = Tj − Tj−1 (j = 1, 2, . . .)
between successive events are independent and identically distributed. This is
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equivalent to the condition that the process intensity is of the form (1.5),

λ(t|H(t)) = h(B(t)) t > 0 , (2.37)

where B(t) = t − TN(t−) is the time since the most recent event before t, or
backwards recurrence time, and h(w) is the hazard function for the variables
Wj . That is, if the Wj have common density function f(w) and survivor
function S(w) = P (W ≥ w), then

h(w) =
f(w)
S(w)

= lim
∆w↓0

Pr(W < w + ∆w|W ≥ w)
∆w

.

It is assumed here that the time origin t = 0 corresponds to an event time.
Sometimes this is relaxed and W1 is allowed to have a different distribution
from W2,W3, . . . , with the gap times still being mutually independent.

The concept of no trend in a process of recurrent events can, as suggested
in Chapter 1, be interpreted in various ways. A pure renewal process may be
said to exhibit no trend inasmuch as the gap times are i.i.d. The rate function
ρ(t) is not in general linear but under quite general conditions ρ(t) approaches
the constant value E{W}−1 as t becomes large.

The distribution for counts N(s, t) in renewal processes is in general math-
ematically intractable. An exception is for the renewal process in which the
Wj are exponential random variables; the process is then a homogeneous Pois-
son process. Another exception is for the distribution of N(t), which can be
obtained from the relationship

Pr(N(t) ≥ n) = Pr(Tn ≤ t) (2.38)

and the fact that Tn = W1 + · · · + Wn is a sum of i.i.d. random variables. It
also follows from (2.38) that Pr(N(t) = n) = Pr(Tn ≤ t)− Pr(Tn+1 ≤ t), and

µ(t) = E{N(t)} =
∞∑

n=1

Fn(t) , (2.39)

where Fn(t) is the distribution function for Tn. Calculation of (2.38) or (2.39)
can be approached in various ways; Problem 2.7 provides some direction. The
marginal distribution of N(s, t) for s > 0 is much less tractable because the
time of the last event prior to s is unspecified. When such count distributions
are wanted, it is simplest to determine them by simulation; see Problem 2.8.

Covariates may be incorporated into renewal processes in straightforward
ways. If fixed covariates z are associated with independent renewal processes,
we can allow the common distribution of the gap times Wj for a given process
to depend on z. Because the Wj are positive-valued, regression models used
in connection with lifetime data (e.g. Lawless, 2003a) may be used. The two
most important families of such models are the proportional hazards model
where the hazard function of Wj given z is of the form
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h(w|z) = h0(w) exp(z′β) , (2.40)

and the accelerated failure time model, where the hazard function is of the
form

h(w|z) = h0(wez′β) exp(z′β) . (2.41)

In each of (2.40) and (2.41), h0(w) is a positive-valued function referred to as
the “baseline” hazard function.

If there are external time-varying covariates z(t), then renewal models in
which the process intensity is of the form

λ(t|H(t)) = h(B(t)|z(t)) (2.42)

can be considered. This is equivalent to incorporating the time-varying co-
variate z(t) into the hazard function for the Wj . The multiplicative model
with

h(w|z(t)) = h0(w) exp(z′(t)β) , (2.43)

where t = w + tN(t−), is very useful. In a model like (2.43) the Wj for a
given process are independent (given the full covariate history) but are not
identically distributed.

In many applications the assumption of independent gap times is not ten-
able, even after conditioning on covariates. Models based on gap times can
then be approached for the case of fixed covariates through specification of
the distribution of Wj given W1, . . . ,Wj−1 and z (j = 1, 2, . . .). Gaussian
(normal) models for Yj = log Wj are often convenient; in this case the Wj

are said to have log-normal distributions, conditional on prior gap times and
covariates. Very flexible modeling is also possible through the multiplicative
model (2.43), by allowing z(t) to include components of prior event history
such as gap times or number of events. Such models are often called modulated
renewal processes: the elapsed time w = B(t) since the most recent event is
taken as the baseline time variable for each new event, but the gap time may
depend on previous event or covariate history.

Random effects can be introduced into renewal models in various ways.
The simplest and most easily interpreted is where there are independent ran-
dom effects ui associated with individual processes, so that given ui and any
relevant covariate values, the gap times Wij (j = 1, 2, . . .) for process i are
independent. Two useful such models when all covariates zi are fixed, are

(i) The conditional multiplicative model in which Wij has a hazard function,
given ui and zi, of the form

h(w|ui, zi) = uih0(w) exp(z′iβ) , (2.44)

where the ui are i.i.d. random variables, and
(ii) The conditional Gaussian model in which Yij = log Wij has the condi-

tional distribution
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Yij |ui, zi ∼ N(ui + z′iβ, σ2) , (2.45)

where ui ∼ N(0, σ2
u).

In such models, the gap times for an individual process are not independent
once the conditioning on the unobservable ui is removed. The joint distribu-
tion of gap times is, however, exchangeable.

2.3.2 Example: Bowel Motility Cycles

Section 1.3.3 described a study of motility (muscular activity) patterns in the
small bowels of 19 human subjects. Table 1.4 shows the lengths of successive
motility (or “MMC”) cycles, which followed a “fed state” period that each
subject experienced after consumption of a standard meal. The motility cycle
patterns are believed to be independent of the duration of the fed state. A
main objective is to characterize their variability both within and between
subjects.

In this context we can associate events with the start of a motility cycle.
Let wij denote the length of the jth cycle for subject i, where i = 1, . . . , 19
and j = 1, . . . , ni; the length of the last cycle is right-censored for each sub-
ject because the total followup time for the study was fixed. A basic question
is whether the wij for a given subject indicate either a trend or autocorre-
lation. The amount of variability in the cycles for an individual subject is
also of interest. Figure 2.1 shows plots of points (wi,j−1, wi,j) for j = 2, 3.
One point in the left panel and two in the right panel have censored gap
times (for W2 and W3, respectively) and are denoted by the + symbols,
but this has a minor effect and there is no indication of trend or autocor-
relation. Figure 2.2 shows Kaplan–Meier estimates of the survivor functions
S1(t) = Pr(Wi1 ≥ t), S2(t) = Pr(Wi2 ≥ t), and S3(t) = Pr(Wij ≥ t) where
in the last case j ≥ 3 and it is assumed that gap times Wij (i = 1, . . . , 19;
j = 3, 4, . . .) are independent and identically distributed. There is an indica-
tion from Figure 2.2 that first cycles tend to be slightly longer than second or
subsequent cycles, which appear to have similar length distributions. A tenta-
tive conclusion is therefore that cycle lengths are approximately independent
within subjects, that the lengths of second and subsequent motility cycles are
close to identically distributed, and that first cycles tend to be slightly longer.

It is important to note a potential problem with this informal analysis,
however. In the present study, and many others, the duration of the study is
fixed for a given subject. If the gap times between events (which here are the
starts of cycles, with the cycle length playing the role of gap time) are not
independent then censoring times for second and subsequent gap times are not
independent of the gap times. For example, if τi is the duration of followup for
subject i, then the censoring time for Wi2 is Ci2 = τi−wi1. If Wi1 and Wi2 are
dependent, then Wi2 and Ci2 are dependent and so one of the key conditions
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Fig. 2.1. Scatterplots of points (wi1, wi2) and (wi2, wi3) in the left and right panels,
respectively, for bowel motility cycles.

for standard methods of survival analysis is violated. If Wi1 and Wi2 are
positively correlated, it can be shown, for example, that the Kaplan–Meier
estimate for S2(t) = Pr(Wi2 ≥ t) computed from the available observations
wi2 is biased downward; this is discussed in Section 4.4. If Pr(Wi1+Wi2 > τi) is
not small, and (Wi1,Wi2) are strongly correlated, the bias will be substantial.
The power of plots like Figure 2.1 to detect dependence or trend in gap times
can also be compromised in studies with fixed followup times. For example, if
W1 and W2 have positive association the fact that larger W1 are more likely
to have W2 censored can mask the association in a plot of W1 versus W2.

In the case of gap time analysis, model-based procedures are essential.
These are developed in Chapter 4, where we revisit these bowel motility data
and demonstrate that there is indeed no significant evidence that the cycle
lengths for an individual subject are dependent. It is also shown that individ-
ual Kaplan–Meier estimates for first, second, or subsequent gaps are in this
case consistent, thus confirming the results of the informal analysis given here.

2.4 General Intensity-Based Models

Poisson and renewal processes have simple, easily interpreted properties in
terms of counts and gap times, respectively. Their range of application is



44 2 Models for Analysis of Recurrent Events

CYCLE  LENGTH  (MINUTES)

K
A

P
LA

N
−

M
E

IE
R

  E
S

T
IM

A
T

E

0 50 100 150 200 250 300

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1st  CYCLE
2nd  CYCLE
3rd  AND  HIGHER  CYCLE

Fig. 2.2. Kaplan–Meier estimates of the survivor functions for first, second, and
later bowel motility cycles.

limited, however, and in most settings we have to consider either extensions
of these processes, or alternative models formulated via intensity functions.
The multistate framework in Section 1.3.3 is often a convenient way to think
about general models. Another option in some cases is to forgo modeling of
the complete event process, and to consider only certain features of interest.
For example, useful analysis can often be based on rate and mean functions
for counts, perhaps supplemented with variance functions. This approach is
developed in Section 3.6.

Intensity-based models, including modulated Poisson and renewal processes
represented by (2.19) and (2.43), are relatively easy to fit and check when ex-
act event times can be observed. This is discussed in Section 2.6 and demon-
strated over the next several chapters, where methods of estimation, testing,
and model checking are developed for the processes described in this chapter.

The result (2.9) gives the distribution of a gap time conditional on prior
history. We use this result to describe how a process can be simulated, given
the intensity function. Specifically, (2.9) indicates that if all covariates are
external, then given H(tj−1) and the (j − 1)st event time tj−1, the random
variable

Ej =
∫ tj−1+Wj

tj−1

λ(t|H(t))dt (2.46)
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has a standard exponential distribution with survivor function exp(−u), u > 0;
see also Problem 2.2. Thus, given tj−1, H(tj−1), and the values of any external
covariates beyond tj−1, we can generate Wj by generating Ej and then solving
(2.46) for Wj . The latter step has to be carried out numerically in most
cases, but this is often easy to do. By repeating this for j = 1, 2, . . . , we can
generate successive event times tj = tj−1 +wj . Problem 2.2 also gives another
simulation procedure which is useful when (2.46) is difficult to solve.

Example 2.4.1

Suppose that the process intensity is

λ(t|H(t)) = exp{α0 + g1(t) + g2(N(t−)) + I(N(t−) > 0)g3(B(t))} ,

where g1(·), g2(·), and g3(·) are specified functions. Then (2.46) becomes, for
j ≥ 1 and with a change of the variable of integration to w = t − tj−1,

Ej = eα0+g2(j−1)

∫ Wj

0

exp{g1(tj−1 + w) + I(N(t−) > 0)g3(w)}dw .

2.5 Discrete-Time Models and Time-Varying
Covariates

Models for recurrent events may also be formulated in discrete time. For
general discussion, assume that allowable t-values are 0, 1, 2, . . ., and let n(t) =
N(t)−N(t−1) denote the number of events at time t. In some applications n(t)
may equal only 0 or 1, but n(t) ≥ 2 is allowed in general. Conditional on n(0)
and x(0), the process is completely specified by the distributions of n(t) given
the event and covariate history H(t) = {n(0), . . . , n(t − 1), x(0), . . . , x(t)} for
each t ≥ 1. If n(t) is binary, these distributions are defined by the discrete
intensities (conditional event probabilities)

Pr{n(t) = 1|H(t)} = λ(t|H(t)) t = 1, 2, . . . (2.47)

which are models for longitudinal binary responses (e.g. Diggle et al. 2002, Ch.
10). When n(t) ≥ 2 is possible, models based on modulated Poisson processes
are important; here n(t) given H(t) is taken to have a Poisson distribution
with some specified mean ρ(t|H(t)). Multiplicative models where

E{n(t)|H(t)} = ρ(t|H(t)) = ρ0(t) exp{x′(t)β} t = 1, 2, . . . (2.48)

are very useful.
If the covariates x(t) in a Poisson model (2.48) are random but external,

then conditional on the full covariate history x(∞), the n(t) terms are inde-
pendent Poisson random variables. Let us verify this statement, and at the



46 2 Models for Analysis of Recurrent Events

same time formalize the concept of an external covariate. Formally, we say a
covariate process {x(t), 0 ≤ t} is external if it is not influenced by the event
process. This means for t = 1, 2, . . . , that

Pr{x(t)|H1(t)} = Pr{x(t)|x(t−1)} , (2.49)

where H1(t) = {n(s), x(s); s = 0, 1, . . . , t− 1}. In that case, if we consider the
joint distribution of the n(t) and x(t) up to time τ , we have

τ∏

t=1

Pr{n(t), x(t)|H1(t)} =
τ∏

t=1

Pr{n(t)|H(t)} Pr{x(t)|H1(t)} (2.50)

=
τ∏

t=1

Pr{n(t)|H(t)} Pr{x(t)|x(t−1)} , (2.51)

where H(t) = (H1(t), x(t)). It then follows from (2.49) and (2.51) that

Pr{n(1), . . . , n(τ)|n(0), x(τ)} =
τ∏

t=1

Pr{n(t)|H(t)} (2.52)

and so under (2.48) and conditional on x(τ), the n(t) are indeed independent
Poisson random variables. This argument also shows that the n(t) are condi-
tionally independent when the distribution of n(t) given H(t) depends only
on x(t), of which (2.48) with n(t) Poisson is a special case.

From (2.50) we can also see where problems arise if covariates are internal
(not external). In that case Pr{x(t)|H1(t)} depends on (n(0), . . . , n(t − 1))
and (2.51) and (2.52) are not obtained. In fact, the right side of (2.52) is
not the probability of any outcome and so although (2.48) has a probabilistic
interpretation, the right side of (2.52) does not. In order to obtain the marginal
probability of an outcome such as the sequence of counts n(1), . . . , n(τ) it
is necessary to average over the time-varying covariates x(t) in (2.50). This
makes it necessary to model the covariate and event occurrence processes
simultaneously, whereas with external covariates we need only condition on the
observed covariate values because of (2.52). Essentially the same conditions
apply in the case of continuous-time processes.

Discrete time renewal or modulated renewal processes can be formulated
when n(t) is binary, by expressing (2.47) in terms of the time since the last
event prior to t. Random effects can also be introduced into models in either
the binary or general case; Problem 2.11 provides an example.

Strictly speaking, event times are always recorded on a discrete time scale.
Nevertheless, it is customary to use continuous-time models when events occur
in continuous time. In some applications events occur in continuous time but
the process is observed intermittently. For example, one might record only
the numbers of events n(t) on successive days t = 1, 2, . . .. In this case we
can either use a discrete time model or deal with the interval counts n(t) =
N(t)−N(t−1) in a continuous time model. As discussed in previous sections,
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the distributions of counts are intractable for many continuous time processes
so we would try to avoid such processes in our models. In Chapter 7 we
consider these issues in some detail.

2.6 Likelihood for Selection and Observation Schemes

Event history processes are studied through the collection and analysis of
data. As discussed in Section 1.4, two questions about study design and the
collection of data have important ramifications for analysis and interpreta-
tion of results: How are individuals selected for inclusion in the study? What
information is collected about the event histories of individuals in the study,
and how is this done?

Prospective studies, introduced in Section 1.4, typically take a group or
“cohort” of individuals and then follow it longitudinally over time, record-
ing events and covariates of interest. The group can often, but not always,
be viewed as a random sample selected from a population of individuals or
processes. The conditions for including an individual in the study can depend
on their covariates or event history prior to the study, but these factors must
then be considered in the analysis. Analyses based on a full specification of
the event process can normally accommodate this easily, but difficulties may
arise for methods based on partially specified processes such as mean function
models.

Assume that event occurrences and covariate values x(t) are recorded over
the time interval [τ0, τ ] for a specific individual. The time τ0 may or may
not correspond to the natural or “physical” start of the event process for the
individual; the process time origin is dealt with in the specification of the
intensity function and other process characteristics. In clinical trials t usually
corresponds to time on study for the individual and τ0 = 0, although in a
process involving, say, repeated infections, a person’s prior history of infec-
tions before τ0 may determine whether he is selected for the study. In an
observational study on the occurrence of hospitalization episodes for psychi-
atric disorders, we may prefer to treat age as the time variable t for modeling
and analysis. In that case τ0 would be the individual’s age at the start of
followup.

The times τ0 or τ can be random, as opposed to prespecified by the study.
The latter is referred to as the termination time or end-of-followup time for
the observed process. Sometimes it is also called a censoring time, by analogy
with survival analysis. Two situations can be distinguished.

(i) Termination of observation is due to a study ending or a person becoming
lost to followup; the event process may continue beyond τ but we are
unable to observe it.

(ii) Termination is due to another type of event that ends the main event
process. For example, if an individual dies at time τ then his process of
recurrent bronchial infections is terminated at that time.
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Dealing with case (ii) is a little more difficult. The terminating event may be
related to the recurrent events, and process variables such as interval counts
or event times are subject to constraints (e.g. Tj ≤ τ), so joint modeling of
the recurrent and terminating events may be necessary.

Wherever possible we consider likelihood-based methods of statistical in-
ference. It was shown in Section 2.1 that for a process observed over the
fixed time interval [τ0, τ ], the expression (2.7) gives the conditional probabil-
ity density for the outcome “n events occur at times t1 < · · · < tn.” Then,
the contribution to the likelihood function for an individual can be taken as

L =
n∏

j=1

λ(tj |H(tj)) · exp
{

−
∫ τ

τ0

λ(u|H(u))du

}

(2.53)

and the likelihood from a group of m independent individual processes is a
product of such terms.

If τ0 or τ1 is random then under certain conditions (2.53) is still valid
for inference purposes. This is obviously the case if τ0 and τ1 are determined
independently of the event process, in which case (2.53) is the event history
density, conditional on τ0, τ , H(τ0), and the covariate history. However, (2.53)
is valid even more generally provided that τ0 and τ are what are referred to
as stopping times with respect to the process, and provided λ(u|H(u)) is the
appropriate event intensity when the condition that the individual is “under
observation” at time u (i.e. that τ0 ≤ u ≤ τ) is added. Formally we require

λ(t|H(t)) = lim
∆t↓0

Pr{∆N(t) = 1|H(t), τ0 ≤ t ≤ τ}
∆t

. (2.54)

The stopping time condition means that τ0 and τ may be determined ran-
domly in a way that depends on event history prior to τ0 and τ , respectively,
but not on the process after those times. In this general case (2.53) may not
be the conditional probability density of the outcome “n events, at times
t1 < · · · < tn,” given τ0, τ , and H(τ0). However, it is a “partial” likelihood,
and it has been shown that it can be treated as an ordinary likelihood function
for estimation or testing of model parameters (Andersen et al. 1993, Ch. 2).

A little different way of writing expressions such as (2.53) and (2.54) is
based on the definition of the “at risk” process {Y (t), 0 ≤ t} introduced in
Section 1.4.1, where

Y (t) = I(process is observed at time t) .

That is, if an event occurs at time t it is observed, and so we say the individual
is “at risk” of having an observed event at time t. In the preceding discussion
Y (t) = I(τ0 ≤ t ≤ τ) but the notation can also accommodate settings where
individuals are observed over disjoint time intervals, as described in Section
1.4.1.

We often focus on the most common setting in which the process is ob-
served over a single complete interval from τ0 = 0. By convention, Y (t)
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is assumed to be left-continuous, so Y (t) = Y (t−). We can then define
N̄(t) =

∫ t

0
Y (u)dN(u), which represents the observed part of the count-

ing process. We may then consider the history of the observable process
H̄(t) = {N̄(s), Y (s), 0 ≤ s < t}, and let

λ̄(t|H̄(t)) = lim
∆t↓0

Pr{∆N̄(t) = 1|H̄(t)}
∆t

denote the intensity of the observable process. If ∆N(t) and Y (t) are condi-
tionally independent given the history, then λ̄(t|H̄(t)) = Y (t)λ(t|H(t)) and
the censoring mechanism is said to be conditionally independent. Note that
it is important to ensure a sufficient amount of information is incorporated
from H(t) into the model to justify the conditional independence assump-
tion; typically this means including terms that affect both {N(t), 0 ≤ t} and
{Y (t), 0 ≤ t}. If an insufficient amount of information is included to warrant
the conditional independence assumption, then a dependent censoring or de-
pendent observation scheme is present and it is more difficult to relate the
intensity of the observable process to that of the underlying process. Methods
for estimating the features of the underlying process in this setting are dis-
cussed in Chapter 7, but these typically require effort to model the observation
process. These approaches are commonly adopted when models for marginal
features of the underlying event process are of interest.

The key feature under conditionally independent censoring schemes is that
the intensity of the observable counting process is λ̄(t|H̄(t)) = Y (t)λ(t|H(t)).
When Y (t) = 0 the process is not under observation at t and hence it is not
possible to observe an event at t. Unless we state otherwise, we assume that
the observation or at-risk process is conditionally independent of the event
process, so that the likelihood for the observable data can be written down
directly in terms of the model for the underlying process. In this case (2.53)
can be rewritten as

L =
n∏

j=1

λ(tj |H(tj)) · exp
{

−
∫ ∞

0

Y (u)λ(u|H(u))du

}

(2.55)

and it is valid for inference about λ(t|H(t)) even when τ0 and τ in (2.53)
are random. This version is also valid when an individual process is observed
intermittently, as in Section 1.4. A practical constraint on the use of (2.55),
however, is that the necessary information in H(u) must be available for
λ(u|H(u)) to be known. Problem 2.15 considers estimation based on (2.55).

It was observed in Chapter 1 that studies may use some form of retro-
spective observation, meaning that part of the period [τ0, τ ] for which an
individual’s process history is recorded is prior to the time of selection of the
individual for the study. In such cases the selection of an individual might not
be independent of the process history over [τ0, τ ]; the selection plan must then
be taken into account or inferences may be substantially biased. In Chapters 3
to 6 we consider only prospective studies or equivalent retrospective studies in
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which the selection of an individual is independent of their event history over
[τ0, τ ]. We deal with retrospective studies in which selection is not independent
of event history in Chapter 7.

It has been assumed in the presentation of (2.53) that the exact times of
events, as well as covariate values and the relevant history H(τ0) needed to
specify the process intensity λ(t|H(t)) for t ≥ τ0, are available. Sometimes
information is missing; for example, a process may be observed intermittently
so that only the numbers of events between successive followup points, and
not exact event times, are available. Information on events or covariates after
an individual is lost to followup are of course missing. Event history prior to τ0

may also be missing, for example, the time of the most recent event in a process
that started before τ0. The history H(τ0) is part of the initial conditions for
an individual; see Section 1.4.3. Problems can arise when essential parts of
H(τ0) are missing; Sections 4.5 and 7.3 consider this issue.

A crucial issue is whether data are missing “at random” in some sense.
In some circumstances the mechanism that leads to data being missing is
completely independent of the event process; in the terminology of Little and
Rubin (2002) the data are then said to be MCAR, for “missing completely
at random.” If the missing data mechanism depends on observed external
covariates that are included in the process model, then the missing data are
still MCAR.

The condition that data be MCAR is too stringent to cover many rela-
tively simple situations involving longitudinal data. For example, it does not
hold for a study in which an individual is observed until some specified num-
ber of events occurs. Fortunately we need only weaker requirements which
allow the probability that data are missing at t to depend upon variables in
H(t), although not on responses at or after t. The conditions that, as dis-
cussed above, event and observation processes are conditionally independent,
and the times τ0 and τ above are stopping times, fulfill this requirement and,
when processes are observed continuously, make the likelihood (2.53) valid.
The conditions are more stringent when a process is observed only intermit-
tently, however. Suppose, for example, that an individual is scheduled to be
seen at specified times a1 < a2 < · · · < ak. In that case τ = a+

r for some
r ≥ 1 and if r < k it means that the individual was observed at ar but not at
ar+1. The stopping rule condition then allows the probability the individual
is not observed at ar+1 to depend on H(a+

r ), but not on events or new co-
variate values over (ar, ar+1]. In some settings this condition may be violated,
for example, when the probability of loss to followup is associated with the
number of recent event occurrences. Intermittent observation is considered in
some detail in Chapter 7; until then processes are assumed to be continuously
observed.

The stopping time requirements are an example of the general concept of
data being “missing at random” or MAR, in the terminology of Little and
Rubin (2002). This allows the probability that data are missing to depend on
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variables (data) that are observed, but not on missing variables; this is weaker
than the MCAR condition.

2.7 Bibliographic Notes

Models for recurrent events are discussed in many texts on point processes or
stochastic processes (e.g. Cox and Isham, 1980; Daley and Vere-Jones, 1988,
2003; Parzen, 1999; Ross, 1983; Snyder and Miller, 1991), although covari-
ates are rarely mentioned. Poisson and related processes are especially widely
studied; Grandell (1997) provides many results. The symposium volume Lewis
(1972) gives an excellent early overview of models, applications, and statisti-
cal methods for point processes. Theory and statistical methods for counting
processes are given an authoritative treatment by Andersen et al. (1993), who
emphasize modulated Markov models and multiplicative regression models.
They also provide extensive references to the work of Brémaud, Jacod and
others, on rigorous mathematical foundations for counting processes. Many
results are also scattered across the literatures of engineering and mathemat-
ics; for examples see Segall and Kailath (1975) and, for results related to (2.9)
and (2.46), Papangelou (1972), or Brown and Nair (1988). Cox and Lewis
(1966) is an early but still very useful discussion of methods for analyzing re-
current event data. Nelson (2003) considers simple but useful methods based
on mean functions. Karr (1991) gives a mathematical treatment of inference
for point processes.

Statistical analysis of recurrent events for multiple individuals, and the in-
clusion of covariates and random effects, has received considerable attention
since about 1980. Many references on analysis are given in later chapters, but
we mention a few key ones here, emphasizing early work. Andersen and Gill
(1982), Cheuvart (1988), Lawless (1987a), and Thall (1988) consider Poisson
models, and Aalen and Husebye (1991), Follmann and Goldberg (1988), and
Dabrowska et al. (1994) emphasize renewal models. More general multiplica-
tive intensity-based models are considered by Gail et al. (1980) and Prentice
et al. (1981). Much, but by no means all, of this early development was stimu-
lated by advances in survival analysis for the Cox multiplicative hazards model
(Cox, 1972a); Andersen et al. (1993) is the authority in this area. Therneau
and Grambsch (2000) present analyses based on the Cox model for recurrent
events and other event history settings.

Discrete time models for recurrent events are often based on longitudi-
nal binary response models, which are discussed in books on longitudinal
data (Diggle et al., 2002; Fahrmeir and Tutz, 2001; Fitzmaurice et al., 2004).
Chamberlain (1985, Section 2) gives an insightful discussion of dependence
and heterogeneity in binary processes. Borgan et al. (2005) provide an exam-
ple of discrete time analysis. Models where more than one event may occur at
each time point have also been considered, often under the heading of longi-
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tudinal count data, or time series of counts (e.g. Diggle et al., 2002, Chapters
10 and 11).

Likelihood construction for prospective observations schemes is rigorously
examined by Andersen et al. (1993, Ch. 2), where conditions for the start
and stop of observation on individual processes and the validity of (2.53) are
discussed. See also Heckman and Singer (1986). Aalen and Husebye (1991)
give a short clear synopsis in the context of renewal processes. Berman and
Turner (1992) discuss the approximation of (2.53) so as to facilitate analysis
using generalized linear model software. Lawless and Zhan (1998) discuss con-
ditions for intermittent observation and interval-count data. Little and Rubin
(2002) and Gill et al. (1997) consider more general types of incompleteness in
longitudinal data, and Little (1992) surveys missing event history data. Guo
(1993), Hamerle (1991), Hoem (1985), Keiding (1991, 2006), and Lawless and
Fong (1999) discuss the selection of individuals for event history studies, and
cases where information about process history at the time of selection may be
missing. Hoem (1985) and Hamerle (1991) discuss retrospective observation
and selection effects in some detail.

2.8 Problems and Supplements

2.1. For a Poisson process with rate function ρ(t), let Pn(t) = Pr(N(t) = n).
Show that for small ∆t > 0 and n = 1, 2, . . . ,

Pn(t + ∆t) = Pn(t)(1 − ρ(t)∆t) + Pn−1(t)ρ(t)∆t + o(∆t)

and then prove that if P ′
n(t) = dPn(t)/dt, then

P ′
n(t) = −ρ(t){Pn(t) − Pn−1(t)} n = 1, 2, . . . .

Use this and the fact that P0(0) = 1 and Pn(0) = 0 for n > 0 to show that

Pn(t) =
µ(t)n exp(−µ(t))

n!
n = 0, 1, . . . .

Extend this to prove (2.15).

[Section 2.2]

2.2. A homogeneous Poisson process is easy to simulate by using the result
(2.18) for the interevent times. This can be used to simulate a nonhomoge-
neous process and other event processes.

a. Show that if {N(t), 0 ≤ t} is a Poisson process with intensity function
ρ(t) then N∗(s) = N(t) where s =

∫ t

0
ρ(u)du = µ(t) is a homogeneous

Poisson process with intensity function ρ∗(s) = 1. This is result (iv) in
Section 2.2.1. Show how this can be used to simulate the nonhomogeneous
process {N(t), 0 ≤ t} over the time period [0, τ ]. Simulate five realizations
of a process with ρ(t) = 1 + .2t, over [0, 5].
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b. The result in (a) can be obtained from (2.9) in the corollary of Theorem
2.2. Use (2.9) to prove also that for j = 1, 2, . . . and t0 = 0,

Ej =
∫ tj−1+Wj

tj−1

λ(t|H(t))dt

has a standard exponential distribution for a general event process, given
tj−1 and H(tj−1). This can be used to simulate an event process with
intensity function λ(t|H(t)), as described following (2.46) in Section 2.4.

c. Let λ(t|H(t)) be the intensity for a general recurrent event process and
suppose there are always constants λ∗

j such that

λ(t|H(t), N(t−) = j − 1, tj−1) ≤ λ∗
j j = 1, 2, . . . ; tj−1 < t .

Prove that the following rejection algorithm (e.g. Ogata, 1981; Daley and
Vere-Jones, 1988, pp. 506–507) provides a simulation of the event process.
(i) Set j = 1, t0 = 0.
(ii) Choose a suitable λ∗

j .
(iii) Generate Ej from the exponential distribution with mean 1/λ∗

j , and
Uj from the uniform distribution on (0, 1).

(iv) If Uj ≤ λ(tj−1 + Ej |H(tj−1), tj−1), set tj = tj−1 + Ej ; increase j by
one and return to step (ii). Otherwise, leave j unchanged, replace tj−1

with tj−1 + Ej , and return to step (ii).
The existence of the λ∗

j above is not as restrictive as it might look, because
we are normally interested in generating a process over some finite time
interval [0, τ ].

[Sections 2.2, 2.4]

2.3. Let {N(t), 0 ≤ t} be a Poisson process with intensity function ρ(t).

a. Given that N(τ) = n, find the conditional distribution of the event times
T1, . . . , Tn.

b. Use this to show how you might carry out goodness-of-fit checks for a single
homogeneous Poisson process that is observed over [0, τ ]. What kind of
model checking would you suggest if you have m independent processes
observed over [0, τ ]?

[Section 2.2]

2.4. Show that for event times T1, . . . , Tn from a homogeneous Poisson process
over [0, τ ], as in Problem 2.3, the statistic Sn =

∑n
i=1 Ti has (conditional on

n) mean nτ/2 and variance nτ2/12. Then argue that for n even moderately
large, the conditional distribution of

T =
(Sn − nτ/2)
(nτ2/12)1/2
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is approximately N(0, 1) if the event process is a homogeneous Poisson process
(HPP). Use this to test whether the following data could be considered to come
from a HPP: the observations are the times (in hours) of successive equipment
failures in an airplane over τ = 1400 hours of operation. If there is evidence
against the HPP, what type of departure from it is indicated? The tj are 487,
505, 605, 612, 710, 715, 800, 891, 934, 1164, 1277, 1297.

[Sections 2.2, 2.6]

2.5. Suppose that {N(t), 0 ≤ t} is a Poisson process with intensity function
ρ(t), and that U1, U2, . . . are i.i.d. random variables with finite mean and
variance. The process {S(t), 0 ≤ t}, where

S(t) =
N(t)∑

i=1

Ui t > 0 ,

is called a marked or compound Poisson process (the Ui are sometimes referred
to as “marks”). Such processes are used in settings where there are costs or
other variables associated with an event.

a. For the homogeneous Poisson process, where ρ(t) = ρ, prove that E{S(t)}
= ρtE(U), var{S(t)} = ρtE(U2), and that the moment generating func-
tion (m.g.f.) of S(t) is

MS(t)(z) = exp{ρt[MU (z) − 1]} ,

where MU (z) is the m.g.f. of U . Assume here that all necessary expecta-
tions exist.

b. The moment generating functional associated with the process {S(t), 0 <
t} is defined as (assuming it exists),

MS(z) = E

{

exp
[∫ ∞

0

z(t)dS(t)
]}

,

where z(t) ≤ 0 for t ≥ 0 and z(t) = 0 outside some bounded interval I.
Prove that the moment generating functional for {S(t), 0 ≤ t} is

exp
{

−
∫ ∞

0

[1 − MU (z(t))]ρ(t)dt

}

.

Use this to find the m.g.f. for S(t0), where t0 > 0 is a specified value.

[Section 2.2]

2.6. Consider the Poisson random effects model in Section 2.2.3 in which
conditional on a random effect u, an individual experiences events according
to a Poisson process with intensity function uρ(t). Furthermore, suppose u
has a gamma density g(u) given by (2.28), with mean 1 and variance φ.
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a. For small ∆t, show that to order ∆t,

Pr{N(t, t + ∆t) = 1|H(t)} =

∫∞
0

uρ(t)∆t · Pr{H(t)|u}g(u)du
∫∞
0

Pr{H(t)|u}g(u)du
.

Then use this to prove (2.33). Plot this (random) intensity for a process
with ρ(t) = ρ and events which occur at time t1, t2, . . . .

b. Show that the distribution of u, given H(t), is gamma with mean {1 +
φN(t−)}/{1 + φµ(t)} and variance {1 + φN(t−)}/{1 + φµ(t)}2. Use this
to deduce (2.33) directly.

c. Suppose there is a covariate x so that ρ(t) = ρ0(t)ex′β . Determine the
intensity ratio λ(t|H(t), x = 1)/λ(t|H(t), x = 0) and show that it depends
on t. On the same graph, plot this ratio as a function of t when ρ(t) = ρ
and φ = 0, 1, 2, respectively.

[Section 2.2]

2.7. The mean or renewal function µ(t) of an ordinary renewal process satisfies
the integral equation

µ(t) = F (t) +
∫ t

0

µ(t − x)dF (x) , (2.56)

where F (w) is the c.d.f. for the gap times Wj in the process.

a. Prove this by using the fact that E{N(t)} = E[E{N(t)|W1}]. Numerical
methods of solving integral equations provide a way to compute µ(t).

b. Show that (2.39) satisfies (2.56).
c. The mean function corresponding to the gamma gap time distribution

with density function

f(w; θ) = θ2we−θw 0 < w (2.57)

can be shown from (2.56) to be

µ(t) =
1
2
θt − 1

4
(1 − e−2θt) .

Show directly that µ(t)/t → 1/E(Wj) as t → ∞. Plot µ(t).

[Section 2.3]

2.8. a. For a renewal counting process {N(t), 0 ≤ t},

E{N(t)}
t

→ 1
µ

as t → ∞ , (2.58)

where µ = E(W ) is the mean time between events. This follows from the
fact that ρ(t) → µ−1 as t → ∞, but a simple direct proof can be based
on the fact that for any t > 0,
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TN(t)

N(t)
≤ t

N(t)
≤

TN(t)+1

N(t)

and the fact that TN(t) is a sum of i.i.d. random variables. Prove this.
b. Simulate 100 renewal processes Nj(t), j = 1, . . . , 100 for 0 < t < 10, where

W has a gamma distribution with mean 1 and variance φ = 0.25. Plot
µ̂(t) in (1.1) versus t. Repeat this when W is gamma with mean 1 and
variance 0.01. What do you observe?

[Section 2.3]

2.9. Consider the modulated renewal process based on (2.45) with Gaussian
random effects.

a. Obtain (i) the marginal distribution of Yij and (ii) the conditional distri-
bution of Yij , given Yi1, . . . , Yi,j−1.

b. Investigate the same thing for the model (2.44), when ui has a gamma
distribution with density (2.28).

[Section 2.3; Aalen and Husebye, 1991]

2.10. Consider a discrete time Bernoulli process where the number of events
n(t) at time t (t = 1, 2, . . .) is 0 (with probability 1− p) or 1 (with probability
p), and the n(t) are mutually independent. Describe departures from this
model which one might encounter, and outline ways in which extended models
could be formulated.

[Section 2.5]

2.11. Consider Bernoulli processes as in Problem 2.10, but suppose that p
varies across distinct processes according to a beta distribution with density
function

g(p) =
1

B(a, b)
pa−1(1 − p)b−1 0 < p < 1 ,

where a > 0, b > 0, and B(a, b) = Γ (a)Γ (b)/Γ (a + b) is the beta function.
Prove that

Pr{n(t) = 1|H(t)} =

∑t−1
j=1 n(j) + a

t − 1 + a + b
t = 2, 3, . . . .

[Section 2.5]

2.12. Consider a continuous time process for recurrent events in which only
the numbers of events N(aj−1, aj) are observable, where 0 = a0 < a1 < · · · <
ak. Give the joint distribution of the counts N(aj−1, aj), j = 1, . . . , k for the
cases where (i) the underlying process is Poisson with rate function ρ(t), and
(ii) the process is Poisson with rate function uiρ(t), conditional on the random
effect ui, which has a gamma distribution with density (2.28).

[Section 2.2; Lawless and Zhan, 1998]
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2.13. Consider the following different “rules” for terminating observation of
a recurrent event process with intensity function λ(t|H(t)):

(i) Stop observation once the third event has occurred, that is, at time T3.
(ii) Stop observation at τ = min(T3, 100).
(iii) Stop observation at the smallest time t > 0 such that N(t − 1, t) ≥ 2.

Show that (2.54) is satisfied in each case.

[Section 2.6; Aalen and Husebye, 1991]

2.14. Suppose that a clinical study is to involve observing recurrent events
that occur for study individuals over the time period 0 ≤ t ≤ τ . However, a
condition for including an individual in the study is that N(−1, 0) ≥ 1; that
is, they must have experienced at least one event in the time period (−1, 0)
before the study.

Discuss the general ramifications of this entry condition on the analysis of
the study. Specifically discuss the situation where

(i) individuals’ event processes before and after entry to the study are closely
approximated by identical homogeneous Poisson processes, and

(ii) individuals’ event processes before and after entry are closely approxi-
mated by homogeneous Poisson processes, but with rates that vary ac-
cording to a random effects model where the jth individual has rate ujρ,
where the uj are i.i.d. with density (2.28).

[Section 2.6; Cook and Wei, 2003]

2.15. Suppose that the intensity function in (2.55) is specified in terms of a
parameter θ. Estimation of θ can be based on a product of likelihood con-
tributions L(θ), of the form (2.55), across independent event processes. Let
�(θ) = log L(θ), and consider the likelihood score function U(θ) = ∂�(θ)/∂θ;
we can typically estimate θ by solving the maximum likelihood score equation∑

i Ui(θ) = 0, where i = 1, . . . , m indexes individuals.

a. Show from (2.55) that �(θ) for an individual can be expressed as
∫ ∞

0

Y (t) log λ(t|H(t); θ)dN(t) −
∫ ∞

0

Y (t)λ(t|H(t); θ)dt , (2.59)

where Y (t) = I(τ0 ≤ t ≤ τ) indicates when the process is observed, and
we define dN(t) = N(t) − N(t−) and use the Riemann–Stieltjes integral
defined just after (2.4) for the first term in (2.59). Note that because N(t)
is a step function with jumps of size one, the first term in (2.59) is simply
the sum

n∑

j=1

log λ(tj |H(tj); θ) ,

where t1, . . . , tn are the observed event times for the indivdual.
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b. Show that U(θ) for an individual can be expressed as

U(θ) =
∫ ∞

0

Y (t)
∂ log λ(t|H(t); θ)

∂θ
{dN(t) − λ(t|H(t); θ)dt} , (2.60)

assuming one can differentiate through the integral. Prove that Eθ{U(θ)}
= 0; that is, the score function is unbiased. To do this, use results in
Section 2.1 to argue that we can notionally write

E{dN(t)|H(t)} = λ(t|H(t))dt ,

as a consequence of

E{∆N(t)|H(t)} = λ(t|H(t))∆t + o(∆t) .

c. Consider m independent individuals, with each having events according
to a homogeneous Poisson process with rate ρ. Obtain the likelihood score
function and maximum likelihood estimate ρ̂. Assuming that individual i
is observed over the prespecified time interval [0, τi], derive the variance
of ρ̂.

[Sections 2.1, 2.7]



3

Methods Based on Counts and Rate
Functions

3.1 Introduction

In many settings the event of interest represents a transient adverse experience
for which there is little immediate impact on the event generating process.
An example is a mild seizure in a study of epileptic patients. Although such
events are undesirable, their occurrence does not materially affect the risk of
subsequent seizures and so analyses based on event counts and the rate of
event occurrence are natural.

The focus of this chapter is on methods for the analysis of recurrent event
data based on rate functions and counts of events. The Poisson process is the
canonical model for this setting but more general models may be formulated
based on extensions of it. Models that involve only the specification of mar-
ginal rate functions ρ(t) or mean functions µ(t) can also be developed. They
provide a basis for the development of robust methods of inference because
they don’t involve assumptions regarding the underlying stochastic process,
but naturally do not allow the calculation of probabilities for event occurrence.
Such methods are presented in Sections 3.6 to 3.8.

Suppose m individuals are each under observation from time t = 0 to a
censoring or stopping time. The notation introduced in Chapters 1 and 2 is
used. If τi denotes the time at the end of observation for individual i, the
left-continuous function Yi(t) = I(t ≤ τi) indicates whether individual i is
observed at time t. The observation process is assumed to be conditionally
independent of the event process in the sense of (2.54). We can also accommo-
date settings where individual i is observed from τi0 > 0 to τi by redefining
Yi(t) as I(τi0 ≤ t ≤ τi) as in Section 2.6; results below are all valid with
this change. We assume in this chapter that during periods in which an indi-
vidual is under observation, the exact times of events are obtained. We can
therefore observe {Ni(t), 0 ≤ t}, or equivalently {dNi(t), 0 ≤ t}, over [0, τi],
i = 1, . . . ,m. We let Hi(t) = {Ni(s) : 0 ≤ s < t} denote the history of the
event process for individual i. For Poisson processes, the intensity function for
individual i is
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λi(t|Hi(t)) = lim
∆t↓0

Pr{∆Ni(t) = 1}
∆t

= ρ(t) (3.1)

at time t ≥ 0. As noted in Section 2.2, ρ(t) is also the rate function.
Suppose {xi(t), 0 ≤ t} is a left-continuous p × 1 covariate process which

includes only external covariates, with xi(t) = (xi1(t), . . . , xip(t))′. As dis-
cussed in Section 2.1, the history of the process is then broadened to Hi(t) =
{Ni(s) : 0 ≤ s < t;x(∞)

i }, so that fixed and time-varying covariate values are
assumed part of Hi(0). Covariate effects may be specified quite generally, but
by far the most common framework is through multiplicative models of the
form λi(t|Hi(t)) = ρi(t) with

ρi(t) = ρ0(t;α)g(xi(t);β) , (3.2)

where ρ0(t;α) is a so-called baseline rate function applicable for subjects with
xi(t) = 0, and g(x(t);β) is a nonnegative function. Frequently g(xi(t);β) =
exp(x′

i(t)β), as in (2.19), in which case exp(βk) is the multiplicative effect
on the intensity of a one-unit increase in xik(t) and all other covariates are
fixed. This is the formulation we adopt here, and probability calculations are
conditional on the covariate process. Recall from Section 2.1 that although
the intensity is defined given x

(∞)
i , at t it depends only on x

(t)
i . It should also

be noted that xi(t) may depend on variables measured prior to time t, as in
(2.19). For example, an air pollution covariate xi(t) could be an average of
pollution counts taken over the previous 48 hours.

The baseline rate function is parameterized by α and we let θ = (α′, β′)′

denote the full vector of parameters. In this chapter we consider both
fully parametric models, where α is finite-dimensional, and semiparamet-
ric models, where α is considered infinite-dimensional. We write ρi(t; θ) =
ρ0(t;α) exp(x′

i(t)β) when it is important to make the dependence on the pa-
rameters explicit, and simply write ρi(t) when it is not.

If the observation process is completely independent of the event occur-
rence process, then one can condition on Y (∞) = {Yi(s), 0 ≤ s : i = 1, . . . , m}
and we get the resulting likelihood L(θ) from (2.7) and (3.2) based on the
conditional probability density of the observed outcomes “ni events, at times
ti1 < · · · < tini

, for individual i (i = 1, . . . ,m).” This gives

L(θ) =
m∏

i=1

Li(θ) ,

where

Li(θ) =

ni∏

j=1

{ρ0(tij) exp(x′
i(tij)β)} exp

(
−
∫ τ

0

Yi(s)ρ0(s) exp(x′
i(s)β)ds

)
, (3.3)

and where τ = max(τ1, . . . , τm).
If the observation process is not completely independent of the event oc-

currence process, then, as discussed in Section 2.6, L(θ) is a partial likelihood
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and can still be treated as a standard likelihood function provided that Yi(t)
depends only on information in Hi(t). Maximizing L(θ) then yields the partial
maximum likelihood estimator θ̂, which under mild regularity conditions has
the usual asymptotic properties.

In the remainder of this chapter we describe methodology for estimat-
ing rate and mean functions. Examples of the various methods are given in
Section 3.8.

3.2 Parametric Maximum Likelihood for Poisson
Models

In this section we develop maximum likelihood methods for Poisson processes;
Appendix A reviews the general theory.

3.2.1 Score and Information Functions

Suppose ρ0(t;α) is indexed by an r × 1 parameter α and β is a p × 1 vector
of regression coefficients. The maximum likelihood score equations for θ arise
from differentiating �(θ) = log L(θ) where L(θ) is a product of terms (3.3).
Their general form is as given by (2.59) and (2.60) in Problem 2.15, and we
use the notation introduced there, writing �(θ) as

�(θ) =
m∑

i=1

∫ τ

0

Yi(s)[log ρi(s; θ)dNi(s) − ρi(s; θ)ds] .

If we let Uα(θ) = ∂�(θ)/∂α be the r × 1 score vector for α and Uβ(θ) =
∂�(θ)/∂β denote the p × 1 score vector for β, we find that the maximum
likelihood equations are

Uα(θ) =
m∑

i=1

∫ τ

0

Yi(s)
∂ log ρ0(s;α)

∂α
{dNi(s) − ρi(s; θ)ds} = 0 (3.4)

Uβ(θ) =
m∑

i=1

∫ τ

0

Yi(s)xi(s){dNi(s) − ρi(s; θ)ds} = 0 . (3.5)

Let U(θ) = (U ′
α(θ), U ′

β(θ))′ denote the full score vector.
The components of the observed information are Iαα(θ) = −∂Uα(θ)/∂α′,

Iαβ(θ) = −∂Uα(θ)/∂β′, Iβα(θ) = −∂Uβ(θ)/∂α′, and Iββ(θ) = −∂Uβ(θ)/∂β′.
These are given by

Iαα(θ) = −
m∑

i=1

∫ τ

0

Yi(s)
∂2 log ρ0(s;α)

∂α∂α′ {dNi(s) − ρi(s; θ)ds}
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+
m∑

i=1

∫ τ

0

Yi(s)
{

∂ log ρ0(s;α)
∂α

∂ log ρ0(s;α)
∂α′

}

ρi(s; θ)ds

Iαβ(θ) =
m∑

i=1

∫ τ

0

Yi(s)
∂ log ρ0(s;α)

∂α
xi(s)ρi(s; θ)ds

Iβα(θ) =
m∑

i=1

∫ τ

0

Yi(s)
∂ log ρ0(s;α)

∂α
x′

i(s)ρi(s; θ)ds

Iββ(θ) =
m∑

i=1

∫ τ

0

Yi(s)xi(s)x′
i(s)ρi(s; θ)ds

which give the observed information matrix

I(θ) =
(

Iαα(θ) Iαβ(θ)
Iβα(θ) Iββ(θ)

)

.

Typically, but not always, the maximum likelihood estimate θ̂ is unique and
satisfies the score equations (3.4) and (3.5). General optimization software
(see Appendix B) can be employed to maximize �(θ). Good implementations
make specification of derivatives optional, and will produce the Hessian matrix
−I(θ̂) by numerical differentiation, if requested. If one wishes to program the
optimization directly, a Newton–Raphson algorithm is often quite useful; it
uses an initial estimate θ̃(1) and the iterative scheme

θ̃(k+1) = θ̃(k) + I−1(θ̃(k))U(θ̃(k)) k = 1, 2, . . . ,

where iterations are terminated when the difference between estimates and
between values �(θ) at successive steps is less than prespecified tolerances.
Alternatively, a Fisher-scoring algorithm may be used by replacing I(θ) with
the expected information matrix I(θ) = E{I(θ)}. The expected and observed
information matrices differ in that the first term of Iαα(θ) vanishes upon
taking the expectation. Regardless of the method of optimization, model based
variance estimates for the maximum likelihood estimators are available from
I−1(θ̂) or I−1(θ̂) and for large samples (m → ∞) we can act, for example,
as though (θ̂ − θ) ∼ N(0, I−1(θ̂)). An alternative is to use likelihood ratio
methods; see Appendix A. Note that whatever methods are used, numerical
integration may be necessary in order to evaluate �(θ) and its derivatives.
Good software for doing this exists, but see Berman and Turner (1992) or
Lawless and Thiagarajah (1996) for algorithms that are easy to implement.

3.2.2 A General Parametric Rate Function

Models where ρ0(t;α) is either of the form exp(α0 + α1t) or α0α1t
α1−1 are

often used in settings where the rate function is monotonic. A flexible general
family of parametric models that includes these is given by
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ρi(t; θ) = exp(z′i(t)θ) , (3.6)

where zi(t) includes known functions of t and the covariates in xi(t). For
example, zi(t) = (1, t, x′

i(t))
′ could be adopted if the log of the baseline rate

function changes linearly with t and a time-dependent covariate is present.
Alternatively one might specify zi(t) = (1, log t, x′

i(t))
′ if the rate function

changes as a power of t. By taking the exponential of the linear combination
z′i(t)θ, we guarantee rate functions are positive.

For any particular form of z(t) under (3.6), the log-likelihood, score vector,
and observed information matrix for θ are, from (3.3),

�(θ) =
m∑

i=1

⎧
⎨

⎩

ni∑

j=1

z′i(tij)θ −
∫ τ

0

Yi(s) exp(z′i(s)θ)ds

⎫
⎬

⎭
, (3.7)

U(θ) =
m∑

i=1

⎧
⎨

⎩

ni∑

j=1

zi(tij) −
∫ τ

0

Yi(s)zi(s) exp(z′i(s)θ)ds

⎫
⎬

⎭
(3.8)

I(θ) =
m∑

i=1

∫ τ

0

Yi(s)zi(s)z′i(s) exp(z′i(s)θ)ds . (3.9)

It is shown in Chapter 5 (see Problem 5.1) that (3.7) is a convex function of
θ. The maximum likelihood equations U(θ) = 0 are usually easy to solve, say
via general-purpose software or directly by Newton’s method, with numerical
integration used to evaluate the integrals in (3.7), (3.8), and (3.9) if necessary.

3.2.3 Time Transform Models

In survival analysis accelerated failure time regression models are a useful
alternative to multiplicative hazards models in many settings (e.g. Lawless
2003a, Ch. 6). They are examples of time transform models, which can be
used in the recurrent event setting as described in (2.23)–(2.25). In particular,
suppose there are vectors of fixed covariates xi associated with individuals
i = 1, . . . ,m and that given xi, the recurrent event process {Ni(t), 0 ≤ t} is
Poisson with rate function of the form

ρi(t) = ex′
iβρ0(ex′

iβt) ,

where ρ0(t) is a specified baseline rate function. The corresponding mean
function is

µi(t) = E {Ni(t)|xi} = µ0(ex′
iβt) ,

where µ0(t) =
∫ t

0
ρ0(s)ds.

This model is called a time transform model because the effect of the
covariate x is to transform the time scale from t to exp(x′β)t; thus the co-
variates define a time scale si = exp(x′

iβ)t for each individual, on which the
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rate function is ρ0(si). The exponential form exp(x′β) has been used for con-
venience, because it is flexible and gives a monotone increasing transform of
t. If desired, exp(x′β) can be replaced with some other positive-valued func-
tion g(x;β). The models can also be extended to accommodate time-varying
covariates x(t), by specifying

ρi(t) = ex′
i(t)βρ0(ex′

i(t)βt) .

As with multiplicative models, the mean function µi(t) is in this case a com-
plicated function of the covariate history x

(t)
i , obtained by integration of ρi(t).

Parametric time transform models are relatively easily handled. In this
case ρ0(t) is specified parametrically as ρ0(t;α) and the likelihood function
based on data from m independent individuals is given by

L(α, β) =
m∏

i=1

⎧
⎨

⎩

ni∏

j=1

ex′
i(tij)βρ0(ex′

i(tij)βtij)

⎫
⎬

⎭
exp{−µi(τi)} ,

where for simplicity we assume that individual i is observed over [0, τi]. When
covariates are fixed, the likelihood becomes

L (α, β) =
m∏

i=1

⎧
⎨

⎩

ni∏

j=1

ex′
iβρ0

(
ex′

iβtij

)
⎫
⎬

⎭
exp
{
−µ0(ex′

iβτi)
}

,

where functions ρ0(·) and µ0(·) are specified by the parameter vector α. With
fixed covariates, these models can be fitted using survival analysis software
for accelerated failure time models; this is described in the next section.

3.2.4 Using Survival Software

Some useful parametric rate functions have the form of the hazard function
for one of the common lifetime distributions. In such cases, survival analysis
software that allows for delayed entry can be used for estimation and inference.
This applies in particular to certain cases where there are no covariates and
to cases where ρi(t) has a time transform structure of the preceding section.

If we let ti0 = 0, (3.3) can be written as

ni∏

j=1

[

ρi(tij) exp

{

−
∫ tij

ti,j−1

ρi(s)ds

}]

× exp

{

−
∫ τi

ti,ni

ρi(s)ds

}

. (3.10)

Expression (3.10) has the same form as the likelihood arising from a sample
of ni + 1 independent survival time observations over the “at risk” intervals
(ti,j−1, tij ], j = 1, . . . , ni + 1, where ti,ni+1 = τi, with each interval except the
last ending with an event. The likelihood for the full sample is a product of
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terms (3.10) over all subjects. An application to the rat tumor data of Section
1.2.1 is given in Section 3.8.1.

With time-dependent covariates we have ρi(t) = ρ0(t;α) exp(x′
i(t)β), and

as can be seen by (3.10), integrals of the form
∫ t

s
ρi(u)du are required. In this

case values for the time-dependent covariates must be available at all time
points over [0, τi). In some cases this is possible, but in many settings this
information may be difficult to obtain. Often time-dependent covariates are
assumed to be constant between periodic assessment times which we might
denote 0 = si0 < si1 < · · · < siki

. In this case, the integrals are easy to
compute over the intersections of the intervals (ti,j−1, tij ], j = 1, . . . , ni + 1
and (si,k−1, sik], k = 1, . . . , ki inasmuch as for each such intersection we have
a model of a form leading to (3.10).

If covariates are fixed over the intervals (ti,j−1, tij ] and ρi(t) has the form
of certain accelerated failure time hazard functions, then parametric survival
analysis software such as censorReg in S-PLUS or survreg in R may be used.
For example,

ρi(t) = exp(x′
iβ)ρ0(exp(x′

iβ)t)

with ρ0(t) = α2α
−α2
1 (t/α1)α2−1 is a Weibull accelerated failure time model

(Lawless, 2003a, Section 6.3.2) and can be handled by many survival soft-
ware packages. Other models where ρ0(t) takes the form of a log-normal,
log-logistic, or a gamma distribution hazard function can similarly be
handled.

3.3 Poisson Models with Piecewise-Constant Rates

The specific models mentioned in Section 3.2 all have rate functions with a
small number of parameters. More flexible parametric models may be obtained
by using splines or piecewise-constant baseline rate functions. Here we consider
the latter; they provide useful flexibility in some settings, and also have a
connection with the semiparametric methods considered in the next section.

As the name implies, under such models the rate function is assumed to
be constant over prespecified intervals. In particular, let a0 < a1 < · · · < aK

denote K cutpoints such that a0 = 0 and aK = τ . The baseline rate function
is then given as

ρ0(t;α) = αk ak−1 < t ≤ ak , (3.11)

and α = (α1, . . . , αK)′ is the parameter that characterizes the baseline rate.
These models have rate functions with discontinuities at the cutpoints, but
can provide good approximations to various shapes of functions. Here the
dimension of α can become arbitrarily large but, although greater flexibility
is achieved by using a larger number of pieces, models involving three to
ten pieces with cutpoints evenly distributed over the event times are flexible
enough for most practical situations.
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Let wk(t) = I(ak−1 < t ≤ ak), k = 1, . . . ,K indicate whether t ∈
(ak−1, ak], nik =

∑ni

j=1 wk(tij) denote the total number of events experienced
by subject i in (ak−1, ak], and n·k =

∑m
i=1 nik denote the total number of

events experienced by all subjects over (ak−1, ak], k = 1, . . . ,K. Suppose
λi(t|Hi(t)) = ρ0(t) exp(x′

i(t)β), and ρ0(t) is given by (3.11). By (3.3), L(θ)
can be rewritten as L(θ) =

∏K
k=1 Lk(θ), where Lk(θ) is given as

α
n·k
k

m∏

i=1

⎧
⎪⎨

⎪⎩
exp

⎛

⎜
⎝

ni∑

j=1

x′
i(tij)βwk(tij) − αk

ak∫

ak−1

Yi(s) exp
(
x′

i(s)β
)

ds

⎞

⎟
⎠

⎫
⎪⎬

⎪⎭
. (3.12)

The resulting log-likelihood is of the form

�(θ) =
K∑

k=1

n·k log αk +
m∑

i=1

⎧
⎨

⎩

ni∑

j=1

x′
i(tij)β −

K∑

k=1

αk

∫ ak

ak−1

Yi(s) exp(x′
i(s)β)ds

⎫
⎬

⎭

and the score vector U(θ) = (U ′
α(θ), U ′

β(θ))′ has elements

Uαk
(θ) =

∂�(θ)
∂αk

=
n·k
αk

−
m∑

i=1

∫ ak

ak−1

Yi(s) exp(x′
i(s)β)ds, k = 1, 2, . . . ,K ,

where Uα(θ) = (Uα1(θ), . . . , UαK
(θ))′ and

Uβ(θ) =
∂�(θ)
∂β

=
m∑

i=1

⎡

⎣
ni∑

j=1

x′
i(tij) −

K∑

k=1

αk

∫ ak

ak−1

Yi(s) exp(x′
i(s)β)x′

i(s)ds

⎤

⎦ .

Because ρi(t) =
∑K

k=1 wk(t)αk exp(x′
i(t)β), Uβ(θ) can be written as in (3.5).

Solving Uα(θ) = ∂�(θ)/∂α = 0 gives profile likelihood estimates

α̃k(β) =
n·k

m∑

i=1

∫ ak

ak−1

Yi(s) exp(x′
i(s)β)ds

, k = 1, . . . ,K . (3.13)

The profile likelihood function for β is obtained by inserting
α̃(β) = (α̃1(β), . . . , α̃K(β))′ into (3.12). Specifically, LP (β) = L(α̃(β), β) is

LP (β) =
m∏

i=1

ni∏

j=1

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

exp(x′
i(tij)β)

K∑

k=1

wk(tij)
m∑

�=1

∫ ak

ak−1

Y�(s) exp(x′
�(s)β)ds

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

, (3.14)

which in turn can be maximized to give β̂. The profile score equation is
∂ log LP (β)/∂β = 0, which may be written explicitly as
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m∑

i=1

ni∑

j=1

⎧
⎨

⎩
xi(tij) −

∑K
k=1 wk(tij)

∫ ak

ak−1

∑m
�=1 Y�(s) exp(x′

�(s)β)x�(s)ds
∑K

k=1 wk(tij)
∫ ak

ak−1

∑m
�=1 Y�(s) exp(x′

�(s)β)ds

⎫
⎬

⎭
= 0 .

The solution to this equation is β̂, and inserting it into (3.13) gives the
maximum likelihood estimate α̂ = (α̂1, . . . , α̂K)′. Variance estimates for
θ̂ = (α̂′, β̂′)′ can be obtained from the inverse of the information matrix
I−1(θ̂). If only variance estimates for β̂ are wanted they can alternatively be
taken from I−1

P (β̂), where IP (β) = −∂2�P (β)/∂β∂β′.
When the covariates are all fixed, the likelihood L(θ) simplifies to a product

of Poisson likelihoods,

L(θ) =
K∏

k=1

{
m∏

i=1

(αk exp(x′
iβ))nik exp(−Sikαk exp(x′

iβ))

}

, (3.15)

where Sik =
∫∞
0

Yi(u)wk(u)du is the exposure time in (ak−1, ak] for individual
i. The likelihood (3.15) can be maximized using Poisson log-linear regression
software where µik = exp(log αk + x′

iβ + log Sik) is the mean of the response
Nik. The variance estimates for θ̂ delivered by Poisson log-linear software
(e.g. the glm function in S-PLUS or R) are also valid, provided that the
observational conditions described earlier are met. An illustration is given in
Section 3.8.1.

In the case where there are no covariates, (3.15) gives the maximum likeli-
hood estimates α̂k = n·k/S·k, where S·k =

∑m
i=1 Sik is the total exposed time

in (ak−1, ak] across all individuals. The α̂k are easily seen to be independent,
with variances estimated by α̂k/S·k. The estimated mean function is

µ̂(t) =
K∑

k=1

α̂k uk(t) =
K∑

k=1

α̂k

∫ ak

ak−1

I(t ≥ s)ds .

We observe that when K is large, this estimate is quite close to the Nelson–
Aalen estimate (3.17) described in the next section.

Piecewise-constant models are often used in applications in demography
and epidemiology, where analyses of population rates for events such as preg-
nancies, births, and disease occurrence are often wanted; for example, see
Andersen et al. (1993, p. 408). Lawless (1998) discusses similar applications
to warranty data analysis. It is important in such applications to consider
the possibility of extra-Poisson variation; this is discussed in Section 3.5.3 for
parametric models in general.



68 3 Methods Based on Rate Functions

3.4 Nonparametric and Semiparametric Poisson
Models

3.4.1 Nonparametric Inference

Methods that do not make parametric assumptions about baseline rate func-
tions are appealing in many settings. First, we consider the case of a sample
of m individuals each providing data on events realized from the same Poisson
process with rate function ρ(t), 0 < t. We begin with a heuristic development
of nonparametric estimation that looks at dµ(t) = ρ(t)dt as the expected value
of N(t, t + dt) and treats these, for a partition of the time axis, as the model
parameters α in (3.4). In the absence of covariates, the Poisson estimating
function for dµ(s) from (3.4) is then

m∑

i=1

Yi(s){dNi(s) − dµ(s)} . (3.16)

Setting (3.16) equal to zero and solving for dµ(s) gives dµ̂(s) = dN̄·(s)/Y·(s),
where dN̄·(s) =

∑m
i=1 Yi(s)dNi(s) and Y·(s) =

∑m
i=1 Yi(s) are the total num-

ber of events observed and the total number of subjects at risk over [s, s+ds),
respectively. Because E{dµ̂(s)} = E[E{dN̄·(s)/Y·(s)|Y1(s), . . . , Ym(s)}] =
dµ(s), provided that E{dN̄i(s)|H(s), Yi(s) = 1} = dµ(s), the estimator aris-
ing from (3.16) is unbiased.

Because µ(t) =
∫ t

0
dµ(s), we obtain an estimate for µ(t) as

µ̂(t) =
∫ t

0

dµ̂(s) =
∫ t

0

dN̄·(s)
Y·(s)

=
∑

h:t(h)≤t

dN̄·(t(h))
Y·(t(h))

, (3.17)

where here t(1) < t(2) < · · · < t(H) denote the H distinct event times across all
individuals. The estimator (3.17) is the same as the Nelson–Aalen estimator
from survival analysis but here it is viewed as a nonparametric maximum
likelihood estimator of the mean function for Poisson processes.

It should be noted that, strictly speaking, (3.17) applies only for settings
where Y·(u) > 0 for 0 ≤ u ≤ t. In some settings there may occasionally be
cases where this is not true for every t ≤ τ ; the main case is where individual
i is observed for t ≥ τi0, and τ0 = min(τ10, . . . , τm0) > 0. In that case, we can
use the convention in (3.17) that 0/0 = 0, but must remember that µ̂(t) is
actually µ̂(τ0, t) =

∫ t

τ0
dµ̂(s); there is no information about µ(t) for 0 ≤ t < τ0.

More generally, if there is a region A over [0, t] where Y·(s) = 0 for a given
dataset, then we are able to estimate only µ(t) −

∫
A

dµ(s).
Because var{dN̄·(s)|Y1(s), . . . , Ym(s)} = E{dN̄·(s)|Y1(s), . . . , Ym(s)} is

simply Y·(s)dµ(s) when individuals generate data under independent Poisson
processes, we have var{dµ̂(s)|Y1(s), . . . , Ym(s)} = dµ(s)/Y·(s). Inserting the
Nelson–Aalen estimate gives v̂ar{dµ̂(s)|Y1(s), . . . , Ym(s)} = dN̄·(s)/Y 2

· (s),
which leads to the variance estimate
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v̂ar{µ̂(t)} =
∑

h:t(h)≤t

dN̄·(t(h))
Y·(t(h))2

(3.18)

from the independent increments property of the Poisson model (see (ii) in
Section 2.2.1). A large sample 100(1 − α)% confidence interval can be con-
structed for µ(t) as

µ̂(t) ± zα/2

√
v̂ar(µ̂(t)) ,

where zp is the upper 100p% point of the standard normal distribution. This
approach does not preclude a confidence interval from including negative val-
ues. An alternative approach is to note that by Taylor series expansion or the
delta method,

v̂ar{log µ̂(t)} = v̂ar{µ̂(t)}/µ̂2(t) .

In this case, approximate confidence intervals may be obtained for log µ(t)
and the resulting limits may be exponentiated to give the interval for µ(t) as

(exp(log(µ̂(t)) − zα/2

√
v̂ar{log µ̂(t)}), exp(log(µ̂(t)) + zα/2

√
v̂ar{log µ̂(t)})) .

Inadmissable negative values will never be included in such intervals. This
also gives interval estimates whose true coverage in finite samples is typically
closer to the nominal level than the method based on the orginal scale.

Smooth estimates of a common rate function ρ(t) can also be obtained;
these are useful in providing insights into the shape of ρ(t) in addition to what
can be seen from a plot of the Nelson–Aalen estimate µ̂(t). Kernel estimation
(Ramlau–Hansen, 1983) is easy to use and operates as follows. Let K(x) be
a bounded function which is zero outside [−1, 1] and integrates to 1. If µ̂(t)
is the Nelson–Aalen estimator of µ(t), then a smooth nonparametric estimate
of ρ(t) is given by

ρ̂(t) = b−1

∫ t+b

t−b

K

(
t − s

b

)

dµ̂(s) ,

where b > 0 is a constant termed the bandwidth. We restrict ourselves here
to estimating ρ(t) only at t for which [t− b, t + b] lies within the range of the
observed event times tij , which define points at which dµ̂(s) > 0. Note in fact
that

ρ̂(t) = b−1
∑

tij

K

(
t − tij

b

)
1

Y·(tij)
,

where the sum for a given value of t is over only the event times tij that satisfy
t − b ≤ tij ≤ t + b.

Various choices of kernel function K(x) on [−1, 1] have been proposed,
including uniform and triangular probability density functions, trimmed
Gaussian density functions, and the Epanechnikov kernel function K(x) =
0.75(1 − x2). A Gaussian kernel function is often the default in software.
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The choice of b determines the smoothness of the estimated rate function,
with larger values of b giving smoother functions. Variance estimates for ρ̂(t)
are available (e.g. Andersen et al. 1993, Section 4.2), and there are also au-
tomated approaches to the selection of b. The most valuable aspect of ρ̂(t),
however, is visual, and in practice a good approach is to compute and plot
estimates with a number of values of b. A point to remember is that ρ̂(t) is,
for fixed b, a consistent estimator not of ρ(t) but rather of

ρ∗(t) = b−1

∫ t+b

t−b

K

(
t − s

b

)

ρ(s)ds .

To achieve convergence to ρ(t), it is necessary to consider asymptotics in which
b = bm depends on m, with bm → 0 as m → ∞ (e.g. Andersen et al., 1993,
Section 4.2.2).

Kernel density estimation procedures in statistical software can be used to
compute estimates ρ̂(t). In S-PLUS or R, the function ksmooth can do this,
although many other functions are also available. Venables and Ripley (2002,
Section 5.6) discuss this as well as alternative approaches such as parametric
spline models for ρ(t); the latter have advantages when only interval counts
rather than exact event times are observed (see Section 7.1).

3.4.2 Semiparametric Regression

We now consider estimation and inference for the semiparametric regression
model ρi(t) = ρ0(t) exp(x′

i(t)β) where ρ0(t), the baseline rate function, is not
assumed to have any particular parametric form. As noted in Section 2.2.2,
this is sometimes called the Andersen–Gill model. The standard estimation
procedures can be derived in more than one way, and we begin by considering
a profile likelihood approach.

Profile Likelihood

With the semiparametric specification we operate as in Section 3.4.1 and
replace (3.4) with the following score equation, which treats dµ0(t) = ρ0(t)dt
as a parameter,

m∑

i=1

Yi(s){dNi(s) − exp(x′
i(s)β)dµ0(s)} = 0 0 ≤ s . (3.19)

Solving (3.19) for dµ(s) gives the profile likelihood estimates

dµ̃0(s;β) =
dN̄·(s)∑m

i=1 Yi(s) exp(x′
i(s)β)

, (3.20)

which may be substituted into (3.5) to give a p×1 system of equations Uβ(β) =
0, where
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Uβ(β) =
m∑

i=1

∫ τ

0

Yi(s)xi(s)
[

dNi(s) −
dN̄·(s)∑m

�=1 Y�(s) exp(x′
�(s)β)

exp(x′
i(s)β)

]

.

This can be rewritten as

Uβ(β) =
m∑

i=1

∫ τ

0

Yi(s)Wi(s;β)dNi(s) , (3.21)

where

Wi(s;β) = xi(s) −
∑m

l=1 Yl(s) exp(x′
l(s)β)xl(s)∑m

l=1 Yl(s) exp(x′
l(s)β)

. (3.22)

The system of equations Uβ(β) = 0 may be solved to obtain β̂ and the semi-
parametric estimate of dµ0(s) is obtained by inserting β̂ into (3.20), giving

dµ̂0(s) = dµ̃0(s; β̂) =
dN̄·(s)

∑m
i=1Yi(s) exp(x′

i(s)β̂)
. (3.23)

The resulting estimate of µ0(t),

µ̂0(t) =
∫ t

0

dµ̂0(s) =
∑

h:t(h)≤t

dN̄·(t(h))
∑m

i=1 Yi(t(h)) exp(x′
i(t(h))β̂)

(3.24)

is referred to as the generalized Nelson–Aalen estimate because it is an es-
timate of the baseline mean function for a regression model and reduces to
(3.17) when β̂ = 0. The same proviso regarding the need to have Y·(s) > 0
for 0 ≤ s ≤ t as discussed following (3.17), applies to (3.24). If interest
lies in estimating the mean function for an individual with covariate path
{xi(s), 0 ≤ s ≤ t}, then this is given by

µ̂i(t) =
∫ t

0

exp(x′
i(s)β̂)dµ̂0(s) .

Partial Likelihood

One can derive (3.21) in a quite different manner by considering a particular
factorization of the likelihood based on (3.3).

Let t(1) < t(2) < · · · < t(H) denote the H unique ordered event times in
the sample and let Fh denote the set of individuals with an event at t(h) (i.e.
Fh = {i|tij = t(h) for some j = 1, . . . , ni}). The number of individuals in
Fh is denoted fh, h = 1, . . . , H. For continuous time processes fh should in
theory equal one, but ties in event times can occur because they are recorded
with finite precision. As before we let x(t) = {xi(s), 0 ≤ s ≤ t, i = 1, . . . ,m},
x(∞) = {xi(s), 0 ≤ s, i = 1, . . . , m}, and define y(t) = {Yi(s), 0 ≤ s ≤ t, i =
1, . . . ,m}. For simplicity, we suppose y(∞) is independent of the event process,
and write the probability of the event data conditional on x(∞) and y(∞) as
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∏H
h=1

[
Pr(dN̄1(t(h)), . . . dN̄m(t(h))|dN̄·(t(h)), x(∞), y(t(h)))

]
×

∏H
h=1

[
Pr(dN̄·(t(h))|x(∞), y(t(h)))

]
,

where as before dN̄i(t) = Yi(t)dNi(t) and dN̄·(t) =
∑m

i=1 Yi(t)dNi(t). The
likelihood contributions from the first set of terms give a partial likelihood

L1(β) =
H∏

h=1

{
exp(

∑
i∈Fh

x′
i(t(h))β)

[∑m
�=1 Y�(t(h)) exp(x′

�(t(h))β)
]fh

}

(3.25)

for β, which may be used to estimate β directly. Differentiating log L1(β) with
respect to β leads to a partial likelihood score equation which is in fact iden-
tical to (3.21). The partial likelihood (3.25) is also valid under conditionally
independent Yi(t) processes; see Andersen et al. (1993; Section 7.2).

Variance Estimation

Because Uβ(β) in (3.21) is a partial likelihood score function and it has zero
expectation, one can use martingale-based partial likelihood theory (see An-
dersen and Gill, 1982; Andersen et al., 1993, Ch. 7) to show that conditional
on the covariate processes x(∞), asvar(Uβ(β)) = Iββ(β) = E{Uβ(β)U ′

β(β)} =
E{−∂Uβ(β)/∂β′}. Based on Iββ(β) = E{Uβ(β)U ′

β(β)} we obtain, when the
Y (s) processes are independent of the event processes,

Iββ(β) = E

{
m∑

i=1

∫ τ

0

Yi(s)Wi(s;β)dNi(s) ×
m∑

i=1

∫ τ

0

Yi(t)W ′
i (t;β)dNi(t)

}

=
m∑

i=1

cov
{∫ τ

0

Yi(s)Wi(s;β)dNi(s) ,

∫ τ

0

Yi(t)W ′
i (t;β)dNi(t)

}

=
m∑

i=1

∫ τ

0

∫ τ

0

Yi(s)Yi(t)Wi(s;β)W ′
i (t;β)cov{dNi(s), dNi(t)} ,

because different subjects have independent event processes. Due to the inde-
pendent increments property of Poisson processes, this can be further simpli-
fied to

Iββ(β) =
m∑

i=1

∫ τ

0

Yi(s)Wi(s;β)W ′
i (s;β)var{dNi(s)}

=
m∑

i=1

∫ τ

0

Yi(s)Wi(s;β)W ′
i (s;β)dµi(s) . (3.26)

Estimates are obtained by replacing β and dµ0(t) = ρ0(t)dt by their esti-
mates. Provided m−1Iββ(β̂) converges to a positive definite limit as m → ∞,
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then asymptotically we can act as though Uβ(β) ∼ MV N(0, Iββ(β̂)) and
(β̂ − β) ∼ MV N(0, I−1

ββ (β̂)).
Software for the Cox survival model has been adapted to also deal with

the Andersen–Gill model for recurrent events. Covariance matrix estimates
based on Iββ(β̂) are available from the coxph function in S-PLUS or R (see
Section 3.8), in particular. The software also provides estimates µ̂0(t) as well
as variance estimates for µ̂0(t) or for µ̂(t|x) = µ̂0(t) exp(x′β̂). Illustrations
are provided in Section 3.8 and Appendix C. The method of handling “ties”
implicit in (3.21) and (3.25) is referred to as the “Breslow” method in S-PLUS
and R.

3.4.3 Stratification

In some settings, the population individuals are sampled from is comprised of
subpopulations of individuals with different intensity or rate functions. Strat-
ification is a convenient method of accommodating differences in rate func-
tions between such subpopulations. Although multiplicative covariate effects
can also do this, stratification by subpopulation introduces population-specific
baseline intensity or rate functions which do not hinge on such multiplicative
effects. If strata have different baseline rate functions and regression coeffi-
cients, then analysis simply amounts to a separate treatment of each stratum.
Stratification more commonly refers to the case where the baseline rate func-
tions vary, but the same regression coefficients apply across strata, and we
consider this situation here. There is typically some loss of efficiency for esti-
mating β if one stratifies unnecessarily but with strata of moderate size this
loss tends to be modest.

Let r index strata, with r = 1, 2, . . . , R and let Nri(t) count events for
individual i in stratum r (i = 1, . . . ,mr). Let λri(t|Hri(t)) denote the corre-
sponding event intensity function, where Hri(t) = {Nri(u) : 0 ≤ u < t} and
let τri denote the censoring time, Yri(t) = I(t ≤ τri) the at-risk indicator, and
xri(t) the covariate vector. The basic stratified Poisson model takes

λri (t|Hri(t)) = ρr0(t) exp(x′
ri(t)β) ,

where ρr0(t) is the baseline rate function for stratum r and β is the vector of
regression coefficients assumed to be common across strata.

The likelihood contribution from individual i in the rth stratum is a func-
tion of (αr, β) where αr indexes ρr0(t), and is still of the form given in (3.3),

Lri(αr, β) =
nri∏

j=1

ρr0(trij) exp(x′
ri(trij)β)

× exp(−
τ∫

0

Yri(s)ρr0(s) exp(x′
ri(s)β)ds) , (3.27)
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where τ = max(τri) and trij , j = 1, . . . , nri are the times of the Nri(τri) = nri

events for individual i in stratum r. The likelihood based on data for stratum
r is

Lr(αr, β) =
mr∏

i=1

Lri(αr, β)

and the full likelihood for α = (α1, . . . , αR)′ and β is L(α, β) =
∏R

r=1 L(αr, β).
With parametric models, L(α, β) is maximized as described in Section 3.2.

With semiparametric models, one obtains stratum-specific partial likeli-
hoods for β of the form (3.25). The overall partial likelihood then is a product
of these, and can be maximized in the usual fashion. The corresponding score
equations are given by

Uβ(β) =
R∑

r=1

mr∑

i=1

τ∫

0

Yri(s)Wri(s;β)dNri(s) ,

and

Wri(s;β) = xri(s) −
∑mr

l=1 Yrl(s) exp(x′
rl(s)β)xrl(s)∑mr

l=1 Yrl(s) exp(x′
rl(s)β)

.

The information matrix for β is

Iββ(β) =
R∑

r=1

I(r)
ββ (β) ,

where I(r)
ββ (β) is given by (3.26) but evaluated using only data from the rth

stratum. An estimate of the baseline rate function for stratum r, following
(3.23), is

dµ̂r0(s) =
dN̄r·(s)

∑mr

i=1 Yri(s) exp(x′
ri(s)β̂)

,

where dN̄r·(s) =
∑mr

i=1 Yri(s)dNri(s), r = 1, 2, . . . , R. As in (3.24) we obtain
the estimate of the cumulative baseline mean function for stratum r as

µ̂r0(t) =
∫ t

0

dµ̂r0(s) .

Plots of the µ̂r0(t) help indicate when the ρr0(t) are truly different. Tests
of the hypothesis H0 : ρr0(t) = ρ0(t), r = 1, . . . , R, can also be developed.
One approach is to consider the model

ρri(t) = ρ0(t) exp(γr + x′
ri(t)β) ,

where γ1 = 0 and γ2, . . . , γR are arbitrary. Testing that γ2 = · · · = γR = 0
provides a test of H0. Sun and Yang (2000) provide some other tests that do
not constrain the ρr0(t) to be proportional to each other; parametric modeling
can also achieve this.
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Stratified models are handled by the S-PLUS and R function coxph as
well as other Cox model software. In some settings it is useful to allow one or
more covariate effects to be different for different strata. It is possible to fit
“covariate by stratum” interactions easily in S-PLUS and R as indicated in
Appendix C. When there are covariate by stratum interactions for all covari-
ates, estimates and inferences are identical to those resulting from separate
analyses of each stratum, as noted previously.

In addition to serving as a useful modeling strategy for strata defined by
subpopulations, stratification can serve as a method for defining more general
intensity-based models as we discuss in Chapter 5.

3.4.4 Additive Models

A class of semiparametric additive regression models has also received a good
deal of attention in the literature. Originally proposed by Aalen (1980), it
takes the rate function for an individual with covariate vector xi(t) to be of
the form

ρi(t) = x′
i(t)β(t) ,

where xi(t) = (1, xi1(t), . . . , xi,p−1(t))′ and β(t) = (β0(t), . . . , βp−1(t))′. This
model allows the regression coefficients β(t) to be time-dependent, but if
desired some may be assumed constant, with βj(t) = βj . The function
β0(t) acts as a baseline rate function, corresponding to an individual with
xi1(t) = · · · = xi,p−1(t) = 0.

Aalen (1980) and others have developed least squares estimation of the
integrated coefficients

Bj(t) =
∫ t

0

βj(s)ds j = 1, . . . , p .

The essential idea is to define the m × p matrix X(t) with rows Yi(t)x′
i(t),

i = 1, . . . ,m and to note that E{dN(t)|H(t)} = X(t)β(t)dt, where dN(t) =
(dN1(t), . . . , dNm(t))′ and H(t) represents the history of events, covariates,
and at-risk variables at time t. Writing dB(t) = β(t)dt, this suggests the
(weighted) least squares estimator

dB̂(t) = {X ′(t)W (t)X(t)}−1
X ′(t)W (t)dN(t) ,

where W (t) is a left-continuous diagonal m×m weight matrix. For simplicity,
we assume that X(t) is of full rank p for all t ≤ τ , where τ = max(τi) is the
maximum followup time.

Variance estimates for

B̂(t) =
∫ t

0

dB̂(s) =
∫ t

0

{X ′(s)W (s)X(s)}−1
X ′(s)W (s)dN(s)
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can be developed. It should be noted that B̂(t) is a step function which may
increase or decrease. It gives information about the shape of the βj(t) and, in
particular, whether they are fixed or time-varying. Smooth estimates of β(t)
can be obtained from B̂(t) by using the kernel estimation approach described
in Section 3.4.2.

Martinussen and Scheike (2006, Ch. 5) provide a thorough discussion of
semiparametric additive models, and have created an R package, timereg,
which implements the methodology.

3.5 Poisson Models with Random Effects

3.5.1 Formulation

In Section 2.2.3 we discussed the idea of introducing random effects into
Poisson models to accommodate heterogeneity across individuals. Here we
reconsider the useful mixed Poisson model, in which the conditional “subject-
specific” intensity function is of the form

λi(t|Hi(t), ui) = lim
∆t↓0

Pr{∆Ni(t) = 1|Hi(t), ui}
∆t

= uiρi(t) , (3.28)

where the ui are unobservable independent random effects. Given ui and co-
variates, {Ni(t), 0 ≤ t} is a Poisson process with rate uiρi(t). As in Section
2.2.3, ui is a nonnegative random variable independent of covariates, with a
distribution G(u;φ), having E(u) = 1 and var(u) = φ.

Such models are called mixed models because they contain both random
terms (i.e. ui) and fixed parameters (i.e. α, β). Upon marginalizing over
the random effect, such mixed Poisson models give E{Ni(t)} = µi(t) and
var{Ni(t)} = µi(t) + µ2

i (t)φ as in (2.31), and so accommodate extra-Poisson
variation. Moreover if s1 < t1 < s2 < t2,

cov{Ni(s1, t1), Ni(s2, t2)} = φµi(s1, t1)µi(s2, t2) ,

as in (2.32), so the assumption of independent counts over disjoint intervals
does not hold marginally for mixed Poisson processes. The parameter φ there-
fore determines both the degree of extra-Poisson variation and the degree of
association between counts over disjoint intervals.

Although the event process for subject i is Poisson conditional on ui,
unconditionally it is not and the full intensity function has the form

λi(t|Hi(t)) = lim
∆t↓0

Pr{∆Ni(t) = 1|Hi(t)}
∆t

= ρi(t)E{ui|Hi(t)} , (3.29)

of which (2.33) is a special case. In Problem 3.9 it is noted that E{ui|Hi(t)} =
E{ui|Ni(t−)} under independent censoring so the full intensity function is
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simply ρi(t) multiplied by the conditional expectation of the random effect
given the total number of events observed over [0, t).

If ui were observed, conditional on the realization of the independent ob-
servation process, the probability of the data (ni, ti1, . . . , tini

, ui) for subject
i would be

ni∏

j=1

(uiρi(tij)) exp
{

−
∫ ∞

0

Yi(s)uiρi(s)ds

}

dG(ui;φ) . (3.30)

Because ui, i = 1, . . . ,m are unobserved, we base inferences on the likelihood
which is proportional to the marginal probability of the observable quantities
(ni, ti1, . . . , tini

). For individual i, Li(θ, φ) is

∫ ∞

0

⎡

⎣
ni∏

j=1

uiρi(tij) exp
{

−
∫ ∞

0

Yi(s)uiρi(s)ds

}
⎤

⎦ dG(ui;φ) . (3.31)

Criteria for the choice of the distribution G(u;φ) include tractability of the
integral in (3.31), properties of the full intensity function, and availability of
software.

When considering possible random effect distributions for (3.31) it is help-
ful to recall the definition of the Laplace transform of a nonnegative random
variable U with distribution G(u). It is defined as

L(s) =

∞∫

0

exp(−us)dG(u) ,

which has obvious connections with the associated moment generating func-
tions. Laplace transforms provide a convenient basis for handling moments
of the random variable, sums of independent random variables, as well as
likelihood functions for frailty models in survival analysis or mixed Poisson
processes. To see this note that

L(r)(s) =
∂rL(s)

∂sr
=

∞∫

0

(−1)rure−usdG(u) .

Therefore we may write (3.31) as

Li(θ, φ) = (−1)ni

ni∏

j=1

ρi(tij)L(ni)(µi(τi);φ) .

This implies that any distribution for nonnegative random variables with a
closed-form Laplace transform leads to relatively tractable marginal likeli-
hoods. These include the gamma, inverse Gaussian, and positive stable distri-
butions, all of which are members of a broader family of distributions called
the power variance function distributions (see Hougaard, 2000, Ch. 9 and App.
A). In Sections 2.2.3 and 3.5.3 we consider the case where the random effects
follow a gamma distribution.
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3.5.2 Models for Zero-Inflated Data

In many settings, count or recurrent event data exhibit patterns which sug-
gest the population is comprised of distinct subpopulations whose differences
cannot be explained by available covariates. For example, datasets sometimes
include more individuals with no events than would be expected from a pro-
posed model; the data are then said to be zero-inflated. The zero-inflated
Poisson model is a widely studied model and is defined as follows. Suppose
{Ni(t), 0 ≤ t} is a counting process for subject i and Wi is a latent (unob-
served) random variable with Pr(Wi = 1) = πi and Pr(Wi = 0) = 1 − πi,
i = 1, . . . ,m. If {Ni(t), 0 ≤ t}|Wi = 1 is a Poisson process with rate
ρi(t; θ) = ρ0(t;α) exp(x′

iβ), and Pr(Ni(∞) = 0|Wi = 0) = 1, then the mar-
ginal distribution is a mixed Poisson process which accommodates an excess
number of zeros. Under this model E {Ni(t)} = µi(t)πi and var {Ni(t)} =
µi(t)πi + µ2

i (t)πi(1 − πi), where µi(t) =
∫ t

0
ρi(s)ds.

The likelihood contribution from individual i is of the form

Li(θ, γ) ∝

⎡

⎣
ni∏

j=1

ρi(tij) exp

⎧
⎨

⎩
−

∞∫

0

Yi(s)ρi(s)ds

⎫
⎬

⎭
πi

⎤

⎦

I(ni>0)

×

⎡

⎣exp

⎧
⎨

⎩
−

∞∫

0

Yi(s)ρi(s)ds

⎫
⎬

⎭
πi + (1 − πi)

⎤

⎦

I(ni=0)

.

The form of this likelihood arises because ni > 0 means Wi must be one, but
zero counts may arise for two reasons: Wi could be one and a zero count was
observed from the Poisson distribution by chance, or Wi = 0 in which case
a zero occurs with probability one. We typically use a model for πi where
g(πi) = z′iγ and g(·) is a common link function for binomial data.

For models with parametric baseline rates, maximization of the likelihood
above can be carried out using general-purpose optimization software; see
Appendix B. For semiparametric baseline rate functions, the EM algorithm
offers a convenient approach. The steps are analogous to those given in Section
3.5.3 for the gamma–Poisson mixture, but with modified expressions for the
E-step. Likelihoods can be slightly more challenging to fit with zero-inflated
Poisson models because the likelihood function may be rather flat in certain
regions. This will occur, for example, if the numbers of events observed for
individuals with Wi = 1 are small. Moreover, care must be exercised in select-
ing the covariates to place in the linear predictor for the Poisson component
and the binary component. Ideally, the scientific context would suggest which
model a covariate should enter because there may be difficulties in estimation
if covariates are placed in both components.

A more general model that accommodates zero-inflation and a continuous
frailty is based on the compound Poisson model, which is formulated as fol-
lows. Let Ki be a Poisson random variable with mean κ, and let V1, V2, . . .,
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denote independent and identically distributed gamma random variables with
shape and inverse scale parameters γ1 and γ2, respectively, and density

f(v; γ) = γγ1
2 vγ1−1 exp(−vγ2)/Γ (γ1) , v > 0 .

Then if we define Ui = V1 + V2 + · · · + VKi
if Ki > 0 and Ui = 0 if Ki = 0,

Ui has a compound Poisson distribution. Note that because Pr(Ki = 0) =
exp(−κ) this model accommodates zero-inflation through κ, since Pr(Ui =
0) = Pr(Ki = 0). The density for the continuous part of Ui is

f(ui;κ, γ) = u−1
i exp(−(κ + uiγ2))

∞∑

k=1

(uiγ2)kγ1κk

Γ (kγ1)k!
, ui > 0 .

Although this density is rather complicated, the Laplace transform of Ui is
relatively straightforward to evaluate and can be shown to equal

L(s) = exp
{
−κ
[
1 − (1 + s/γ2)−γ1

]}

and hence it is convenient to write marginal likelihoods and obtain the re-
quired derivatives (see Problem 3.10).

3.5.3 Negative Binomial Models

The gamma distribution (2.28) for ui is the most common choice for (3.28),
to a large degree because of the tractability of the integral in (3.31). In this
case (ni, ti1, . . . , tini

) arises from a negative binomial process for which, with
fixed covariates, the full intensity function (3.29) is given by (2.33), which we
write here as

λi(t|Hi(t)) = ρi(t)
(

1 + Ni(t−)φ
1 + µi(t)φ

)

.

Note that covariate effects which are expressed multiplicatively in (3.28), as in
(3.2), are not multiplicative effects in the full intensity function. The likelihood
function for α, β, and φ may be constructed from this intensity function using
(2.7), or directly from (3.31). When ρi(t) is of the form (3.2) the resulting
likelihood contribution from individual i is

Li(θ, φ) =

⎧
⎨

⎩

ni∏

j=1

ρ0(tij)
µ0(τi)

⎫
⎬

⎭
Γ (ni + φ−1)

Γ (φ−1)
(φµi(τi))ni

(1 + φµi(τi))ni+φ−1 , (3.32)

where µ0(t) =
∫ t

0
ρ0(s)ds. More generally, the likelihood is of the form (3.32)

with ρ0(tij) and µ0(τi) replaced by ρi(tij) and µi(τi).
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Parametric Models

Maximum likelihood estimation can proceed in a number of ways for paramet-
ric models of the form (3.2). If we define θ = (α′, β′, φ)′ with ρ0(t) dependent
on α, the log-likelihood from (3.32) is

�(θ) =
m∑

i=1

⎧
⎨

⎩

ni∑

j=1

[log ρ0(tij) − log µ0(τi)] +
n∗

i∑

j=0

log(1 + φj) (3.33)

+ ni log µi(τi) − (ni + φ−1) log(1 + φµi(τi))
}

,

where n∗
i = max(0, ni − 1). When covariates are fixed and (3.2) is of the form

ρ0(t;α) exp(x′
iβ), the elements of the score vector are

Uα(θ) =
∂�(θ)
∂α

=
m∑

i=1

⎧
⎨

⎩

⎡

⎣
ni∑

j=1

∂ρ0(tij)/∂α

ρ0(tij)

⎤

⎦− (1 + φni) exp(x′
iβ)

1 + φµi(τi)
∂µ0(τi)

∂α

⎫
⎬

⎭

Uβ(θ) =
∂�(θ)
∂β

=
m∑

i=1

ni − µi(τi)
1 + φµi(τi)

xi

Uφ(θ) =
∂�(θ)
∂φ

=
m∑

i=1

⎡

⎣
n∗

i∑

j=0

j

1 + φj
− µi(τi)(ni + φ−1)

1 + µi(τi)φ
+

log(1 + φµi(τi))
φ2

⎤

⎦

and the information matrix is

I(θ) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−∂Uα(θ)
∂α′ −∂Uα(θ)

∂β′ −∂Uα(θ)
∂φ

−∂Uβ(θ)
∂α′ −∂Uβ(θ)

∂β′ −∂Uβ(θ)
∂φ

−∂Uφ(θ)
∂α′ −∂Uφ(θ)

∂β′ −∂Uφ(θ)
∂φ

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Good general-purpose optimization software will readily maximize �(θ) and
also compute I(θ̂). One may also proceed by direct Newton–Raphson for θ
using the observed information matrix. It can be shown that E{∂Uα/∂φ} =
E{∂Uβ/∂φ} = 0 and so a Fisher-scoring algorithm based on the expected
information instead of I(θ) can make use of the orthogonality of (α, β) and φ.
If covariates are time-varying, so that

µi(t) =
∫ t

0

ρ0(s) exp(x′
i(s)β)ds ,

it is generally necessary to use numerical integration, and the guidelines in
Section 3.2 apply.
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Semiparametric Models

Semiparametric mixed Poisson models arise when ρi(t) = ρ0(t) exp(x′
i(t)β) in

(3.28) and ρ0(t) is completely unspecified. Direct maximization of the resulting
likelihood is difficult so here we provide a brief sketch of an EM algorithm
(Dempster et al., 1977) which facilitates estimation in this setting.

In this case we take the “complete data” likelihood for individual i as
(3.30), which would apply if the random effects were observed. With the
gamma distribution for ui the overall complete data likelihood LC(θ, φ) is
given by

m∏

i=1

⎧
⎨

⎩

⎡

⎣
ni∏

j=1

ρ0(tij)
µ0(τi)

⎤

⎦ (uiµi(τi))ni exp(−uiµi(τi)) ×
uφ−1−1

i exp(−ui/φ)
Γ (φ−1)φφ−1

⎫
⎬

⎭
.

The corresponding complete data log-likelihood, considering for simplicity the
case where covariates are fixed, is of the form

�C(θ) = �1(θ) + �2(θ) + �3(θ) ,

where

�1(θ) =
m∑

i=1

ni∑

j=1

[log ρ0(tij) − log µ0(τi)]

�2(θ) =
m∑

i=1

[ni(log ui + log µ0(τi) + x′
iβ) − uiµ0(τi) exp(x′

iβ)]

�3(θ) =
m∑

i=1

[
(φ−1 − 1) log ui − ui/φ − log Γ (φ−1) − φ−1 log φ

]
.

The E-step at the kth iteration in the process for obtaining the maximum
likelihood estimates involves taking the expectation of the complete data log-
likelihood with respect to ui, but based on the conditional distribution of ui

given Hi(τ), and evaluated at θ̂(k−1), the parameter estimates from the previ-
ous iteration. The use of the gamma random effect distribution is particularly
appealing because G(ui|Hi(τ); θ) is also gamma, with shape φ−1 + Ni(τi)
and scale φ/(1 + φµi(τi)) and so the required expectations have closed form.
Specifically

E{ui|Hi(τi); θ̂(k−1)} =
1 + niφ̂

(k−1)

1 + µ̂
(k−1)
i (τi)φ̂(k−1)

and

E{log ui|Hi(τi); θ̂(k−1)} = Ψ(1/φ̂(k−1) + ni) − log(1/φ̂(k−1) + µ̂
(k−1)
i (τi)) ,

where Ψ(·) is the digamma function.
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Let Qr(θ; θ̂(k−1)) = E{�r(θ)|Hi(τi); θ̂(k−1)}, r = 1, 2, 3, and note that at
the M-step, maximizing Q1(θ; θ̂(k−1)) + Q2(θ; θ̂(k−1)) is equivalent to max-
imizing the likelihood under a semiparametric specification with no ran-
dom effects (see Section 3.4.2) with an offset log γ̃

(k−1)
i , where γ̃

(k−1)
i =

E{ui|Hi(τi); θ̂(k−1)}. The term Q3(θ; θ̂(k−1)) may easily be maximized us-
ing general-purpose optimization software. The iteration continues until the
difference in estimates at successive iterations drops below a desired tolerance.
Interval estimation and testing is most conveniently carried out by using like-
lihood ratio statistics (Appendix A).

The above algorithm is essentially the one given by Klein (1992) and
Nielsen et al. (1992) for fitting semiparametric frailty models for clustered
survival data. The coxph function in S-PLUS and R accommodates random
effects by the frailty(id) option, as illustrated in Section 3.8; however, it
uses a different algorithm to obtain estimates and variance estimates. An al-
ternative approach that is convenient and extends to other random effects
models is to use (3.31) and (3.33) with a piecewise-constant baseline rate
function, as in Section 3.3. This makes the model parametric but by letting
the number of pieces in the baseline rate become large, we obtain estimates
close to the semiparametric estimates.

3.6 Robust Methods for Rate and Mean Functions

3.6.1 Nonparametric Estimation

Full specification of a model for recurrent events via intensity functions is
often desirable, particularly when interest lies in extrapolations or predic-
tions, or simply when it is desired to have a comprehensive understanding
or description of an event process. However, when comparing groups of indi-
viduals, or when assessing the effects of fixed covariates, methods that focus
on marginal features such as the rate or mean function are often sufficient.
An advantage of restricting attention to such marginal features is that it is
often possible to relax model assumptions and therefore achieve greater ro-
bustness for inferences. For example, in some applications there are only a few
individuals with more than one or two events. In this case there is naturally
less information about the event processes and it may be difficult to postu-
late models and carry out diagnostic tests for model fit. However, it may be
possible and sufficient simply to assess the effects of covariates on mean func-
tions. This approach has the advantage of easy interpretability, and we show
here that simple robust methods can be developed by building upon methods
for Poisson processes. An important point, however, is that this methodology
requires the observation process {Yi(t), 0 ≤ t} and the event processes to be
independent.

To see this, note that provided {Yi(t), 0 ≤ t} and {dNi(t), 0 ≤ t} are
independent, then in the absence of covariates
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E[Yi(s){dNi(s) − dµ(s)}] = 0 ,

and hence the solution to (3.16) is valid for dµ(s) regardless of the form of the
underlying event processes. More specifically, the estimate of the mean func-
tion (3.17) is unbiased because E{dµ̂(s)|Y1(s), . . . , Ym(s)} = dµ(s) regardless
of the underlying process. The estimates dµ̂(s) and (3.17) are Poisson maxi-
mum likelihood estimates, but are also therefore valid quite generally. In order
to make use of this result, we require a variance estimate that is also valid
generally.

A robust variance estimate for µ̂(t) is obtained by noting that

var{
√

m(µ̂(t) − µ(t))} = m · var
{∫ t

0

dN̄·(u)
Y·(u)

}

= m ·
m∑

i=1

∫ t

0

∫ t

0

Yi(u)
Y·(u)

Yi(v)
Y·(v)

cov{dNi(u), dNi(v)} .

It can be shown that

m

m∑

i=1

∫ t

0

∫ t

0

Yi(u)
Y·(u)

Yi(v)
Y·(v)

[dNi(u) − dµ̂(u)] [dNi(v) − dµ̂(v)]

is a consistent estimate for this variance provided Y·(u)/m → p(u) > 0 as
m → ∞ for all u in [0, t] (Lin et al., 2000). This can be rewritten as

v̂ar{
√

m(µ̂(t) − µ(t))} = m
m∑

i=1

{∫ t

0

Yi(u)
Y.(u)

[

dNi(u) − dN̄·(u)
Y.(u)

]}2

. (3.34)

Note that when τi ≥ t for all i = 1, . . . ,m, the mean function estimate µ̂(t)
reduces to the sample mean N̄·(t)/m and (3.34) becomes

v̂ar{
√

m(µ̂(t) − µ(t))} =
1
m

m∑

i=1

{Ni(t) − N̄·(t)/m}2 ,

which is recognizable as the usual robust sample variance estimate. Finally,
we remark that as pointed out in Section 3.4.1, it is frequently preferable
to construct confidence intervals on the log scale and then exponentiate the
limits. The delta method can be used to obtain the corresponding expressions
based on the robust variance estimates.

3.6.2 Parametric Estimation

The robust methods of Section 3.6.1 also apply to fully parametric models
that may include covariates. Suppose the rate function is of the form

ρi(t;α, β) = ρ0(t;α) exp(x′
i(t)β) ,
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where α is a finite-dimensional parameter. Letting θ = (α′, β′)′ and writing
ρi(t; θ) for ρi(t;α, β), the Poisson process likelihood score equations are given
by (3.4) and (3.5). It is obvious that when the at risk processes {Yi(t), 0 ≤ t}
are independent of the event processes, the score function Uα(θ) of (3.4) and
Uβ(θ) of (3.5) have zero expectation, provided only that the specification
ρi(t; θ) is correct; a Poisson process is therefore not required.

It follows from standard large sample theory for estimating functions (Ap-
pendix A) that the Poisson maximum likelihood estimates θ̂ = (α̂′, β̂′)′ ob-
tained by solving Uα(θ) = 0, Uβ(θ) = 0 are, under mild conditions, asymp-
totically normal as m → ∞. More specifically, if Ui(θ) = (Uiα(θ)′, Uiβ(θ)′)′

is the likelihood score vector for the ith individual,
√

m(θ̂ − θ) is asymptoti-
cally normal with zero mean and a covariance matrix V (θ) that is estimated
consistently by

âsvar(θ̂) = I(θ̂)−1B(θ̂)I(θ̂)−1 , (3.35)

where I(θ) = −∂U(θ)/∂θ′ and B(θ) =
∑m

i=1 Ui(θ̂)Ui(θ̂)′.
If Poisson process software exists for a specific rate function model ρi(t; θ),

it can be used to obtain θ̂ and I(θ̂), which is the observed information matrix.
The matrix B(θ̂) can be obtained from the so-called score residual vectors
Ui(θ̂). More generally, θ̂ can be obtained by maximizing the Poisson log-
likelihood function �(θ) at the start of Section 3.2, using optimization software.
This will also return I(θ̂) so that only B(θ̂) has to be computed separately.

3.6.3 Robust Semiparametric Methods

We now consider the semiparametric multiplicative model where the rate func-
tion for {Ni(t), 0 ≤ t} given the external covariate vectors xi(t) is

E{dNi(t)|Yi(t), x
(∞)
i } = ρ0(t)dt exp(x′

i(t)β) , t > 0 .

Recall that the partial or profile score for β in (3.21) and the estimate of µ0(t)
in (3.24) were derived under the assumption that the events were generated
according to a Poisson process. Provided the observation process is completely
independent of the event process, however, (3.21) is more generally an unbi-
ased estimating function for β. Therefore, any software for the maximization
of a Cox partial likelihood function can be used to obtain β̂. Furthermore,
under the assumption that the rate functions are proportional, (3.24) remains
a consistent estimator of the baseline mean function and is obtainable from
Cox model software. Variance estimation requires estimating function results,
which we now describe.

The expression for var{Uβ(β)} = Iββ(β) that was obtained in Section
3.4 used the independent increments property of the Poisson model. More
generally however, we may write var{√m

−1
Uβ(β)} as

1
m

m∑

i=1

∫ τ

0

∫ τ

0

Yi(u)Yi(v)Wi(u;β)W ′
i (v;β)cov{dNi(u), dNi(v)} , (3.36)
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and note that

1
m

m∑

i=1

∫ τ

0

∫ τ

0

Yi(u)Yi(v)Wi(u; β̂)W ′
i (v; β̂)dM̂i(u)dM̂i(v) (3.37)

gives a consistent estimate of âsvar{√m
−1

Uβ(β)}, where dM̂i(u) = dNi(u)−
dµ̂i(u) and dµ̂i(u) = dµ̂0(u) exp(x′

i(u)β̂) (Lin et al., 2000). This can be rewrit-
ten as m−1

∑m
i=1 B̂iB̂

′
i, where

B̂i =
∫ τ

0

Yi(u)Wi(u; β̂)dM̂i(u) .

If β0 denotes the true parameter value, by Taylor series expansion one
obtains that

√
m(β̂ − β0) = [−m−1∂Uβ(β0)/∂β0]−1[

√
m

−1
Uβ(β0)] + op(1) .

As m → ∞,
√

m
−1

Uβ(β0) converges to MV N(0,B(β0)) in distribution,
where B(β0) = m−1E{Uβ(β0)U ′

β(β0)}. Moreover −m−1∂Uβ(β0)/∂β0 con-
verges in probability to the p × p matrix A(β0) = m−1E{−∂Uβ(β0)/∂β′

0}.
Thus asvar{√m(β̂ − β0)} = A−1(β0)B(β0)[A−1(β0)]′. Empirical estimates of
A(β0) and B(β0) are obtained by using empirical averages instead of expec-
tations and replacing unknown quantities with their estimates. Therefore we
obtain

âsvar{
√

m(β̂ − β0)} = Â−1(β̂)B̂(β̂)[Â−1(β̂)]′ , (3.38)

where B̂(β̂) is given by (3.37) and Â(β̂) = −m−1∂Uβ(β̂)/∂β̂′ is, from (3.21),

m∑

i=1

∫ τ

0

Yi(u)

[
S(2)(β̂;u)

S(0)(β̂;u)
− S(1)(β̂;u)

S(0)(β̂;u)

{
S(1)(β̂;u)

S(0)(β̂;u)

}′]

dNi(u) , (3.39)

where

S(0)(β;u) =
m∑

i=1

Yi(u) exp(x′
i(u)β) ,

S(1)(β;u) =
m∑

i=1

Yi(u) exp(x′
i(u)β)xi(u) , and

S(2)(β;u) =
m∑

i=1

Yi(u) exp(x′
i(u)β)xi(u)x′

i(u) .

Note that under Poisson likelihood or partial likelihood analyses, A(β0) =
B(β0). More generally, however, this does not hold and robust “sandwich
type” variance estimates (3.38) are required for valid inference. The Poisson
variance estimate used in Section 3.4.2 was A(β̂)−1, but this may be seriously
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biased for other processes. The estimate given here is valid under a Poisson
model, but offers protection against departures from the Poisson process.

When covariates are fixed or piecewise-constant, the integrals in (3.37)
and (3.39) are simply sums, and the covariance matrix estimate for β̂ is read-
ily obtained. The joint asymptotic distribution of β̂ and µ̂0(t) may also be
obtained. This is useful, for example, where estimation of mean functions
µ0(t) exp(x′

0β) is of interest. An alternative way to obtain a variance estimate
for µ̂0(t) exp(x′

0β̂) is to recenter covariates as xnew = x−x0, so that the vector
x0 of interest becomes the zero vector. Then one merely needs the variance es-
timates for µ̂0(t). The methods given here for robust estimation of µ0(t) and β
for the multiplicative regression model ρ(t;xi) = ρ0(t) exp(x′

iβ) are available
via the S-PLUS or R function coxph. Section 3.8 provides an illustration.

3.6.4 Robust Methods with Semiparametric Variances

As discussed in Section 3.6.3, consistent estimates are obtained for the para-
meters of the mean function in the semiparametric setting from the Poisson
equations (3.19) and (3.21), and robust variance estimates ensure valid infer-
ences if the form of the mean function is correctly specified. It is sometimes
of interest, however, to formulate a parametric covariance structure to obtain
insight into the nature of the association structure among the counts. One ap-
proach is to adopt the covariance structure implied by a mixed Poisson model
given by (2.31) and (2.32). In this case, if µi(τi) is estimated as in Section
3.4.2, a moment type estimate of φ is given by

φ̂ =
∑m

i=1[(ni − µ̂i(τi))2 − µ̂i(τi)]∑m
i=1 µ̂2

i (τi)
. (3.40)

A generally better estimator, with high efficiency under mixed Poisson processes
with gamma random effects, is φ̂ obtained as the solution to (Dean, 1991),

m∑

i=1

{
(ni − µ̂i)2 − µ̂i(1 + φµ̂i)

(1 + φµ̂i)2

}

= 0 ,

where for simplicity we write µ̂i for µ̂i(τi). In Section 6.4.2 we discuss this ap-
proach for multitype recurrent event data, where likelihoods for fully specified
multivariate random effect models are generally intractable.

3.6.5 Methods Based on Multivariate Failure Time Data

Another marginal approach for analyzing recurrent events which has received
considerable attention in the clinical trial arena is based on methods of an-
alyzing multivariate failure time data developed by Wei et al. (1989). Here
we make some brief remarks on the formulation of these models followed by
comments on their utility for recurrent events.
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Suppose each subject is at risk of K different types of clinical events which
may represent, for example, different types of infections in immunology stud-
ies, different sites of metastases in cancer studies, and so on. Let Tk denote
the time from randomization to the occurrence of the type-k event for subject
i, k = 1, . . . ,K, observed over [0, τi], i = 1, . . . , m. Marginal Cox regression
models may be formulated for the failure times T1, . . . , TK with hazard func-
tions

hk(t|xi) = hk0(t) exp(x′
iβk) k = 1, . . . ,K , (3.41)

where we adopt the same p × 1 covariate vector for each event type but
allow the baseline hazard functions and regression coefficients to differ. In
the context of a parallel group clinical trial one would include a treatment
indicator, denoted xi1, in the covariate vector along with any other covariates
that are considered important.

In the setting of multivariate failure time data there is no natural ordering
of the event times and subjects are therefore considered “at risk” for all events
from the time of randomization. Estimation of β = (β′

1, . . . , β
′
K)′ may be

carried out under a working independence assumption, which means that the
partial likelihood one would use if interest were only in the events of type
k can be maximized to give β̂k, and Ĥk0(t) is estimated by a generalized
Nelson–Aalen estimate similar to (3.24). Specifically, if Uik = min(Tik, τi),
δik = I(Tik ≤ τi), and Yik(s) = I(s ≤ Uik), then the partial likelihood

Lk(βk) =
m∏

i=1

{
exp(x′

iβk)
∑m

�=1 Y�k(Uik) exp(x′
�βk)

}δik

is maximized to give β̂k. Robust estimates of the covariance matrix var(
√

m(β̂−
β)) are given by Wei et al. (1989) and may be used to construct global tests
of treatment effect by taking optimally weighted linear combinations of the
K estimated treatment coefficients.

There are several issues to consider when applying this approach to recur-
rent event data. First, in the recurrent event setting, the first, second, third,
and subsequent event times are typically taken to be analogous to the failure
times for the different event types in the multivariate setting. One must there-
fore specify the maximum number of events to be analyzed to correspond to
the number of distinct event types. This may require discarding events occur-
ring in subjects having more events than are to be analyzed. Second, subjects
are considered “at risk” for their kth event even before experiencing their
(k − 1)st event. This is a natural consequence of adopting an approach based
on marginal failure time models, but does not coincide with reality in applica-
tions to recurrent event data. Third, there is no plausible underlying recurrent
event model for which the proportional hazards assumption would hold for
each event time. Robust covariance matrix estimates provide some protec-
tion against model misspecification, and tests of the null hypothesis of no
treatment effect remain valid, but it is difficult to interpret the event-specific



88 3 Methods Based on Rate Functions

or global measures of treatment effect in this setting. The Andersen–Gill or
rate function approach with robust variance estimation, as described in Sec-
tion 3.6.3, does not have such problems and is a preferable approach for the
marginal analysis of recurrent event data. Estimation and testing of treat-
ment effects with recurrent event data are discussed further in Sections 3.7.5
and 8.4.

3.7 Some Useful Tests for Rate Functions

Tests for a time trend and tests that compare two or more groups of processes
are often of interest. In addition, model assessment is critical to ensure that
assumptions underlying analyses are plausible in light of the available data. In
this section we describe some tests for trend, model assessment, and compar-
isons. The methods use expanded models which include the “null” model to
be assessed. These expanded models can be fitted and the null model tested
against them. We focus here on score or pseudo-score tests which allow us to
test the null model without actually fitting the expanded model.

3.7.1 Tests for Trend

In many applications it is of interest to test for a trend in the rate of occurrence
of events. For example, in process or equipment reliability, it is important to
monitor whether the rate of failure is increasing over time in order to identify
problems or plan maintenance. In studies of chronic disease such as asthma,
one may be interested in testing whether exacerbation rates increase with the
time since disease onset. For Poisson processes this amounts to testing that
the process is time-homogeneous. A simple and convenient framework for de-
veloping tests of this sort is to consider expanded models which accommodate
trend.

In the absence of covariates, for example, one could adopt a model of the
form

ρ(t;α) = exp(α1 + α∗t) t ≥ 0 ,

where α = (α1, α
∗)′. Suppose m independent individual processes are ob-

served, with process i observed over the interval [0, τi], i = 1, . . . , m. Then
(3.3) leads to the log-likelihood function

�(α) = n·α1 + α∗
m∑

i=1

ni∑

j=1

tij −
exp(α1)

α∗

m∑

i=1

(exp(α∗τi) − 1) ,

where n· =
∑m

i=1 ni. The maximum likelihood estimate α̂ may be found by
solving the equations ∂�/∂α = 0 or by maximization of �(α) some other way.

In the context of this model, the trend test is a test of the null hypothesis
H0 : α∗ = 0. This can be carried out by using a Wald, likelihood ratio, or score
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test, but in some situations it is possible to develop a simple test based on a
conditional likelihood for α∗. In particular, if the τi are completely indepen-
dent of the event occurrences then n· =

∑m
i=1 ni has a Poisson distribution

with mean
∑m

i=1(e
α∗τi − 1)eα1/α∗, and an easy calculation shows that the

distribution of the full data {(ni, ti1, . . . , tini
), i = 1, . . . ,m} given n· is (n·)!

times

Lc(α∗) =
(α∗)n.

∏m
i=1

∏ni

j=1 exp(α∗tij)

(
∑m

i=1 exp(α∗τi) − m)n. .

Thus, Lc(α∗) is a conditional likelihood for α∗ and may be used for inference
purposes. In particular, a score test of H0 : α∗ = 0 may be based on the score
statistic Uc(0), where Uc(α∗) = ∂ log Lc(α∗)/∂α∗, and Uc(0) is defined by the
limit of Uc(α∗) as α∗ → 0. We obtain

Uc(α∗) =
m∑

i=1

ni∑

j=1

tij + n.

{
1
α∗ −

∑m
i=1 τi exp(α∗τi)∑m

i=1 exp(α∗τi) − m

}

,

and thus

Uc(0) =
m∑

i=1

ni∑

j=1

tij −
n·
2

∑m
i=1 τ2

i∑m
i=1 τi

. (3.42)

The variance of (3.42) can be obtained by using the conditional variance
formula and the fact that (see Problem 2.4) when α∗ = 0 the process is a
homogeneous Poisson process, and given ni, the times Tij (j = 1, . . . , ni) are
distributed as the ordered observations from a random sample of size ni from
the uniform distribution on [0, τi]. Thus

var{Uc(0)|n.} = E

[

var

{
m∑

i=1

ni∑

j=1

tij |n.

}]

+ var

[

E

{
m∑

i=1

ni∑

j=1

tij |n.

}]

= E

{
m∑

i=1

n2
i τ

2
i /12

}

+ var
{

m∑

i=1

niτi/2
}

.

Using the fact that when α∗ = 0, and n· is fixed, the counts ni, i = 1, . . . , m,
have a multinomial distribution with parameters n· and pi = τi/τ. , where
τ· =

∑m
i=1 τi, we find that

var{Uc(0)|n·} =
n·
3τ·

m∑

i=1

τ3
i − n·

4τ2
·

{
m∑

i=1

τ2
i

}2

. (3.43)

A test of the hypothesis H0 : α∗ = 0 can be carried out using the statistic
Uc(0)/[var{Uc(0)|n.}]1/2, which is asymptotically standard normal when H0

is true. The limiting distribution applies when n· → ∞ and so the test can be
applied even to a single process (m = 1) that is observed over a sufficiently
long period of time.
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The preceding test can be used quite generally to test for an absence of
trend in a Poisson process if the τi are independent of the event processes,
although it possesses good power mainly against alternatives in which the
rate function is monotonic. It is important to note that it also requires that
the process be Poisson. In many settings it would be preferable to use the
robust estimating function methodology of Section 3.6.2 to test for an absence
of trend. In particular, if we consider the family of rate functions ρ(t;α) =
exp(α1 + α∗t) then the hypothesis H0 : α∗ = 0 can readily be tested using
the Wald statistic α̂∗/s.e.(α̂∗), where s.e.(α̂∗) = [âsvar(α̂∗)]1/2 and âsvar(α̂∗)
is the robust variance estimate obtained from (3.35). This test requires that
we obtain the estimates of α1 and α∗, however. A test that does not require
this can be based on asymptotic theory for estimating functions (Appendix
A) for the case where m → ∞. This leads to the statistic (see Problem 3.13)

Z = Uc(0)/s.e.(Uc(0)) , (3.44)

where Uc(0) is as in (3.42) and s.e.(Uc(0)) = [âsvar{Uc(0)}]1/2 is given in
Problem 3.13. Large values of |Z| provide evidence of trend; p−values are
obtained from the standard normal distribution because Z is asymptotically
(m → ∞) normal under H0.

The trend tests above are for the case where the m individual processes
are assumed to be identically distributed. It is also easy to develop a test for
the case where the alternative hypothesis is

ρi(t) = exp(αi + α∗t) i = 1, . . . ,m ,

or, more generally, the case where ρi(t) = exp{αi + α∗g(t)}, when the m
processes are Poisson. A simple score test of H0 : α∗ = 0 is obtained by
considering the distribution of the event times tij (j = 1, . . . , ni) conditional
on the ni (i = 1, . . . , m). A development similar to that leading to (3.42) gives
the conditional score statistic

Uc(0) =
m∑

i=1

I(ni > 0)
ni∑

j=1

(tij −
1
2
τi) =

m∑

i=1

ni(t̄i − τi/2) , (3.45)

where t̄i =
∑ni

j=1 tij/ni, assuming ni ≥ 1. Similarly, we find that conditional
on n1, . . . , nm,

var{Uc(0)} =
m∑

i=1

niτ
2
i /12

under H0, so a test for trend can be based on Uc(0)/s.e.(Uc(0)), which is
asymptotically normal under H0. This test can also be developed in the robust
estimating function framework; see Problem 3.13, part d.

3.7.2 Tests for Multiplicative Covariate Effects

Multiplicative models provide a convenient parsimonious summary of covari-
ate effects but it is important that the assumption of multiplicative effects be
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carefully assessed. With fixed covariates taking on a relatively small number
of unique combinations, plots of log µ̂0j(t) versus t, j = 1, 2, . . . , J should give
J roughly parallel lines, where j indexes the unique covariate configurations
and µ̂0j(t) is the Nelson–Aalen estimate (3.17) based only on those individuals
with this configuration. For other situations, model expansion provides tests
of fit.

A flexible way to generalize the standard multiplicative model is to con-
sider alternatives of the form

ρi(t) = ρ0(t) exp(x′
i(t)β(t)) (3.46)

in which the effects of the covariates possibly change over time. Such models
may be easily fit by introducing auxiliary covariates which are functions of
time, or so-called “defined” time-dependent covariates. For example, let g(t)
denote a known scalar function and consider the model

ρi(t) = ρ0(t) exp(x′
i(t)β + g(t)x′

i(t)θ) = ρ0(t) exp(x′
i(t)(β + g(t)θ)) ,

where θ = (θ1, . . . , θp)′. When θ = 0, the usual multiplicative model is re-
trieved but generally, if controlling for xi1(t) . . . xij−1(t), xij+1(t) . . . xip(t), the
relative rate of events for an individual with xij(t) one unit higher than an-
other individual, is βj + g(t)θj . A test of H0 : θj = 0 is therefore a test of the
proportional rates assumption for {xj(t), 0 ≤ t}. It may be based on a model
with θ1, . . . , θj−1, θj+1, . . . , θp estimated, or a model with θk = 0, k �= j, where
all other covariates are assumed to act multiplicatively. An omnibus test of
H0 : θ = 0 can also be carried out. Very similar tests, which are implemented
in S-PLUS and R, are discussed in Section 3.7.3.

Different choices of g(t) will lead to different evidence against H0 : θj = 0,
and some common choices are g(t) = t and g(t) = log t. One may also
use different functions for each of the covariates by considering models
ρi(t) = ρ0(t) exp(x′

i(t)β + z′i(t)θ) where zi(t) = (zi1(t), . . . , zip(t))′ with
zij(t) = gj(t)xij(t), j = 1, . . . , p.

Maximum partial likelihood estimation can be inconvenient because values
for all covariates at all event times are needed, and so some software restricts
time-varying covariates to be piecewise-constant. Let us therefore make g(t)
piecewise-constant, by considering a partition 0 < a1 < · · · < aq and defining
gk(t) = I(ak−1 < t ≤ ak), k = 2, . . . , q. Let zijk(t) = xij(t)gk(t), zij(t) =
(zij2(t), . . . , zijq(t))′, and let zi(t) = (z′i1(t), . . . , z

′
ip(t))

′ be a 1 × p(q − 1)
vector. Also, let θj = (θj2, . . . , θjq)′, and θ = (θ′1, . . . , θ

′
p)

′ be a p(q − 1) × 1
vector of parameters. We now consider the model

ρi(t) = ρ0(t) exp(x′
i(t)β + z′i(t)θ) .

In this case the relative rate at time t associated with a one-unit increase in
xj(t) while controlling for all other covariates is βj+

∑q
k=2 gk(t)θjk. Likelihood

ratio tests of H0 : θj = 0 are easy to carry out in this setting for either
parametric or semiparametric modls.
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One difficulty with this approach is the selection of the number and lo-
cation of the cutpoints a1, . . . , aq. The greater the number of cutpoints the
more flexible is the alternative model. However, a larger number of parame-
ters then need to be estimated. Choosing a moderate number of points, even
two or three, is usually advisable to facilitate estimation and interpretation
of effects in the event the null hypothesis is rejected. The location of the cut-
points should be chosen such that a comparable number of event times fall
into the resulting intervals, to ensure satisfactory power to detect trends. Of
course there may also be scientific rationale for locating cutpoints at particu-
lar times and ideally these locations are prespecified rather than chosen post
hoc according to plots of the data. Finally, note that in some settings it may
be desirable to allow q to vary across covariates.

3.7.3 Generalized Residuals, Martingales, and Assessment of Fit

The preceding section describes how proportionality assumptions for specific
covariates can be tested. Other model checks can similarly be made by expand-
ing the model of interest, as we discuss later in this section. Another approach,
which lends itself to informal graphical assessments of fit, is through types of
generalized residuals which we now describe.

The quantities defined by (2.46) can, for the case of several processes
i = 1, . . . , m, with intensities ρi(t), be written as

Eij =
∫ Tij

Ti,j−1

ρi(u)du j = 1, . . . , ni + 1 , (3.47)

where Ti0 and Ti,ni+1 are the start and stop times for observation of the
process {Ni(t), 0 ≤ t} and Ti1 < · · · < Tini

are the times at which events be-
fore Ti,ni+1 occur. Under the conditions in Section 2.1, the Eij (j = 1, . . . , ni)
are standard exponential random variables and the quantities

Rij = Ei1 + · · · + Eij j = 1, . . . , ni ,

can be viewed as the occurrence times of events in a homogeneous Poisson
process. That is, conditional on the values of external covariates, we can view

s = Ri(t) =
∫ t

0

ρi(u)du (3.48)

as a transformed time scale, and the processes N∗
i (s) = Ni(R−1

i (s)) are, for
s ≥ 0, homogeneous Poisson processes.

Informal model checks can be based on generalized residuals Êij and R̂ij

that are obtained by replacing the Tij in (3.47) with the observed tij and ρi(u)
with the maximum likelihood estimate ρ̂i(u). For sufficiently large samples,
and under mild conditions, the Êij should be similar to independent standard
exponential random variables, if the specifications ρi(u) are correct.
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These residuals are mainly useful with parametric models, and can sup-
plement simple comparisons of Ni(t) and R̂i(t), which in the case of a Poisson
process is just the estimated mean function µ̂i(t). For example, a plot of
the Nelson–Aalen estimate Λ̂∗

NA(s) based on the transformed times sij = R̂ij

should be roughly linear with slope one if the proposed model is adequate, and
departures suggest deficiencies in the time-trend specification. An alternative
is to consider the scaled values ûij = R̂ij/R̂i,ni+1 (j = 1, . . . , ni), which under
the assumed model should look like the order statistics in a random sample
from the Uniform(0,1) distribution. Departures from uniformity in a proba-
bility plot of the ûij suggest misspecification of the baseline rate function or
of terms involving time-varying covariates. It should be noted that terms in
ρi(t) that are constant with respect to time disappear in the ûij .

Plots of the Êij can also be made. Plots of successive values (Êi,j−1, Êij)
that show association suggest non-Poisson behavior, such as dependence on
previous events. A comparison of the Êij with the standard exponential distri-
bution using a probability plot can detect extra-Poisson variation or carry-over
effects. These plots are also useful with more general intensity-based models,
and we defer an illustration of their use to Section 5.2.3.

A complementary set of methods for model checking is provided via mar-
tingales. They give a powerful framework for motivating the construction of
estimating functions and deriving asymptotic results for event history analysis
(see Fleming and Harrington, 1991; Andersen et al., 1993). Here we show how
they can be exploited to derive results useful for assessment of model fit.

The counting process martingale for subject i is defined as

Mi(t) = N̄i(t) −
∫ t

0

Yi(u)ρi(u)du .

The process {Mi(t), 0 ≤ t} has expectation zero and uncorrelated increments.
One may also define for s < t,

Mi(s, t) =
∫ t

s

dMi(u) = N̄i(s, t) −
∫ t

s

Yi(u)ρi(u)du .

The corresponding martingale residual process is obtained by replacing un-
known quantities with their respective estimates to give, for example,

M̂i(s, t) =
∫ t

s

Yi(u){dNi(u) − ρ̂i(u)du} .

Various plots and tests based on martingale residuals have been proposed
for assessing the functional form of ρi(t), although many of these are not well
understood in terms of their power to detect model departures. One approach
due to Grambsch and Therneau (1994) gives tests that are similar to ones
in Section 3.7.2, and is implemented in the S-PLUS or R function cox.zph.
It uses a statistic based on Schoenfeld residuals, defined below, to test the
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proportionality assumptions in multiplicative semiparametric models where
ρi(t) = ρ0(t) exp(x′

i(t)β). To begin we introduce the notion of martingale
transforms.

The contribution from individual i to the log-likelihood function (2.7) or
(2.59) can be written in the case of a Poisson process as

∫ ∞

0

Yi(u) log ρi(u)dNi(u) −
∫ ∞

0

Yi(u)ρi(u)du .

The score vector (3.5) for β in the multiplicative model in (3.3) is obtained by
differentiation. It may be written as a stochastic integral as in (2.60), in which
case we can view the score vector as a “score process”. This stochastic integral
represents a martingale transform of a p×1 vector Wi(s;β). The same is true
for the semiparametric multiplicative model, where the partial likelihood score
vector (3.21) has components i = 1, . . . ,m that can be rewritten as

Ui(β, t) =
∫ t

0

Wi(s;β)dMi(s) =
∫ t

0

{xi(s) − x̄(s;β)}dMi(s) ,

where Wi(s;β) is given by (3.22), and for convenience we define

x̄(s;β) =
∑m

i=1 Yi(s)xi(s) exp(x′
i(s)β)

∑m
i=1 Yi(s) exp(x′

i(s)β)
,

which is a p × 1 vector of the weighted means of the covariates among those
at risk at time s > 0. We write Ui(β, t) = (Ui1(β, t), . . . , Uip(β, t))′ to indicate
the individual elements of Ui(β, t) corresponding to β1, . . . , βp.

If t(1) < · · · t(K) represent the K unique sorted event times, note that
one may further decompose Uij(β, t) as a sum over the observed event time
intervals k = 1, . . . , K, as

Uijk(β) =
∫ t(k)

t(k−1)

Wij(s;β)dMi(s) ,

where t(0) = 0.
The Schoenfeld residual at t(k) for βj is defined as rjk =

∑m
i=1 Uijk(β),

j = 1, . . . , p, and the full p × 1 vector of Schoenfeld residuals at t(k) is rk =
(r1k, . . . , rpk)′. Furthermore, let

V (s;β) =
∑m

i=1 Yi(s) exp(x′
i(s)β)[xi(s) − x̄(s;β)][xi(s) − x̄(s;β)]′
∑m

i=1 Yi(s) exp(x′
i(s)β)

denote the p × p weighted variance matrix for xi(s).
Suppose the null model that we wish to check is of the form ρi(t) =

ρ0(t) exp(x′
iβ) and the alternative is given by ρi(t) = ρ0(t) exp(x′

iβ(t)) with
β(t) = (β1(t), . . . , βp(t))′, βj(t) = βj + (gj(t)− ḡj)θj , and ḡj =

∑K
k=1 gj(t(k)),

j = 1, . . . , p. Grambsch and Therneau (1994) show that if r∗k = V −1(t(k);β)rk,
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then E(r∗jk) ≈ θj(gj(tk) − ḡj). This suggests plots of r∗jk versus functions of
time may be useful for revealing possible departures from the null hypothesis
of proportionality for covariate xj . Smooths of such plots help reveal trends
and suggest alternative functional forms for covariate effects. Such plots can
be created using the S-PLUS or R function cox.zph as illustrated in Section
5.4.

Plots of these residuals are not always easily understood, however, and it is
useful to combine them to form a test statistic sensitive to departures from the
assumed null model in the direction of the specified alternative. Specifically,
Grambsch and Therneau (1994) suggest that if Gk = diag(gj(t(k)) − ḡj , j =
1, . . . , p) then θ̃ =

∑K
k=1 G∗

krk estimates θ, where G∗
k = Σ̂−1 Gk and Σ̂ =

[Â−B̂Ĉ−1B̂′]−1 with Â =
∑K

k=1 GkV (t(k); β̂)Gk, B̂ =
∑K

k=1 GkV (t(k); β̂) and
Ĉ =

∑K
k=1 V (t(k); β̂). Here Σ̂ is a consistent estimator of the covariance matrix

for θ̃ and so one degree of freedom tests of the proportionality assumption
for xj can be based on θ̃j/Σ̂

1/2
jj , which is asymptotically standard normal

under the null model. Global tests for the null model may be based on a
quadratic form θ̃′Σ̂−1θ̃ , which is asymptotically χ2

p under the null hypothesis
ρi(t) = ρ0(t) exp(x′

iβ). Both kinds of tests are available in the output from
cox.zph, with a choice of functions g(t) being available. Such tests usually
yield results that are close to those for the Wald or likelihood ratio tests based
on the discussion following (3.46).

Martingale residuals can also be utilized to provide other model checks.
For example, residuals M̂i(t) for specified values of t can be plotted against the
values of fixed covariates xi; such plots should be consistent with the fact that
E{Mi(t)} = 0 if the model is correct. The usefulness of such plots is limited if
individuals tend to have very few events. If there are sufficiently large numbers
of events for each individual, plots of successive increments M̂i(aj−1, aj) for
a sequence of times 0 = a0 < a1 < · · · < an can also be useful, and might
indicate extra-Poisson variation or association in the successive event counts.

Formal goodness-of-fit tests can be based on residuals described in this
section. One example is the quadratic statistic defined above for testing pro-
portionality of covariate effects. More generally, suppose that we take a para-
metric base model with intensity functions ρi(t) and consider the expanded
model with intensity functions

λi(t|H(t)) = ρi(t) exp(z′i(t)γ) ,

where zi(t) may include functions of covariates, time, or prior event history.
We now consider score tests, examples of which were considered earlier in
Section 3.7.1 for testing trend. Here, the idea is to develop tests of the Poisson
process itself. The derivative with respect to γ of the log-likelihood function’s
contribution from individual i is, from (2.7) or (3.5),

Siγ(γ, α) =
∫ ∞

0

Yi(u)zi(u){dNi(u) − λi(u|H(u))du} ,
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where α parameterizes the ρi(t). To test the hypothesis H : γ = 0, and
thus check the base Poisson model, we consider the score statistic S(0) =∑m

i=1 Siγ(0, α̂) with α̂ estimated from the Poisson model ρi(t;α). This gives

S(0) =
m∑

i=1

∫ ∞

0

zi(u)dM̂i(u) , (3.49)

where

M̂i(t) = N̄i(t) −
∫ t

0

Yi(u)ρ̂i(u)du i = 1, . . . ,m ,

and ρ̂i(u) = ρi(u; α̂).
By appropriate choice of zi(u) in (3.49) we can test for various types of

model departures without having to fit an expanded model. Values of S(0)
away from zero indicate evidence against the Poisson model. Often it is sat-
isfactory to consider various scalar covariates z(u), so that S(0) is a scalar.
Applying asymptotic theory for score tests (see Appendix A), it can be shown
that if the Poisson model ρi(t;α) is correct, the score statistic S(0) is asymp-
totically normal as m → ∞, with variance estimated consistently by

V (0) =
m∑

i=1

∫ ∞

0

Yi(u)z2
i (u)ρ̂i(u)du − A′BA ,

where B = I(α̂)−1 is the asymptotic covariance matrix for α̂ in the Poisson
model, and

A =
m∑

i=1

∫ ∞

0

Yi(u)zi(u)
[
∂ log ρ̂i(u)

∂α̂

]

ρ̂i(u)du .

For m sufficiently large, S(0)/V (0)1/2 is close to standard normal so p−values
may readily be obtained. An alternative is to obtain p−values by simulation.

In cases where m is small but the total number of events is large, the normal
approximation for S(0) may still be reasonable; this can be investigated by
simulation. To obtain p−values, simulation is recommended unless previous
investigation has shown the normal approximation to be accurate.

Finally, we observe that if zi(u) is constant over intervals (ti,j−1, tij ] be-
tween successive events, the statistic (3.49) is a weighted sum of the residuals
Êij defined earlier. In particular,

S(0) =
m∑

i=1

ni+1∑

j=1

wij(1 − Êij) ,

where zi(u) = wij for ti,j−1 < u ≤ tij .
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3.7.4 Tests for Extra-Poisson Variation

Sometimes the event processes for individuals may be Poisson, but hetero-
geneity in rate functions may exist that is not accounted for by covariates,
creating extra-Poisson variation in the numbers of events. We now describe a
simple test for this that can be used with parametric models.

Consider the multiplicative conditionally Poisson model given in (3.28)
and note that if ρi(t) = ρ0(t;α) exp(x′

iβ) it can be written as

λi(t|Hi(t), ui) = uiρ0(t) exp(x′
iβ) ,

with ui taken to have mean zero and variance φ. The parameter φ reflects
the extent of extra-Poisson variation, with φ = 0 giving the Poisson model.
A likelihood ratio test of H0 : φ = 0 is relatively easy to carry out when a
model for the random effects is specified, as in Section 3.5. However, because
the value of φ = 0 is on the boundary of the parameter space, the limiting
distribution of the likelihood ratio statistic W under H0 has probability mass
of 0.5 at 0 and is distributed as 0.5χ2

1 for W > 0. A simple alternative is to
use a score test, which requires that only the Poisson process model be fitted.

Here we assume that the times τi (i = 1, . . . ,m) are independent of the
event processes, and condition on their values. The test below is based on
the likelihood function arising from the distribution of the counts Ni(0, τi) as
discussed in Section 2.2.3. The contribution from subject i to the likelihood
score statistic for testing H0 : φ = 0 is given by

(ni − µi(τi))2 − µi(τi) , (3.50)

which has expectation zero under the Poisson model. The standardized form
of this test statistic for φ = 0 is (e.g. Dean and Lawless, 1989)

∑m
i=1[(ni − µ̂i(τi))2 − µ̂i(τi)]

[2
∑m

i=1 µ̂2
i (τi)]

1/2
, (3.51)

where µ̂(τi) is the Poisson estimate µi(τi; α̂). This asymptotically (m → ∞)
follows a standard normal distribution under the null hypothesis. Simulation
results suggest this statistic is somewhat slow to reach its limiting distribution
and Dean and Lawless (1989) have proposed small sample corrections for the
case where only the counts Ni(τi) = ni are observed. An alternative approach
is to obtain a p−value by simulation. This is appealing because data need
only be generated under the Poisson model. Ng and Cook (1999a) consider
analogous tests for recurrent events where event times are known, based on
piecewise-constant models for baseline rate functions.

3.7.5 Two-Sample Test Statistics Based on Rates

We are often interested in comparing the occurrence of events in two or more
groups. In industrial settings one may be interested in comparing rates of
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warranty claims from cars manufactured in different periods or at different
plants. Medical studies may be directed at examining event rates for patients
under different therapeutic conditions.

One natural framework for making comparisons of two groups, 1 and 2, is
via models ρi(t) = ρ0(t) exp(xiβ) where xi = 1 if individual i is in group 2 and
xi = 0 otherwise. Wald tests of H0 : β = 0 may be carried out under para-
metric or semiparametric Poisson models of Sections 3.2 and 3.4, respectively,
and such tests will be most powerful for detecting differences within the class
of multiplicative Poisson models (i.e. with proportional rate functions). More
general types of group differences may be reflected by models of the form

ρi(t) = ρ0(t) exp(xiβ + γxig(t)) ,

where, as discussed in Section 3.7.2, g(t) is a specified function of time. Based
on such models, two degree of freedom tests of the hypothesis of no group
differences may be obtained for H0 : β = γ = 0. It is most common to
consider such tests with ρ0(t) treated nonparametrically.

Simple graphical displays based on nonparametric estimates of mean func-
tions can provide insight into the differences in two groups. For example, plots
of the log cumulative mean functions for the two groups should be roughly
parallel if the simple multiplicative model is appropriate, whereas plots of the
untransformed mean functions should be roughly parallel if an additive model
is appropriate.

Score tests also have appeal in this setting because of their simplicity. Con-
sider two groups of subjects as before, with mutually independent counting
processes. Now let {Nki(t), 0 ≤ t} denote the counting process for subject i in
group k, and let Yki(t) = 1 if subject i in group k is at risk at time t, where
k = 1 and k = 2 denote the two groups. The rate and mean functions for sub-
jects in group k are given by E{dNki(t)} = ρk(t)dt and E{Nki(t)} = µk(t)
respectively, i = 1, . . . ,mk.

A family of test statistics mentioned by Lawless and Nadeau (1995) is
based on

U(τ) =
∫ τ

0

w(s){dµ̂2(s) − dµ̂1(s)} , (3.52)

where τ = max(τki) is the maximum followup time,

w(s) =
Y1·(s)Y2·(s)a(s)

Y··(s)
, (3.53)

and a(s) is a fixed weight function. It is straightforward to show that if a(s) =
1, then (3.52) can be obtained as a score test statistic of the null hypothesis
H0 : ρ2(t) = ρ1(t) versus the alternative HA : ρ2(t) = ρ1(t) exp(β) from
(3.21), with xi = 1 for subjects in group 2 and xi = 0 for subjects in group
1. More generally, (3.52) arises as a score test of H0 : ρ2(t) = ρ1(t) versus
HA : ρ2(t) = ρ1(t) exp(βa(t)), which accommodates nonproportionality.
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Under the assumption that the observations are generated according to a
Poisson process, one can show that

m−1v̂arP {U(τ)} =
1
m

∫ τ

0

(w(s))2
{

dµ̂1(s)
Y1·(s)

+
dµ̂2(s)
Y2·(s)

}

(3.54)

is a consistent estimate for var(
√

m
−1

U(τ)) based on the expected informa-
tion function corresponding to (3.26). The standardized form of this statistic,
Ū2

P (τ) = (U(τ))2/v̂arP {U(τ)}, is asymptotically χ2
1 under H0 and large ab-

solute values give evidence against the null hypothesis.
Following the arguments of Section 3.6 one can show that more generally,

a consistent variance estimator for
√

m
−1

U(τ) is m−1v̂arR{U(τ)} given by

1
m

2∑

k=1

mk∑

i=1

⎡

⎣
τ∫

0

w(s)
Yki(s)
Yk·(s)

{dNki(s) − dµ̂k(s)}

⎤

⎦

2

. (3.55)

This variance estimator is robust to departures from Poisson assumptions
and as Y1·(s) and Y2·(s) become large over [0, τ ], the pseudo-score statistic
Ū2

R(τ) = (U(τ))2/v̂arR{U(τ)} approaches a χ2
1 random variable under H0 for

a wide class of underlying point processes. Large observed values of Ū2
R(τ)

provide evidence against H0. A point to note, however, is that the followup
times τki must here be independent of the event processes.

Many statistics of the form (3.52) with a(s) > 0 in (3.53) will be effective
against departures from H0 in which the mean functions do not cross. This is
analogous to the situation for “weighted log-rank” tests of equality for lifetime
distributions (e.g. Andersen et al., 1993, Ch. 5; Fleming and Harrington, 1991,
Ch. 7), where the tests are primarily effective when the hazard functions and
survivor functions of the distributions do not cross. Because the test statistic
with a(s) = 1 in (3.52) and (3.53) arises as a pseudo-score test of H0 : β = 0
in the model where ρi(t) = ρ0(t) exp(xiβ) it is powerful against alternatives of
this form. An alternative weight function given by a(s) = t− s can be shown
to generate a statistic that is c times the area between the empirical mean
functions if there is no censoring over [0, τ ] and c is a positive real constant
satisfying c = Y1·(s)Y2·(s)/Y··(s), 0 ≤ s ≤ t . In settings where censoring
occurs and Y1·(s)Y2·(s)/Y··(s) varies with time, the statistic does not retain
this interpretation exactly, but it remains powerful for scenarios in which the
mean functions are nonproportional, but do not cross.

If µ1(t) and µ2(t) are expected to cross, other procedures are preferable.
For example, if the difference in the mean functions is fairly systematic, it
may be possible to use a group indicator variable along with a time-dependent
covariate to develop a test based on a more general multiplicative model. Here
we restrict consideration to models of the form ρi(t) = ρ0(t) exp(β1xi+β2xit),
noting that this allows for a time trend in the ratio of the rate functions. Thus
if β = (β1, β2)′, a test of β = 0 would be more powerful for these types of
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departures from H0 : µ1(t) = µ2(t), t ≥ 0. The pseudo-score vector resulting
from this model can be written as

U(τ) =
∫ τ

0

w(s){dµ̂1(s) − dµ̂2(s)} ,

where w(s) = (w1(s), w2(s))′ = a(s) Y1·(s) Y2·(s)/Y··(s) with a(s) = (1, s)′. A
two degree of freedom pseudo-score test of H0 : µ1(t) = µ2(t), t ≥ 0 based on
this model can then be constructed because for large m,

Ū(τ) = U ′(τ)v̂ar−1{U(τ)}U(τ) ∼ χ2
2

under the null hypothesis, where the covariance matrix var{U(τ)} is estimated
either under a Poisson model or robustly, according to whether the processes
are Poisson.

3.8 Applications and Illustrations

3.8.1 Rat Mammary Tumor Data

Consider the data on the development of tumors in rats discussed in Section
2.2.4. Here we provide some illustrative analyses based on models described in
this chapter. First we consider separate analyses of the two treatment groups
based on parametric Poisson models. We also consider nonparametric Poisson
models (Section 3.4.1), robust nonparametric estimation (Section 3.6.1), and
two-sample tests (Section 3.7.5). In order to assess treatment effect, paramet-
ric and semiparametric Poisson regression models are then discussed along
with semiparametric mixed Poisson models (Section 3.5.3) and robust semi-
parametric methods (Section 3.6.3). S-PLUS or R data frames, code, and
output for these analyses are provided in Appendix C.

Separate Poisson Analyses of the Control and Treatment Arms

Let µk(t) denote the mean function for group k, where k = 1 for the treated
group and k = 2 for the control group. Figure 3.1 gives plots of log µ̂k(t)
versus t and versus log t, k = 1, 2, where µ̂k(t) is the Nelson–Aalen estimate
given by (3.17). The latter plots are roughly linear suggesting parametric rate
functions

ρk(t) = α2kαα2k

1k tα2k−1 (3.56)

are reasonable. Because this has the same form as a Weibull hazard function,
as mentioned in Section 3.2.3, such a model can be fit using software for sur-
vival analysis which can accommodate left truncation (also known as “delayed
entry”). Here we use the S-PLUS function censorReg but note that there the
parameterization adopted is for a location-scale formulation (Lawless, 2003a,
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Fig. 3.1. Plots of log(µ̂k(t)) versus t and log(µ̂k(t)) versus log t for treated and
control groups based on Nelson–Aalen estimates of mean functions.
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Section 5.2) so that for group k, the scale parameter is α−1
2k in this notation

and the intercept is − log α1k. For the control arm this gives estimates (s.e.)
α̂12 = 0.042 (0.0065) and α̂22 = 1.09 (0.0891), giving µ̂2(t) = (0.042t)1.09,
which is plotted in Figure 3.2 along with the corresponding estimate for the
treatment arm.

We next consider use of a piecewise-constant rate function with cutpoints
at 30, 60, and 90 days. Recall from (3.15) that the likelihood arising from the
piecewise model is a product of likelihoods for a time-homogeneous Poisson
model. The estimated mean functions for the control and treated rats based
on this model are also given in Figure 3.2.

The Nelson–Aalen estimates (3.17) of the mean functions for the treated
and control rats shown in Figure 3.2 can be used as a basis for judging fit
of the parametric models. There is close agreement between the piecewise-
constant and Nelson–Aalen estimates over the course of observation for both
groups. The Weibull rate function gives a slightly lower estimate of the ex-
pected number of tumors over the latter half of the followup period for the
control rats. The data frame and code for estimating the rate functions under
the Weibull and piecewise-constant models, as well as for the nonparametric
estimates, are given in Appendix C.
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Fig. 3.2. Estimated mean functions for the treated and control groups obtained
under the assumptions of Weibull and piecewise-constant (cutpoints at 30, 60, and
90 days) parametric rate functions, and Nelson–Aalen estimates.
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Two-Sample Tests and Tests for Extra-Poisson Variation

Tests of the hypothesis H0 : µ1(t) = µ2(t) versus HA : µ1(t) �= µ2(t) can be
carried out using (3.52) and (3.54) or (3.55). These give observed statistics
Ū2

P (122) = 30.54 and Ū2
R(122) = 14.65 for the standardized statistics based on

(3.54) and (3.55), respectively. The statistic based on (3.54) is asymptotically
χ2

1 under H0, if a Poisson model is correct, but the statistic based on (3.55)
is asymptotically χ2

1 under H0 more generally. The p−values based on χ2
1

are p < 0.0001 and p = 0.0001, respectively, both indicating strong evidence
against the hypothesis. The fact that the two statistics differ suggests that
the Poisson assumption should be questioned, so the robust test is preferred.

Figure 3.3 contains two sets of pointwise 95% confidence limits for the
nonparametric estimates of the mean functions. The first set is based on the
Poisson assumption and is given by exponentiating the limits of a 95% confi-
dence interval for log µ(t), as described following (3.18) of Section 3.4.1. The
second set is based on the robust variance (3.34) and is again obtained by
exponentiating limits for log µ(t) computed as in Section 3.4.1. The wider ro-
bust limits reflect the presence of extra-Poisson variation, especially in the
control group.
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Fig. 3.3. Estimated mean functions and pointwise Poisson-based and robust 95%
confidence intervals for the treated and control groups.

The statistic (3.51) for testing for extra-Poisson variation depends on the
estimated mean at the common end of followup τ = 122, which is µ̂2(τ) =
6.040 for the control arm and µ̂1(τ) = 2.652 for the treated arm. The statistic
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(3.51) gives an observed value of 5.27 and a p−value Pr(χ2
1 > 5.272) < 0.001

suggesting, as one would expect based on the above results, evidence of extra-
Poisson variation.

Regression Analyses

The plots of log µ̂k(t), k = 1, 2 in Figure 3.1 are not only useful to assess the
plausibility of a parametric model for each group, but also the multiplicative
effect of the treatment variable. As these plots are roughly parallel, a multi-
plicative model is plausible. To this end we let xi = 1 if subject i is in the
treated arm and xi = 0 if they are in the control arm and fit a multiplica-
tive model of the form ρi(t) = ρ0(t) exp(x′

iβ) with ρ0(t) = α2α
α2
1 tα2−1. This

is done using the S-PLUS function censorReg; see Appendix C. The maxi-
mum likelihood estimates of α1 and α2 are 0.045 and 1.06, respectively. The
estimated treatment effect (s.e.) is −0.823 (0.152). This gives an estimated
relative rate of tumors of exp(−0.823) = 0.44 for rats in the treated versus
control arms (95% CI (0.33, 0.59), p < 0.0001), indicating a strong treatment
effect. The estimated relative rate in the treated versus control rats for a
piecewise-constant model (see Appendix C) is also 0.44 (95% CI (0.33, 0.59)),
p <0.0001).

A semiparametric model can be fit using the coxph function in S-PLUS
as described in Section 3.4 and Section C.1.3 of Appendix C. We obtain the
maximum likelihood estimate β̂ = −0.816 (s.e.=0.152) which gives an esti-
mated relative rate 0.44 for rats in the treated versus control arms (95% CI
(0.33, 0.60); p<0.0001). This is in close agreement with the previous estimates
from the Weibull and the piecewise-constant model.

A semiparametric mixed Poisson model can also be fit using the coxph
function with the frailty(id) option (Appendix C); this is advisable given
the evidence of extra-Poisson variation from the test above. The estimate
of the treatment coefficient arising from this model is similar to those from
the previous analyses, but the standard error is larger and the associated
confidence intervals wider because this model accommodates extra-Poisson
variation. Specifically, the estimated relative rate is 0.44 (95% CI (0.29, 0.67);
p <0.0001).

Finally, the semiparametric robust analysis can be carried out using the
cluster(id) option for the coxph function. This analysis also gives an esti-
mate β̂ = −.82 but a standard error of .20, which leads to a similar confidence
interval as the one obtained from the mixed Poisson model (RR = 0.44; 95%
CI (0.29, 0.67)). This is coincidental, although it is often found that a mixed
Poisson process analysis gives results close to the robust analysis for the re-
gression coefficient.

Table 3.1 summarizes the results for the different models fitted. Note that
the findings from these analyses are consistent with the results of the earlier
two-sample tests in that we obtain strong evidence against the null hypotheses
of no treatment difference.
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Table 3.1. Estimates of treatment coefficient from several multiplicative rate func-
tion models for rat tumorgenicity data.

Model Baseline Rate EST. S.E. RR 95% CI p−value

Poisson Weibull -0.82 0.15 0.44 (0.33, 0.59) <0.0001
Poisson Piecewise -0.82 0.15 0.44 (0.33, 0.59) <0.0001
Poisson Nonparametric -0.82 0.15 0.44 (0.33, 0.60) <0.0001
Mixed Poisson Weibull -0.82 0.21 0.44 (0.29, 0.67) <0.0001
Mixed Poisson Nonparametric -0.82 0.21 0.44 (0.29, 0.67) <0.0001
Robust Nonparametric -0.82 0.20 0.44 (0.30, 0.65) <0.0001

3.8.2 A Trial of Treatment for Herpes Simplex Virus

Romanowski et al. (2003) report on a 48-week multicenter open-label random-
ized two-period crossover trial of patients with a documented history of genital
herpes simplex virus infection (type 1 or 2). A main objective was to compare
the two types of therapy in terms of the occurrence of outbreaks of symp-
toms. Patients were randomized to two sequence groups. In sequence group
A patients took 500 mg of valacyclovir once per day for 24 weeks with a view
to suppressing outbreaks of symptoms (so-called suppressive therapy). When
an outbreak occurred during suppressive therapy, the dose was increased to
500 mg twice a day for five days or until symptoms resolved. Period 2 of se-
quence group A was also 24 weeks in duration, and during this time patients
took 500 mg doses of valacyclovir twice daily, but only for the treatment of
outbreaks (so-called episodic therapy). Patients in sequence group B followed
the episodic and suppressive regimens in periods 1 and 2, respectively. Plots
of the Nelson–Aalen estimates of the mean functions for the number of out-
breaks for patients in sequence groups A and B are given in Figure 3.4. The
time variable t is time on study, in days.

Because this is a crossover design we define two time-dependent covariates.
The first relates to the so-called “direct” effect of suppressive therapy. We set
xi1(t) = 1 if subject i is on suppressive therapy at time t and xi1(t) = 0
otherwise. The actual day of crossover from the period 1 to period 2 regimen
varies somewhat from subject to subject, so we let τ c

i denote the time of
crossover and τi the end of followup for subject i, i = 1, . . . ,m. In this case,
xi1(t) = I(t ≤ τ c

i ) if subject i is in sequence group A and xi1(t) = I(τ c
i < t ≤

τi) if subject i is in sequence group B. To allow for a possible carry-over effect
of suppressive therapy in period 2 for sequence group A, we let ∆ represent a
duration of time over which the residual effect of suppressive therapy in period
1 could affect the recurrence rate in period 2, where only episodic therapy
is given; this is taken to be four weeks in these analyses. Thus we define
xi2(t) = I(τ c

i < t ≤ τ c
i + ∆) if subject i is in sequence group A and xi2(t) = 0

for t ≥ 0 for patients in sequence group B. In addition to the variables related
to treatment, we also examine the effects of fixed covariates for age, sex,
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Fig. 3.4. Estimated mean functions for the cumulative expected number of out-
breaks of symptoms for patients in sequence groups A and B from Romanowski
et al. (2003).

virus type (I or II), and the number of recurrences in the year before entry
to the study. We fitted semiparametric multiplicative regression models (3.2)
with g(xi(t);β) = exp(x′

i(t)β). The at-risk indicators Yi(t) were set to zero
during short periods in which an individual was experiencing an outbreak,
because they were not considered at risk for a new outbreak until the present
one was resolved. We note that this poses a problem for the robust analysis
below, because Yi(t) is not fully independent of the event (outbreak) process.
However, the effect appears small in this setting. The results of model fits
are reported in Table 3.2 for Poisson, negative binomial (mixed Poisson), and
robust rate function models (see Sections 3.4.2, 3.5.3, and 3.6.3, respectively).

From Figure 3.4 it is clear that there is a dramatic effect of suppressive
therapy for preventing the occurrence of outbreaks during period 1. Moreover,
there appears to be some residual effect of the suppressive therapy received
during period 1, in period 2. This can be seen by the fact that the slope of
the mean function for patients on episodic therapy in period 2 is not quite
as great as the slope of the mean function for patients on episodic therapy
during period 1. In the absence of a carry-over effect, one would expect these
mean functions to have the same slope. There is indeed an indication that the
lower event rate for episodic treatment in period 2 persists well beyond four
weeks.

Table 3.2 shows similar estimates and standard errors for treatment ef-
fects across the three models, but standard errors for the fixed covariates are
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Table 3.2. Results of Poisson, mixed Poisson, and robust analysis of data from
Romanowski et al. (2003).

Poisson Mixed Poisson Robust

Covariate† EST. S.E. EST. S.E. EST. S.E.

Direct Effect (xi1(t)) -1.578 0.102 -1.595 0.103 -1.578 0.108
Carryover Effect (xi2(t)) -0.285 0.249 -0.232 0.252 -0.285 0.211
Age 0.0006 0.004 0.0008 0.006 0.0006 0.007
Sex -0.148 0.083 -0.159 0.126 -0.148 0.121
Virus Type 0.188 0.079 0.197 0.124 0.188 0.114
Previous Recurrences 0.074 0.018 0.074 0.028 0.074 0.025

† Age is measured in years, sex is male versus female, virus type is type II versus
type I, and previous recurrences is the number of recurrences in the past year.

smaller under the Poisson model, suggesting that there is some extra-Poisson
variation. The robust model reveals a substantial reduction in the rate of out-
breaks with suppressive therapy (RR = 0.21, 95% CI (0.17, 0.26) p < 0.0001)
and a greater rate of outbreaks for each additional number of recurrences in
the previous year (RR = 1.07, 95% CI (1.02, 1.13), p = 0.0034). There is a
slight suggestion of a trend towards a higher rate of outbreaks among indi-
viduals with infection from type II herpes simplex virus (RR = 1.21, 95% CI
(0.97, 1.51), p = 0.0986) and no effect of age or sex is indicated. The estimate
of the four-week carry-over effect (RR = 0.75) is consistent with the findings
from the mean function plots but is not statistically significant.

3.8.3 Fitting and Prediction from a Software Debugging Model

Section 1.2.2 discussed a testing and debugging process for a large software
system, in which different individuals tested the system and identified faults
that were to be removed. Figure 1.3 shows a plot of N(t), the cumulative
number of faults detected, as a function of cumulative staff days of testing
(t). The testing took place over 160 calendar days and involved 1336.7 staff
days, during which 870 faults were detected.

It is of interest to fit a model to the process {N(t), 0 ≤ t}, in order to
predict the number of new faults that would be detected if testing were to
continue. This is a key consideration in deciding when to cease testing or,
perhaps, in deciding how many staff hours to devote to testing over a calendar
time period. The introduction of new code or modifications of existing code
may introduce new faults, and so in developing an intensity function model
for the process {N(t), 0 ≤ t}, we use the number of lines C(t) of code changed
or added up to time t as an internal time-varying covariate. The test data,
given in Appendix D, show the values of N(t) and C(t) at time points that
correspond to the ends of calendar days. Note that t considered here, however,
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is cumulative staff days of testing; this is the most relevant time scale for model
building and prediction.

We consider models where the fault detection intensity takes the form

λ(t|H(t)) = αθe−θt + βθe−θt

∫ t

0

dC(u)
e−θu

. (3.57)

Models of this type are discussed by Lawless (2006) and others, and have been
shown to fit data of the type here. The data in Appendix D give the numbers
of faults Nj = N(tj−1, tj) detected in time intervals [tj−1, tj), j = 1, . . . , k. For
simplicity we assume that code changes all occur at the interval endpoints,
and denote Cj = dC(tj) as the number of lines of code changed at tj . Then,
the intensity function (3.57) takes the form

λ(t|H(t)) = θe−θt

(

α + β

j−1∑

l=1

c�e
θtl

)

tj−1 ≤ t < tj . (3.58)

Let us fit the model (3.58) by maximum likelihood. The partial likelihood
based on N1, . . . , Nk (where k = 160 and tk = 1336.7) is obtained from the
terms involving Pr(N�|H�) in Pr(N�, C�, � = 1, . . . , k), giving

L ∝ Pr(N1)
k∏

l=2

Pr(N�|H�) , (3.59)

where H� = (N1, . . . , N�−1;C1, . . . , C�−1). We note from (3.58) that for j =
1, . . . , k the distribution of Nj given Hj is Poisson with mean

E(Nj |Hj) = µj =
∫ tj

tj−1

λ(t|H(t))dt

= (e−θtj−1 − e−θtj ) (α + β

j−1∑

�=0

c�e
θt�) , (3.60)

where C0 = 0, t0 = 0.
By (3.59), the likelihood function is therefore a constant times

L(α, β, θ) =
k∏

j=1

e−µj µ
Nj

j , (3.61)

where µj is given by (3.60). This is readily maximized using general optimiza-
tion software (Appendix B). We find from this that the maximum likelihood
estimates are α̂ = 19.1745, β̂ = .003045 and θ̂ = .001704. Figure 3.5 shows the
cumulative fault counts shown in Figure 1.3, along with the fitted cumulative
intensity or mean function given by µ̂(0) = 0,

µ̂(tj) = µ̂1 + . . . + µ̂j j = 1, . . . , k
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Fig. 3.5. Cumulative software faults detected during testing and cumulative inten-
sity function from fitted model.

and linear interpolation between tj−1 and tj (j = 1, . . . , k).
Figure 3.5 shows quite good agreement between the actual numbers of

faults detected and the fitted cumulative mean function. A model with one ad-
ditional parameter could, if desired, be fitted to deal with the slightly greater
degree of curvature seen in the data than in the current model. Note that
the situation here is different from others discussed in this chapter in two
main respects: (i) there is only a single recurrent event process, and (ii) the
model for the process has an intensity function involving an internal covari-
ate (the number of lines of code modified). The model is, strictly speaking,
not a Poisson process but the detection counts in successive time periods are,
however, conditionally Poisson and the intensity (3.58) is conditionally (on
the number of prior code lines changed) Poisson. We should properly think of
the estimated “mean function” in Figure 3.5 as an estimated cumulative in-
tensity, but increments µ̂(tj)− µ̂(tj−1) (j = 1, . . . , k with t0 = 0) are properly
interpreted as the estimated expected number of new faults detected over the
time interval [tj−1, tj), given previous testing and code change history. The
curve µ̂(t) can also be interpreted as a mean function if we consider the code
changes Cj as part of the random process of fault detection and removal.

The previous discussion indicates that prediction of the number of faults
detected beyond a current time point can be based on the Poisson process. In
particular, consider prediction of the number of faults that would be found
in the period [tk, τ) beyond the final time tk = 1336.7 and denote this
Nk+1 = N(tk, τ). Prediction of this random variable is helpful in estimating
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the number of faults remaining and in deciding whether it is worthwhile eco-
nomically to prolong testing. Given the history H(tk), the future count Nk+1

has a Poisson distribution under the model (3.58), with mean (and variance)

µk+1 = (e−θtk − e−θτ )(α + β
k∑

�=0

c�e
θtl) . (3.62)

A naive “plug-in” method of prediction is to assume that Nk+1 is Poisson with
mean µ̂k+1, obtained by inserting the estimates of θ, α, and β in (3.62). For
example, setting τ = ∞ allows us to predict the number of new faults that
would be detected if testing were prolonged indefinitely; this can be thought
of as a surrogate for the number of remaining faults that would “appear” in
repeated usage of the software. With τ = ∞, we obtain µ̂k+1 = 196.8; a two-
sided 95% prediction interval is found as (170, 225), based on the .025 and
.975 quantiles for the Poisson distribution with mean 196.8.

The Poisson assumption inherent in (3.58) can be assessed by noting that
if the model is correct, the Nj = N(tj−1, tj) are conditionally Poisson (µj),
and are uncorrelated, because E{(Nj − µj)(N� − µ�)} = 0 for j �= �. Model
checks can be based on Poisson residuals ẑj = (Nj − µ̂j)/µ̂

1/2
j , which should

be roughly uncorrelated with mean 0 and variance 1. These are analogous
to martingale residuals discussed in Section 3.7.3; in the present setting the
residuals do not suggest any major deficiencies in the model.

3.8.4 Comparing Warranty Claim Histories

Section 1.2.4 discussed data on warranty claims for 38,401 automobiles man-
ufactured over a one-year period. It is useful with manufactured products to
compare the warranty claims for units manufactured in different places or time
periods, because that may identify quality or reliability variations and lead to
opportunities for improvement. A good method of analysis is to compare mean
curves for the numbers or total costs of claims across manufacturing periods,
using the methodology of Section 3.6. In such analysis, the time variable t
could be the age of the vehicle (the number of days since sale) or the distance
driven (in miles or km). In the latter case, an interesting issue arises due to
the fact that mileage accumulation data are not available for vehicles with no
warranty claims, and we defer discussion of this to Chapter 7. We consider
here the case where age is the time variable; this is relevant for assessing the
number of claims made even though in North America there are both age
and distance limits to warranty coverage. In the analysis below we ignore the
issue of reporting delay that was mentioned in Section 1.2.4; its inclusion does
not alter the results much. The cars in the database were mostly sold over a
period of approximately one year, and data are included only for claims made
up to 550 days after the first vehicle was sold, so followup times τi for the cars
range from about 185 days to 550 days.
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Figure 3.6 shows estimated mean functions µ̂(t), given by the Nelson–Aalen
estimate (3.17), for the cumulative number of claims for vehicles manufactured
in six two-month time periods: mid-July to mid-September for Year 1 to mid-
May to mid-July of Year 2. This one-year period is the time during which the
vehicles of the given model year were manufactured. The estimates for the later
production periods are truncated because the closing date for the database
used here was before the most recently sold cars had completed their one-year,
12,000-mile warranties. The six curves all display a decreasing rate of claims;
this is due to the nature of the car system represented here (unidentified
for proprietary reasons) and also to the fact that with increasing age, more
and more cars are no longer under warranty because they have exceeded the
12,000-mile distance limit. We note as well that some mean functions extend
beyond the age of 365 days, because a few claims were allowed after the
warranty had technically run out.

Figure 3.6 indicates that one manufacturing period (mid-November to mid-
January) has a substantially higher level of claims that the others. It seems
unlikely that the claim occurrence processes for the individual vehicles are
identical Poisson processes, due to heterogeneity and other factors, and so the
best way to compare the mean curves of the different production periods is
to use the robust methodology of Sections 3.6 and 3.7. One approach is to
test the equality of the mean functions by using indicator covariates and the
multiplicative semiparametric model with rate function ρi(t) = ρ0(t) exp(x′

iβ).
The mean functions do not appear exactly proportional to one another from
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Figure 3.6, but this test still possesses good power to detect differences when
the mean functions do not depart too radically from proportionality. Defining
xij = I(vehicle i is in production period j) for j = 2, . . . , 6, we obtain the
following results using the S-PLUS function coxph. Estimates of regression
coefficients for production periods 2, . . . , 6, with robust standard errors in
brackets, were −0.025 (0.057), 0.213 (0.060), 0.052 (0.055), −0.357 (0.069)
and −0.513 (0.075), respectively. A robust pseudo-score test of equality of the
six rate functions, that is, of H : βj = 0 (j = 2, . . . , 6) gives the observed
value 152.64, which on χ2

5 gives a very small p−value and indicates strong
evidence against equality. A test that is tailored more to nonproportional
mean functions could be developed as described at the end of Section 3.7.5.
However, a test formulated after examination of Figure 3.6 could be criticised
as biased, and most would prefer the conservative procedure above.

A final remark should be noted. In the warranty claim context here, the
curves in Figure 3.6 in fact represent all of the data for the earlier production
periods, and one might question whether tests or estimates that treat the data
as realizations of a random process are relevant. We feel that they are, because
in order to assess whether claim rates vary across factors such as production
periods, it is conceptually useful to view the data as output from processes
(which they are). In a formal test we see whether the differences seen could be
due to random variation around identical underlying processes. An alternative
would be to consider a permutation test (e.g. Freedman et al., 1989); that is
more complex and leads to essentially the same result.

3.9 Bibliographic Notes

Poisson models have a long history of use in the analysis of data or recur-
rent events; see Section 2.7. There is a large literature in reliability (e.g.
Ascher and Feingold, 1984; Rigdon and Basu, 2000), much of which deals
with single processes without covariates. Lawless (1987a) considers parametric
and semiparametric methods for regression analysis of Poisson process data.
Nelson (1988, 1995) discusses nonparametric estimation of the mean function
for general processes. Borgan and Hoem (1988) consider essentially the same
idea. Aalen (1978) provides the properties of the Nelson–Aalen estimate (3.17)
in the Poisson case. Andersen and Gill (1982) consider the semiparametric
regression models of Section 3.4, and use counting process theory to derive
asymptotic distributional results, generalizing methods which were introduced
by Cox (1972a) for survival analysis. Andersen et al. (1993) give a compre-
hensive review of this area; see especially their Chapter 7. They also consider
additive models; see their Section 7.4. McKeague and Sasieni (1994) give in-
sightful discussion on additive models. Martinussen and Scheike (2006) discuss
both multiplicative and additive models in detail, emphasizing survival with
time-varying covariates and time-varying regression coefficients, β(t). Many of
their methods also apply to recurrent events. Therneau and Grambsch (2000)
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consider examples involving multiplicative Cox models with recurrent events.
Semiparametric time-transform models, analogous to the parametric models
in Section 3.2.3, are considered by Lin et al. (1998) and Ghosh (2004). Meth-
ods based on piecewise-constant rate functions and multiplicative models are
often found in demography and epidemiology; Holford (1980) and Andersen
et al. (1993, p. 408) exemplify this approach. Andersen et al. (1993, Ch. 6 and
Section 7.6) give a careful discussion of large sample theory for parametric
models.

Lawless (1987a, b) discusses inference under negative binomial mixed Pois-
son models based on likelihood and quasi-likelihood estimation. Gaver and
O’Muircheartaigh (1987) discuss mixed Poisson models in reliability. Klein
(1992), Nielsen et al. (1992), Murphy (1995), Parner (1998), and Therneau
and Grambsch (2000) consider random effects in the semiparametric multi-
plicative model. Aalen (1992) considers the compound Poisson distribution
for random effects in Section 3.5.2. Grandell (1997) gives many results about
mixed Poisson processes. Dean (1991) discusses estimating functions for ran-
dom effects variance parameters in mixed Poisson models. Nielsen and Dean
(2005) employ regression splines to model baseline rate functions in Poisson,
mixed Poisson, and robust rate function models, thus providing an alternative
to the kernel estimation methods of Section 3.4.1.

The robust methods for parametric or semiparametric regression analysis
of rate and mean functions in Section 3.6 were developed by Lawless and
Nadeau (1995), and Lin et al. (2000) provide rigorous asymptotics. Pepe and
Cai (1993) consider similar ideas for estimation of rate functions. Nadeau
and Lawless (1998) discuss questions of efficiency. Scheike (2002) considers
additive, and Scheike and Zhang (2003) consider multiplicative-additive, rate
function models; see also Martinussen and Scheike (2006).

Methods for assessing plausibility of assumptions for counting processes
can be based on techniques developed for survival analysis and good re-
views are given by Andersen et al. (1993), Grambsch and Therneau (1994),
Therneau and Grambsch (2000), and Martinussen and Scheike (2006). Various
tests based on martingale residual processes have been proposed but many are
awkward to deal with and interpret. We prefer the techniques in Section 7.3
and other model expansion techniques. Pena (1998) gives a treatment of score
tests; see also Hjort (1990a). Fisher (1950) develops tests for extra-Poisson
variation. Testing for extra-Poisson variation through the introduction of ran-
dom effects can be based on likelihood ratio tests, but score tests are often
appealing as in Liang (1987), Dean and Lawless (1989), and Dean (1992). Ng
and Cook (1999a) consider small sample corrections in the context of weakly
parametric models.

A wide class of two-sample tests for rate functions may be borrowed
from the survival analysis literature including unweighted “log-rank” tests,
weighted tests, and two degree of freedom tests; see Cook and Lawless (1991)
and Cook et al. (1996).
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3.10 Problems and Supplements

3.1. Consider a Poisson process regression model with fixed covariates where
ρi(s) = ρ0(s;α) exp(x′

iβ). Let µ0(t) =
∫ t

0
ρ0(u)du and µi(t) =

∫ t

0
ρi(u)du,

i = 1, 2, . . . ,m.

a. Show that under completely independent censoring the likelihood contri-
bution to (3.2) from subject i can be decomposed as

Li(θ) = Li1(α)Li2(θ) ,

where θ = (α′, β′)′, Li1(α) =
∏ni

j=1 ρ0(tij)/µ0(τi) arises from the condi-
tional distribution of the event times given the total number of events
and Li2(θ) = (µi(τi))ni exp(−µi(τi)) is based on the likelihood contribu-
tion from the event counts.

b. Suppose the baseline rate function (ρ0(t)) was known. Obtain the score
vector and information matrix for β based on Li2(β).

c. Show that analyses based only on event counts ni are fully efficient under
time-homogeneous Poisson models (i.e. when ρ(t) = α) and more generally
provided τi = τ , i = 1, 2, . . . ,m.

[Section 3.1; Lawless, 1987a; Dean and Balshaw, 1997]

3.2. Consider the tumorgenicity data introduced in Section 1.2.1, given in
Table 1.1 and analyzed in Section 3.8.1. Fit a parametric Poisson regression
model to these data with a baseline rate function having the form of a hazard
function for a log-logistic distribution (Lawless, 2003a, Section 1.3.4).

[Section 3.2]

3.3. Consider a regression model ρi(t) = ρ0(t;α) exp(x′
iβ) in which the base-

line rate function has a Weibull form (i.e. ρ0(t;α) = αtα−1), and xi =
(1, xi1, . . . , xip)′. Suppose this model is fit in S-PLUS using censorReg and
interest lies in constructing a confidence interval for the mean function for a
population with x = x0. Describe how to construct a 95% confidence interval
for the mean function tα exp(x′

0β) at time t, based on the information-based
asymptotic covariance matrix in Section 3.2.1.

[Section 3.2]

3.4. a. Obtain (3.14) by substituting the profile maximum likelihood esti-
mates given by (3.13) into the full likelihood in (3.12).

b. Argue that as m → ∞ the profile likelihood in (3.14) approaches the
partial likelihood in (3.25).

[Section 3.3]

3.5. Derive a score test for trend where the null model is time-homogeneous
and the alternative is the piecewise-constant model of Section 3.3. The null
hypothesis in this case is H0 : αk = α, k = 1, . . . , K.
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[Sections 3.3 and 3.7]

3.6. Show that differentiation of log L1(β) where L1(β) is given by (3.25),
leads to the expression for the profile score function in (3.21).

[Section 3.4]

3.7. Interest frequently lies in carrying out formal tests that the rate functions
in two groups are the same. Suppose xi is a treatment indicator such that
xi = 0 if subject i is in the control group and xi = 1 if in a treated group, and
consider the multiplicative model ρi(s) = ρ0(s) exp(βxi). The null hypothesis
is then given by H0 : β = 0. Show that if Uβ(β) given by (3.21) is evaluated
at β = 0, then with suitable changes to the notation, this can equivalently be
written as (3.52), with a(u) = 1 in (3.53).

[Sections 3.4 and 3.7]

3.8. Consider a parametric mixed Poisson regression model. Obtain ∂Uα(θ)/
∂φ and ∂Uβ(θ)/∂φ and show that E(−∂Uα(θ)/∂φ) = E(−∂Uβ(θ)/∂φ) =
0. This finding makes a Fisher-scoring algorithm (a Newton–Raphson type
algorithm based on I(θ) = E(I(θ)) instead of I(θ)) somewhat more convenient
for estimation of α and β. Extend the methods for piecewise-constant rate
functions in Section 3.3 to the mixed Poisson setting.

[Section 3.5]

3.9. Consider a mixed Poisson regression model as described in Section 3.5.

a. Show that under independent censoring E(ui|Hi(t)) = E(ui|Ni(t−)).
b. Derive E(ui|Hi(t)) when ui has an inverse Gaussian distribution with

density

g(u;φ) =
1

√
2πu3φ

exp(−(u − 1)2/(2uφ)) ,

where u > 0 and φ > 0.

[Section 3.5]

3.10. Let V1, V2, . . . be independent and identically distributed gamma ran-
dom variables with shape and inverse scale parameters γ1 and γ2 and density
given by

f(v; γ) =
γγ1
2 vγ1−1 exp(−vγ2)

Γ (γ1)
.

If K is a Poisson random variable with mean κ, then define U = V1 + V2 +
· · · + VK if K > 0 and U = 0 otherwise.

a. Derive the density for the positive component of U , given in Section 3.5.2.
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b. Show that the Laplace transform of U is

L(s) = exp(−κ[1 − (1 + s/γ2)−γ1 ]) .

c. Show that E(Ui) = κγ1/γ2 and var(Ui) = κγ1(γ1 + 1)/γ2
2 .

[Aalen, 1992; Section 3.5.2]

3.11. In clinical studies subjects are frequently observed for a baseline pe-
riod of observation before being randomized to treatment groups. Let Ni1

denote a count observed for subject i over the baseline observation period
and {Ni2(t), 0 ≤ t} denote the process generating the events after random-
ization. Let ni1 denote the observed baseline count and ti1, . . . , tini2 denote
the times of the ni2 events observed over the followup period [0, τi] for
subject i, i = 1, . . . ,m. Suppose that Ni1|ui ∼ Poisson with mean uiµ1

and {Ni2(t), 0 ≤ t}|ui is a Poisson process with conditional rate given by
uiρ0(t) exp(xiβ), 0 ≤ t.

a. Obtain the conditional probability of ni2 events at ti1 < · · · < tini2 over
[0, τi] given ni = ni1 + ni2.

b. Show that if ρ0(t) = α then a fully efficient estimate of β can be obtained
by logistic regression.

[Section 3.5]

3.12. Consider a K group problem. Let the rate function for group k be
ρk(s) = ρ0(s) exp(x′β), where x = (x2, . . . , xK)′ with xj = 1 if an individual
is in group j and 0 otherwise, j = 2, . . . ,K; k = 1, . . . , K.

a. Derive the score components for a test of the null hypothesis H0 : ρk(s) =
ρ(s), k = 1, . . . ,K under the assumption that the events are generated by
Poisson processes.

b. Derive an information-based covariance matrix with which to construct a
K − 1 degree of freedom test.

c. Derive a robust covariance matrix on which one could base a test of the
null hypothesis.

[Sections 3.6 and 3.7]

3.13. Consider the family of rate functions

ρ(t;α1, α
∗) = exp{α1 + α∗g(t)} t ≥ 0 (3.63)

where g(t) is a specified function. Testing H0 : α∗ = 0 within this family gives
a test for trend, as discussed in Section 3.7.1.

a. Assuming that individual process i (i = 1, . . . , m) is observed over [0, τi],
show that the Poisson process estimating functions (3.4) based on (3.63)
are
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U1(α1, α
∗) = n. − eα1

m∑

i=1

∫ τi

0
eα∗g(t)dt

U2(α1, α
∗) =

m∑

i=1

ni∑

j=1

g(tij) − eα1
∫ τi

0
g(t)eα∗g(t)dt .

As noted in Section 3.6.2, these score functions are unbiased in general,
provided the τi are independent of the event process.

b. Let Ũ2(0) = U2(α̃1(0), 0), where α̃1(0) is the estimate of α1 obtained by
solving U1(α1, 0) = 0. Show that

Ũ2(0) =
m∑

i=1

ni∑

j=1

g(tij) −
n.

τ.

m∑

i=1

∫ τi

0

g(t)dt .

Note that Ũ2(0) equals (3.42) in the special case where g(t) = t.

c. Show that Ũ2(0) can be written as
∑m

i=1 Ũ2i(0), where (with ρ = exp(α1))

Ũ2i(0) =
∫ τi

0

(g(t) − G·/τ·)(dNi(t) − ρdt) ,

where G(τ) =
∫ τ

0
g(u)du, G· =

∑m
i=1 G(τi) and τ· =

∑m
i=1 τi. Thus obtain

âsvar{Ũ2(0)} under H0 as
∑m

i=1[Ũ2i(0)]2 with ρ estimated by n·/τ·.

d. Consider the family of rate functions ρi(t) = exp(αi + α∗t) leading to
(3.45) and let α = (α1, . . . , αm)′. Show that Ũ2(0) = U2(α̃(0), 0) gives
(3.45) and that Ũ2(0) can be written as

∑m
i=1 Ũ2i(0), where

Ũ2i(0) =
∫ τi

0

(t − τi/2)dNi(t) = ni(t̄i − τi/2) .

Thus obtain the robust variance estimate âsvar{Ũ2(0)} =
∑m

i=1[Ũ2i(0)]2.

[Section 3.7.1]

3.14. Describe four ways one could test for trend in the tumorgenicity data
of Section 3.8.1.

[Section 3.7]

3.15. Consider a mixed Poisson regression model given by (3.27) with ρi(t) =
ρ0(t) exp(x′

iβ) and ρ0(t) = exp(α1 + α∗t). Derive the conditional distribution
of (ti1, . . . , tini

) given τi and ni, and use this to develop a score test for trend
(i.e. H0 : α∗ = 0).

[Section 3.7]
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3.16. a. Describe three ways in which one could test for extra-Poisson vari-
ation.

b. Carry out these tests for the control arm of the tumorgenicity data of
Section 3.8.1 and discuss your findings.

[Section 3.7]

3.17. Nelson (1995) and Lawless and Nadeau (1995) discuss data on the times
(in days of service) at which diesel engine valve seats were replaced on 41
locomotives. The data are shown in Table 3.3; the lengths of time in service
are similar except for unit 28, which has a substantially shorter time. Each
diesel engine had 16 valves, but the data do not indicate which ones were
replaced, so we take the 41 engines as the units and consider the process of
the number of replacements N(t) up to t days in service, for each unit.

a. Fit Poisson process models with parametric rate functions ρ(t;α, β) =
exp(α + βt) and ρ(t;α, β) = αβ(tα)β−1 to the data. Plot the data first to
see why these models might be reasonable. Assess model fit using diag-
nostics in Section 3.7.3.

b. Develop pointwise confidence bands for the mean number of replacements
µ(t) = E{N(t)}, up to t days in service, based on the parametric models.
Also obtain nonparametric confidence limits based on the methodology of
Section 3.4.1.

c. Check for extra-Poisson variation by fitting processes with gamma random
effects, as described in Section 3.5. Fit parametric models and also fit a
semiparametric model by using the S-PLUS or R function coxph with the
frailty option. There are no covariates here so use ∼1 in the formula
specification.

d. Unit 28 is potentially influential because it has three replacements and a
considerably shorter time in service than other units. Assess its effect by
refitting models with this unit excluded.

e. Consider how you could predict the number of replacement valves needed
for a future time period.

[Sections 3.2, 3.5, 3.7]

3.18. Lee (1980) gave the data in Table 3.4, which shows the times (in thou-
sands of hours of operation) of unscheduled maintenance events on the number
4 engine of the submarine U.S.S. Grampus. Plot the data using a Nelson–
Aalen estimate, which is here just the cumulative number of events. Fit Pois-
son process models to the data and assess whether a homogeneous Poisson
process provides a satisfactory description. Consider tests of a homogeneous
Poisson process, including the score test of Section 3.7.1, and diagnostic checks
based on residuals introduced in Section 3.7.3. For a nonhomogeneous Poisson
process that you select, carry out similar diagnostic checks.

[Section 3.7]
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Table 3.3. Times in days of valve seat replacements in 41 diesel locomotives.

Service Service
Unit Replacement times Time Unit Replacement times Time

1 761 22 593
2 759 23 573 589
3 98 667 24 165, 408, 604 606
4 326, 653, 653 667 25 249 594
5 665 26 344, 497 613
6 84 667 27 265, 586 595
7 87 663 28 166, 206, 348 389
8 646 653 29 601
9 651 30 410, 581 601
10 92 653 31 611
11 258, 328, 377, 621 650 32 608
12 61, 539 648 33 587
13 254, 276, 298, 640 644 34 367 603
14 76, 538 642 35 202, 563, 570 585
15 635 641 36 587
16 349, 404, 561 649 37 578
17 631 38 578
18 596 39 586
19 120, 479 614 40 585
20 323, 447 582 41 582
21 139, 139 589

Table 3.4. Times (in thousands of hours of operation) of unscheduled maintenance
events for submarine U.S.S. Grampus number 4 engine.

0.860 1.258 1.317 1.442 1.897 2.011 2.122 2.439
3.203 3.298 3.902 3.910 4.000 4.247 4.411 4.456
4.517 4.899 4.910 5.676 5.755 6.137 6.221 6.311
6.613 6.975 7.335 8.158 8.498 8.690 9.042 9.330
9.394 9.426 9.872 10.191 11.511 11.575 12.100 12.126
12.368 12.681 12.795 13.399 13.668 13.780 13.877 14.007
14.028 14.035 14.173 14.173 14.449 14.587 14.610 15.070
16.000
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Analysis of Gap Times

4.1 Renewal Processes and Related Methods
of Analysis

Modeling and analysis of the gaps or waiting times between successive events
is attractive in certain settings. An important one is where an individual or
system is restored to a similar physical state after each event; for example,
following a repair or equipment replacement a system might be returned to
an “as new” state.

Renewal processes were introduced in Section 2.3. They have the property
that the gaps between successive events are independent and identically dis-
tributed. This is a very strong condition and such processes are mainly useful
when an individual is physically renewed in some sense after each event, or
when events are due to external processes that are regenerative. However, by
extending renewal processes in various ways we can obtain other models that
are more widely applicable to the study of gap times.

We begin by describing methodology based on renewal processes, and then
extend the methodology in subsequent sections. We assume for the time being
that individual i is observed over the time interval [0, τi] and that t = 0
corresponds to the start of the event process. Situations where this is not the
case are discussed in Section 4.5. The event intensity function is of the form
(2.37); allowing for fixed covariates xi means that the gaps Wij between events
have hazard function h(w|xi). If ni events are observed at times 0 < ti1 <
· · · < tini

≤ τi, let wij = tij − ti,j−1 (j = 1, . . . , ni) and wi,ni+1 = τi − tini
,

where ti0 = 0. These are the observed gap times for individual i with the final
time being possibly censored. The likelihood function from m independent
individuals is of the form

L =
m∏

i=1

⎧
⎨

⎩

ni∏

j=1

h(wij |xi) exp(−H(wij |xi))

⎫
⎬

⎭
exp (−H(wi,ni+1|xi)) , (4.1)
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where H(w|x) =
∫ w

0
h(u|x)du is the cumulative hazard function for Wij ,

given xi. If τi is a prespecified followup time or a time that is determined
independently of the event process, then (4.1) is obtainable as Pr{Wi1 =
wi1, . . . ,Wi,ni

= wi,ni
,Wi,ni+1 > wi,ni+1}, where for convenience we use Pr(·)

to denote either a probability or probability density. As discussed in Section
2.6, (4.1) is also valid for inference in settings where the τi are randomly de-
termined according to a scheme that may involve prior events; it is a partial
likelihood in that case.

Let f(w|x) = h(w|x) exp{−H(w|x)} and S(w|x) = exp{−H(w|x)} denote
the density and survivor functions for Wij given x. In terms of these functions
the likelihood (4.1) is

L =
m∏

i=1

ni∏

j=1

f(wij |xi) · S(wi,ni+1|xi) , (4.2)

which is the familiar likelihood function for a random sample involving failure
times wij (j = 1, . . . , ni) and right censoring times wi,ni+1 for i = 1, . . . , m.
If wi,ni+1 = 0, that is, if observation terminates after the nith event, the
term S(wi,ni+1|xi) in (4.2) disappears. Standard survival analysis methods
and software can therefore be used for model fitting and inference.

We next summarize a few key survival analysis methods. For detailed
treatments see Lawless (2003a) or other books on lifetime or survival data.

(i) Parametric lifetime distributions such as Weibull, log-normal, and log-
logistic distributions can be used. When fixed covariates are present,
corresponding accelerated failure time models can be used. An acceler-
ated failure time (AFT) model for a response time W is one for which
Y = log W has a location-scale distribution of the form

Y = β0 + x′β + σε ,

where x = (x1, . . . , xk)′ is a covariate vector, β = (β1, . . . βk)′ is a vector
of regression coefficients, σ > 0 is a scale parameter, and ε is a random
variable whose distribution is independent of x. Common AFT models
are those for which ε has standard extreme value, logistic, and normal dis-
tributions, respectively; this corresponds to T = exp(Y ) having Weibull,
log-logistic, and log-normal distributions. Software for AFT models is
widely available; in S-PLUS the functions survReg or censorReg can be
used and in R the function is survreg.
This model readily handles cases where the covariate values are fixed
within gaps but vary across gaps (i.e., the covariate corresponding to
Wij is xij). In this case the AFT model takes Yij = log Wij and the
distribution of Yij given xij can be represented as

Yij = β0 + x′
ijβ + σεij , (4.3)
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where the εij terms are i.i.d. random variables. Covariates that vary
within gaps are harder to handle with AFT models, but are easily dealt
with by the Cox model in (iii) below.

(ii) The Kaplan–Meier nonparametric estimate of S(w) and the Nelson–
Aalen estimate of H(w) can be used when there are no covariates. These
estimates are given by (e.g. Lawless 2003a, Section 3.2)

ŜKM (w) =
∏

�:w∗
�
≤w

(

1 − d�

n�

)

(4.4)

ĤNA(w) =
∑

�:w∗
�
≤w

d�

n�
, (4.5)

where the w∗
� are the distinct values among the wij (i = 1, . . . , m; j =

1, . . . , ni) and where

d� =
m∑

i=1

ni∑

j=1

I(wij = w∗
� ) and n� =

m∑

i=1

ni+1∑

j=1

I(wij ≥ w∗
� ) . (4.6)

Variance estimates for (4.4) and (4.5) are

v̂ar(ŜKM (w)) = ŜKM (w)2
∑

�:w∗
�
≤w

d�

n�(n� − d�)

v̂ar(ĤNA(w)) =
∑

�:w∗
�
≤w

d�

n2
�

.

Kaplan–Meier and Nelson–Aalen estimates may be obtained from the S-
PLUS functions survfit and kaplanMeier, and the R function survfit.

(iii) The Cox semiparametric multiplicative hazards model in which the haz-
ard function for Wij given xij is of the form

h(w|xij) = h0(w) exp(x′
ijβ) (4.7)

can be fitted by the usual partial likelihood method (e.g. Lawless 2003a,
Ch.7). This model also deals with time-varying covariates, in which case
xij is replaced by xij(t) in (4.7), but care is needed to “align” the times
t for individuals in the risk set for wij ; see Section 4.2.4. For the Cox
model, when covariates are fixed across intervals between events, β is
estimated by maximizing the likelihood function

L(β) =
m∏

i=1

ni∏

j=1

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

exp(x′
ijβ)

m∑

l=1

n�+1∑

k=1

I(wlk ≥ wij) exp(x′
lkβ)

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

. (4.8)
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Once β̂ is obtained from (4.8), H0(w) =
∫ w

o
h0(u)du is estimated by

Ĥ0(w) =
m∑

i=1

ni∑

j=1

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

I(wij ≤ w)
m∑

l=1

nl+1∑

k=1

I(wlk ≥ wij) exp(x′
lkβ̂)

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

. (4.9)

The Cox model is handled by the functions coxph and cox.zph in S-
PLUS and R.
It should be noted that the likelihood function (4.8) for β does not
come from the usual partial likelihood development used for lifetime
data (e.g. Lawless 2003a, Section 7.1). That approach does not work
here because individuals can contribute multiple gap times wij and so
the likelihood and score functions are not expressible as processes to
which martingale-type arguments can be applied. However, it has been
shown (e.g. Dabrowska et al. 1994) that estimation of β can be based on
(4.8) in the renewal process setting, and L(β) can be used in the standard
way to provide asymptotic variance estimates, likelihood ratio tests, and
so on. Problem 4.3 outlines a way of validating (4.8) and (4.9).

As remarked, the assumption that gap times Wij are independent and
identically distributed when no covariates are present is very strong, and it
is important to consider diagnostic checks in any given situation. Failures
to account for association among gap times may lead to substantial bias in
dealing with gap times after the first; we consider this issue in Section 4.4. The
same applies to regression models such as (4.3) and (4.7), where covariates
xij are present; the assumption that the Wij are conditionally independent
is critical. An important way of model checking is by fitting models that
include renewal processes as a special case. This approach is considered in
Sections 4.2 and 4.3, where extensions of renewal processes are presented. The
independence assumption can also be checked informally when no covariates
are present by, for example, looking at scatter plots of successive gap times,
wi,j versus wi,j+1 (j = 1, 2, . . .) within individuals; there should be an absence
of trend if the renewal assumption is valid. If the gap times are independent,
then informal checks on the assumption of a common distribution can also
be made by comparing separate empirical distributions for the different gaps.
These checks were illustrated in Section 2.3.2.

When covariates are present it is best to fit a variety of models in order
to assess gap time independence or to compare distributions of different gap
times. Indeed, for reasons discussed in Section 2.3, the independence of succes-
sive gap times should be assessed this way as well as through informal plots,
even when no covariates are present; this is illustrated in Section 4.3.
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Example 4.1.1 Bowel Motility Cycles

Section 2.3.2 discussed data from a study on muscular activity (motility) of
the small bowel in humans. The observations are the gap times wij between
successive bowel activity cycles for 19 subjects. We continue to assume, as in
Section 2.3.2, that the duration of a “fed state” bowel activity period, which
precedes the “fasting state” cycles discussed here, is not associated with the
cycle durations.

The pairs of successive gap times (wij , wi,j+1) were plotted in Figure 2.1,
and show no evidence of association. A “lag 2” plot of points (wij , wi,j+2)
gives a similar result, and it seems reasonable to assume that the gap times
within a subject are independent. We consider formal tests based on extended
models in Sections 4.3.1 and 4.3.2, and they likewise show no evidence against
the independence assumption.

Separate Kaplan–Meier estimates (4.4) for the gap time survivor function
for first, second, and third and higher gaps were also shown in Figure 2.2 of
Section 2.3.2. This provides a check on the assumption that successive gap
times are identically distributed. Figure 2.2 suggests that the distribution for
first gaps is somewhat different than the distributions for later gaps; second
and subsequent gaps tend to be shorter.

Formal tests of the assumption of a common distribution can be carried
out. For example, under the independence assumption we could test the equal-
ity of the distribution of first and subsequent gap times by using a log-rank
test or another nonparametric test (e.g. Lawless 2003a, Section 8.1). A log-
rank test of the equality of the first and second gap times, as implemented
in the S-PLUS function survdiff, for example, gives a p−value of 0.12, thus
indicating only very mild evidence against the hypothesis of equality.

An alternative approach is to use parametric models. Exploratory proba-
bility plots suggest log-normal models (i.e. normal models for Yij = log Wij)
may be appropriate. Models with independent Yij and, respectively,

(i) Yij ∼ N(µ, σ2) for all i, j ;
(ii) Yi1 ∼ N(µ1, σ

2
1), Yij ∼ N(µ2, σ

2
2) for j = 2, 3, . . . ;

give the following results,

(i) µ̂ = 4.51, σ̂ = 0.55, lmax = log L(µ̂, σ̂) = −73.12 .
(ii) µ̂1 = 4.75, σ̂1 = 0.40, µ̂2 = 4.45, σ̂2 = 0.56, lmax = log L(µ̂1, µ̂2, σ̂1, σ̂2) =

−69.12.

A likelihood ratio (LR) test of model (i) versus model (ii) gives the ob-
served LR statistic D = 2 log L(µ̂1, µ̂2, σ̂1, σ̂2)− 2 log L(µ̂, σ̂) = 8.0. Using the
large sample result (see Appendix A) that the distribution of D is asymptoti-
cally χ2

2 under the null hypothesis of model (i) (because there are 2 parameters
in (i) and 4 in (ii)), we get an approximate p−value of Pr(χ2

2 ≥ 8.0) = .018,
thus indicating fairly strong evidence against the assumption that first and
subsequent gaps have the same distribution.
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4.2 Extensions of Renewal Models

The assumption of independent gap times is untenable in most situations.
More general models can be formulated through the sequence of conditional
distributions

Fj(w|xij , w
(j−1)
i ) = Pr(Wij ≤ w|xij , w

(j−1)
i ) j = 1, 2, . . . ,

where w
(j−1)
i = (wi1, . . . , wi,j−1)′ and xij is a vector of covariates associated

with the jth gap time for individual i. This format allows various types of
dependence on previous event history to be considered, including elapsed time
wi1 + · · ·+ wi,j−1 up to the (j − 1)st event. Models can also be formulated to
deal with covariates that vary within the gaps between events. In this section
we consider several models of this form, which naturally include the renewal
models of the preceding section as special cases. These models are used in
applications in Section 4.3.

4.2.1 Conditional Analysis of Successive Gap Times

Statistical analysis under the general framework above can be based on re-
gression models for survival times or durations. The two dominant families
of such models (Lawless 2003a, Chs. 6, 7) are the proportional or multiplica-
tive hazards models (4.7) and the accelerated failure time models (4.3), which
were introduced in Section 4.1. We consider modeling and analysis under each
family and then provide an illustration.

For parametric models the likelihood function from a set of m independent
processes is an extension of (4.2):

L =
m∏

i=1

⎧
⎨

⎩

ni∏

j=1

fj(wij |zij)

⎫
⎬

⎭
Sni+1(wi,ni+1|zi,ni+1) , (4.10)

where zij is a vector that models dependence of Wij on xij and w
(j−1)
i , and

fj(w|zij) and Sj(w|zij) are the density and survivor functions for Wij , given
zij . If zij does not depend on w

(j−1)
i , the model is a renewal process with

independent but not identically distributed gap times.
A multiplicative hazards model takes the hazard function for Wij given

xij and w
(j−1)
i to be of the form

hij(w) = h0j(w) exp(z′ijβj) j = 1, 2, . . . , (4.11)

where for convenience we write hij(w) for hj(w|xij , w
(j−1)
i ). It is possible to

include time-varying covariates in the hazard functions (4.11) but we defer a
discussion of this until Section 4.2.4. It is also possible to constrain the baseline
hazard functions h0j(w) or the regression parameters βj to be identical.
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The most common form of analysis based on (4.11) is the semiparametric
analysis of Section 4.1 (iii), in which the baseline hazard functions h0j(w) are
treated nonparametrically. In the case where the h0j(w) and βj terms in (4.11)
are distinct, this leads to separate estimation for each gap j = 1, 2, . . . , based
on functions similar to (4.8) and (4.9). That is, βj is obtained by maximizing
the likelihood function

Lj(βj) =
m∏

i=1

⎧
⎪⎪⎨

⎪⎪⎩

exp(z′ijβj)
m∑

l=1

δljI(wlj ≥ wij) exp(z′�jβj)

⎫
⎪⎪⎬

⎪⎪⎭

δi,j+1

, (4.12)

and H0j(w) =
∫ w

0
h0j(u)du is estimated by

Ĥ0j(w) =
m∑

i=1

⎧
⎪⎪⎨

⎪⎪⎩

δi,j+1I(wij ≤ w)
m∑

l=1

δljI(wlj ≥ wij) exp(z′lj β̂j)

⎫
⎪⎪⎬

⎪⎪⎭
. (4.13)

The variable δij equals zero if individual i does not experience a (j − 1)st
event and equals one otherwise.

As noted previously for (4.8), the justification for the validity of (4.12) as
a likelihood function, and for (4.13), is different than for standard survival
analysis settings; see Dabrowska et al. (1994) and Lawless et al. (2001). The
bottom line, however, is that standard methods and software can be applied
to (4.12) and (4.13).

Models (4.11) in which the h0j(w) and βj terms are the same for j =
1, 2, . . . are also easily handled. In this case, the likelihood (4.8) and estimator
(4.9) for H0(w) apply. Models where the functions h0j(w), j = 1, 2, . . ., are
different but βj = β for j = 1, 2, . . ., are often called stratified Cox models as
in Section 3.4.3; they too are handled by standard survival analysis software.

It may be of interest in some settings to test the hypothesis that the βj

terms in (4.11) are equal; this is easily done with a likelihood ratio test based
on the likelihood functions (4.12). It may also be of interest to test that the
baseline hazard functions h0j(t), j = 1, 2, . . . are equal, with or without an
assumption that the βj terms are. This is discussed in Section 3.4.3. It is also
easy to carry out such tests with parametric models. Problem 4.2 describes
parametric analysis for multiplicative hazards models.

Accelerated failure time (AFT) models are likewise easily handled. The
AFT models analogous to (4.11) define Yij = log Wij and are of the form
(4.3) with

Yij = β0j + z′ijβj + σjεij j = 1, 2, . . . , (4.14)

where ε1j , ε2j , . . . , εmj are i.i.d. random variables with a fully specified dis-
tribution Gj(ε). Models for which Gj(ε) is a standard normal, logistic, or
extreme value distribution are often used (Lawless 2003a, Ch. 6), and maxi-
mum likelihood estimation based on (4.10) can be carried out using survival
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analysis software. When the parameters (β0j , βj , σj) are distinct for each of
j = 1, 2, . . . the analysis involves separate treatments for each gap. As men-
tioned previously, an assumption of equality of parameters for j = 1, 2, . . .
may sometimes be of interest.

Sometimes analysts want to consider the marginal distribution of second
or subsequent gap times, that is, conditional on covariates but not on previous
gap times. If the Wij , j = 1, 2, . . . , are conditionally independent given the
covariate vectors xij (j = 1, 2, . . .) then ignoring previous events and doing
a separate analysis for each gap is valid. However, if this is not the case,
then separate analyses that ignore dependence on previous gap times can
be badly biased, because dependence among Wij , j = 1, 2, . . ., can create
dependent censoring for Wi2 and subsequent gap times. For example, if the
observation period for individual i is [0, τi] then the potential censoring time
for Wi2 is τi − min(Wi1, τi). This is not independent of Wi1 and so marginal
analysis of Wi2 without conditioning on Wi1 involves dependent censoring.
Estimates of the marginal distribution of Wij given xij can in principle be
obtained from conditional models (4.11) or (4.14) that have been fitted to the
data. The expressions for the marginal distribution will generally be rather
complicated, and the marginal effect of covariate xij on Wij will not be easily
interpreted. Models in which the joint distribution of gap times within an
individual is specified more symmetrically than in (4.11) or (4.14) provide
simpler interpretations. They are considered in Sections 4.2.2 and 4.2.3.

An exception to the problem above occurs when τi is defined so that
some event, say the Jth, always occurs; in that case the first J gap times
are observed for each individual, and none of them is ever censored.

4.2.2 Models with Random Effects

An alternative to forming models conditional on event history is to use
individual-specific i.i.d. random effects to induce associations among gap
times. The simplest such models assume that given a random effect ui, the
gap times Wij (j = 1, 2, . . .) for individual i are independent. Because the
random effects are unobserved, we base inference on the marginal likelihood
obtained by integrating out the random effect from the joint distribution of
the gap times and random effect for each subject. The likelihood function in
this case takes the form (see (4.2))

L =
m∏

i=1

∫ ∞

−∞

ni∏

j=1

f(wij |xij , ui) · S(wi,ni+1|xij , ui)dG(ui) , (4.15)

where G(u) is the common distribution function for the ui and xij is a covari-
ate vector associated with Wij . Such models are rather special in the sense
that, with fixed covariates (i.e. xij = xi), they give an exchangeable corre-
lation structure among the gap times for an individual. They can be useful
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however, in situations where the gap times arising from a particular individ-
ual are independent, but unobservable factors create heterogeneity in the gap
time distributions across individuals. In this case gap times within individuals
are more similar than gap times from different individuals, and we say that
unconditionally, within individuals, the gap times are correlated.

Many random effects models require special treatment, but two types are
rather easily handled by standard survival analysis software. The first are
so-called proportional hazards frailty models (e.g. Hougaard, 2000; Therneau
and Grambsch, 2000) in which Wij has conditional hazard function

hij(w|ui) = uih0j(w) exp(x′
ijβj) j = 1, 2, . . . . (4.16)

Semiparametric models for which the h0j(w) are unspecified can be fitted
using the “frailty” option in the S-PLUS or R function coxph. Covariate
effects on each Wij , conditional on the unobserved random effect ui, are thus
given. However, obtaining an estimate of the marginal distribution for Wij

given xij is awkward because it involves integrating over ui in the conditional
model (4.16). The resulting model will not, in general, have a multiplicative
form for the covariate effects.

A second family of models that is easily handled is the log-normal family
for which Yij = log Wij and the distribution of Yij given ui and covariates xij

is given by
Yij = β0j + x′

ijβj + ui + εij , (4.17)

where the εij (j = 1, 2, . . . ; i = 1, 2, . . . ,m) are i.i.d. N(0, σ2) and the ui are
i.i.d. N(0, σ2

u). For this model var(Yij) = σ2 + σ2
u and cov(Yij , Yik) = σ2

u for
k �= j so that corr(Yij , Yik) = σ2

u/(σ2 + σ2
u), conditional on the covariate

values. Furthermore, the marginal distribution of Yij , given xij , is N(β0j +
x′

ijβj , σ
2 + σ2

u).
One way to fit these models is to note that they can be written in the

symmetric form
Yij = β0j + x′

ijβj + eij , (4.18)

where eij = ui + εij and for J gaps the vector ei = (ei1, . . . , eiJ )′ is multi-
variate normal with mean 0 and covariance matrix ΣJ with diagonal entries
σ2 + σ2

u and off-diagonal entries σ2
u. This allows the likelihood function to be

written down easily when the last gap time for each individual is uncensored,
and maximum likelihood estimates can be obtained using multipurpose opti-
mization software. When the final gap times are censored a better approach is
to rewrite (4.18) in terms of the univariate normal distributions for Yij given
xij and y

(j−1)
i . This is described explicitly in Section 4.3.1.

4.2.3 Joint Gap Time Distributions

The random effects models in the preceding section do not always provide
marginal distributions for gap times that are of a simple form. Another ap-
proach is to consider multivariate distributions for specified sets of gap times
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Wi1, . . . ,WiJ , where J ≥ 2. There is a substantial literature on multivariate
lifetime distributions that can be utilized (e.g. Joe, 1997; Hougaard, 2000). A
useful approach is to consider models of the form

S(w1, . . . , wJ ) = Pr(W1 > w1, . . . ,WJ > wJ)
= C(S1(w1), . . . , SJ (wJ );φ) , (4.19)

where Sj(wj) is the marginal survivor function for Wj , φ is a vector of pa-
rameters, and C(u1, . . . , uJ ;φ) is a J-variate cumulative distribution func-
tion with uniform (0,1) marginal distributions. This ensures that Sj(wj) =
S(0, . . . , wj , . . . , 0) is indeed the marginal survivor function for Wj . The func-
tion C(·) is often referred to as a copula, and the form of C(·) and the parame-
ter φ determine the association among W1, . . . ,WJ . A major advantage of this
approach is that specific types of distributions can be used for the marginal
survivor functions Sj(wj) (j = 1, 2, . . .), according to modeling needs.

An important family of distributions of the type (4.19) was introduced by
Clayton (1978). If we incorporate covariates, so that

Sij(wj) = Pr(Wij > wj |xij) ,

these have joint survivor function of the form

S(w1, . . . , wJ |xi) =

⎧
⎨

⎩

J∑

j=1

Sij(wj)−φ − (J − 1)

⎫
⎬

⎭

−φ−1

, (4.20)

where φ > 0 and xi represents the vectors xi1, . . . , xiJ . Different models are
obtained by specifying different parametric or semiparametric distributions for
Sij(wj) (j = 1, 2, . . .); for example, accelerated failure time or proportional
hazards models could be used.

The model (4.20) and other models of the form (4.19) can be related
to random effects models. One limitation of many types of random effect and
copula models is that only one or two parameters are used to model association
among W1, . . . ,WJ . This can be inadequate when association structures are
complex or changing over time. A second limitation is that these approaches
do not readily deal with negative associations. Problem 4.5 looks at the family
of models (4.20).

Less restrictive models can be constructed. The simplest and most use-
ful of such models are multivariate accelerated failure time models (e.g. He
and Lawless, 2005), for which the variables Yij = log Wij follow multivariate
location-scale distributions. Specifically, for a specified J the vector of log gap
times (Yi1, . . . , YiJ )′ follows a model with

Yij = x′
ijβj + eij , (4.21)

where ei1, . . . , eiJ have a joint distribution that does not depend on the xij .
Multivariate log-normal models, where the vectors ei = (ei1, . . . , eiJ )′ are
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multivariate normal with mean 0 and covariance matrix ΣJ , are especially
attractive. Then E{Yij |xij} = x′

ijβ and ΣJ can accommodate general types
of association among the log gap times.

The normal random effects model (4.17) is a special case of the multi-
variate normal model (4.21). The latter also connects directly with condi-
tional models of the form (4.14). In particular, the distribution of Yij given
y
(j−1)
i = (yi1, . . . , yi,j−1)′ from (4.21) is normal with mean

E(Yij |xi, y
(j−1)
i ) = x′

ijβj + Σj,j−1Σ
−1
j−1(y

(j−1)
i − µ

(j−1)
i ) (4.22)

and variance σ2
j − Σj,j−1Σ

−1
j−1Σ

′
j,j−1, where µ

(j−1)
i = (x′

i1β1, . . . , x
′
i,j−1βj−1)′

and Σj is partitioned as

Σj =
(

Σj−1 Σj−1,j

Σj,j−1 σ2
j

)

.

For example, Yi2 given xi and yi1 is normal with mean and variance

E(Yi2|xi, yi1) = x′
i2β2 + ρ12

σ2

σ1
(yi1 − x′

i1β1)

var(Yi2|xi, yi1) = (1 − ρ2
12)σ

2
2 ,

where σ2
1 = var(Yi1|xi), σ2

2 = var(Yi2|xi), and ρ12 = corr(Yi1, Yi2|xi).
The models in this section are chosen so that the marginal distributions

Sij(wj |xij) are of easily interpretable forms. Aside from the bivariate normal
example above, the conditional distributions are usually less easy to interpret.

Maximum likelihood estimation can be based on the likelihood function
(4.10), noting that the jth term requires the distribution of Wij given xi and
w

(j−1)
i . Note that the ith individual’s contribution to the likelihood (4.10) can

alternatively be expressed in the form

Pr(Wi1 = wi1, . . . ,Wini
= wini

,Wi,ni+1 > wi,ni+1)

=
−∂niSi(wi1, . . . , wini

, wi,ni+1)
∂wi1, . . . , ∂wini

, (4.23)

where Si(w1, . . . , wj) is the joint survivor function for Wi1, . . . ,Wij given xi.
This form is convenient for models (4.19) in which the marginal survivor
functions Sij(wij) have simple algebraic forms.

With random effects models, integration over the distribution of the ran-
dom effects gives a joint distribution for gap times. It has been noted, how-
ever, that for multiplicative hazards models (4.16), the marginal distribution
for Wij given xij may not have easily interpreted covariate effects once the
random effect has been integrated out. This is also the case for some other
types of random effects models, although not for accelerated failure time (or
“log-location-scale”) models such as (4.18).



132 4 Analysis of Gap Times

4.2.4 Modulated Renewal Processes

In situations that involve time-varying covariates or more complex relation-
ships between event occurrence and prior event history, analysis based on
specifications of the event intensity function is usually preferable. When there
is an intrinsic interest in gap times, modulated renewal processes are useful.
As described in Section 2.3, they are multiplicative models in which the event
intensity function takes the form

λ(t|H(t)) = h0(B(t)) exp(z′(t)β) , (4.24)

where t represents chronological time and z(t) is a vector of time-varying
covariates that may be based on external covariates {x(s), 0 ≤ s ≤ t} as well
as prior event history. The function h0(w) in (4.24) is the hazard function for
a gap time when z(t) is identically zero. With this model the hazard function
for Wk = Tk −Tk−1, given the time tk−1 of the (k−1)st event and covariates,
is

hk(w) = h0(w) exp(z′(tk−1 + w)β) .

In many cases a model where z(tk−1 + w) is a fixed vector zk suffices; that is,
z(t) is constant over intervals (tk−1, tk] between events.

Semiparametric models in which h0(w) is an arbitrary hazard function
can be handled in the standard fashion for the Cox survival model with time-
varying covariates. That is, β in (4.24) can be estimated by maximizing the
partial likelihood function

L(β) =
m∏

i=1

ni∏

j=1

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

exp(z′i(tij)β)
m∑

l=1

n�+1∑

k=1

I(wlk ≥ wij) exp(z′�(tl,k−1 + wij)β)

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

, (4.25)

where tij = wi1 + · · · + wij is the chronological time of the jth event for
individual i. Note that the covariate value of an individual at risk of a kth
event at gap time w is evaluated at the time t = tl,k−1 + w. The baseline
cumulative hazard function H0(w) =

∫ w

0
h0(u)du is estimated by

Ĥ0(w) =
m∑

i=1

ni∑

j=1

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

I(wij ≤ w)
m∑

l=1

n�+1∑

k=1

I(wlk ≥ wij) exp(z′l(tl,k−1 + wij)β̂)

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

. (4.26)

Furthermore, the usual asymptotic variance estimates and inference tech-
niques from survival analysis can be used, thus allowing analysis to be carried
out with standard software. Stratified versions of (4.24), in which h0(B(t))
is replaced with h0j(B(t)) for jth gaps, can also be handled. The regression
coefficients β may also be allowed to vary across j = 1, 2, . . ..
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As remarked earlier in this section, the justification of (4.25) and (4.26)
is rather different than typically presented in the standard survival setting.
Problem 4.3 describes how these estimation procedures arise from parametric
maximum likelihood methods for models in which the baseline hazard func-
tions are piecewise-constant.

4.3 Examples

We consider two illustrations of gap time analysis. For the second, some code
for S-PLUS or R is given in Appendix C.

4.3.1 Bowel Motility Cycles

In Example 4.1 renewal models were fitted to the data on the lengths Wj

(j = 1, 2, . . .) of successive digestive cycles in a study on 19 human subjects.
We consider here extended models which allow the assumptions for the re-
newal models to be assessed through tests of hypotheses. The models are
log-normal, which is suggested by preliminary plots of the data, and are as
follows, with Yij = log Wij .

Model A: Conditional Model

Yi1 ∼ N(µ1, σ
2
1)

Yij |y(j−1)
i ∼ N(β0 + β1yi,j−1, σ

2
2) for j = 2, 3, . . ..

Model B: Random Effects Model

This is of the form (4.17) with β0j = µ and βj = 0; that is, for given J ,
(Yi1, . . . , YiJ )′ is multivariate normal, with E(Yij) = µ, var(Yij) = σ2+σ2

u, and
cov(Yij , Yik) = σ2

u for j �= k. It is readily shown that Yij |y(j−1)
i ∼ N(mij , vij),

where

mij =
σ2

σ2 + (j − 1)σ2
u

µ +
σ2

u

σ2 + (j − 1)σ2
u

j−1∑

l=1

yi�

vij =
σ2(σ2 + jσ2

u)
σ2 + (j − 1)σ2

u

.

Model A is easily fitted with standard survival analysis software but it
is necessary to maximize the likelihood (4.10) for Model B using general op-
timization software (see Appendix B). By fitting submodels of A and B we
can assess whether the gap times for an individual are possibly independent.
Estimates and maximum log-likelihood values for the models are provided in
Table 4.1.
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Table 4.1. Results of fitting various models to bowel mobility data.

Model �(θ̂) Parameter Estimates

A -68.59 β̂0 = 3.89, β̂1 = 0.13, µ̂1 = 4.75, σ̂1 = 0.40, σ̂2 = 0.56

A (β1 = 0) -69.12 β̂0 = 4.45, β1 = 0, µ̂1 = 4.75, σ̂1 = 0.40, σ̂2 = 0.56
B -72.17 µ̂ = 4.54, σ̂ = 0.52, σ̂u = 0.17
B (σu = 0) -73.12 µ̂ = 4.51, σ̂ = 0.55

Model A is best supported by the data, and a likelihood ratio (LR) test
of the hypothesis that β1 = 0 gives an observed value for the LR statistic of
2(−68.59 − (−69.12)) = 1.06. Treating the LR statistic as approximately χ2

1

if β1 = 0 is true, we obtain the p−value as Pr(χ2
1 ≥ 1.06) = 0.303. There

is therefore little evidence of first-order dependence among the gap times.
Similarly, a likelihood ratio test of the hypothesis that σu = 0 in Model B
gives an observed LR statistic of 1.90 and an approximate χ2

1 p−value of 0.168,
again providing little evidence of association.

The log-normal model that was fitted in Example 4.1 indicated that Wi1

appears to have a slightly different distribution than subsequent cycle lengths;
this agrees with the superiority of Model A with β1 = 0 over Model B. Other
distributions can also be fitted to the gap times, as discussed in Section 4.2.3,
and give similar results; the log-normal model, however, fits as well as any.
Semiparametric models based on (4.11) could also be considered.

In summary, our conclusions from this data analysis are the same as those
in Example 4.1. Specifically we conclude that cycle lengths are roughly inde-
pendent, and that first cycles tend to be slightly longer than subsequent ones.
The estimation of marginal cycle length distributions as described in Section
4.1 and Example 4.1 is justified by the independence, and Figure 2.2 provides
a good summary of the evidence. A conclusion of scientific interest is that
cycle lengths are highly variable within individuals.

4.3.2 Pulmonary Exacerbations and rhDNase Treatment

Data were introduced in Section 1.2.3 on the occurrence of pulmonary exac-
erbations (bouts of infection) in a clinical trial of persons with cystic fibrosis.
Subjects in the study were randomly assigned to receive either a daily dose of
the experimental treatment rhDNase or a daily dose of a placebo. The study
was double blind, and most subjects were followed for approximately 169
days. Table 1.2 shows the numbers of exacerbations per subject by treatment
group, and indicates that persons in the rhDNase group experienced fewer
exacerbations during the study. Here we report on some analyses of gap times
between successive infections. A complication is that when an exacerbation
occurs the subject is treated with antibiotics, and a subsequent exacerbation
cannot occur before the end of the treatment period. The treatment periods
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are highly variable, although a majority last from 10–15 days. To begin, we
ignore them, except for defining the jth gap for a subject as extending from
the termination of treatment for the (j − 1)st exacerbation to the start of
the jth exacerbation. Later, we consider possible association between times
to exacerbations and previous treatment times.

Because relatively few persons experienced two or more exacerbations,
we consider only the first two gap times, that is, the times Wi1 to the first
exacerbation and the times Wi2 between the first and second exacerbations.
In addition to the treatment indicator covariate xi1 = I(subject i received
rhDNase), a covariate xi2 is included which is a subject’s forced expiratory
volume (FEV), a measure of a person’s lung function, measured at the time
of randomization. We fitted two types of models:

(i) Cox proportional hazards models (4.11) for which

hij(w) = h0j(w) exp(βj1xi1 + βj2xi2 + βj3wi1I(j = 2)) j = 1, 2,

(ii) Log-normal accelerated failure time models (4.14), where

Yij = βj0 + βj1xi1 + βj2xi2 + βj3 log(wi1)I(j = 2) + σjεij j = 1, 2,

where εij ∼ N(0, 1). The log-normal model was chosen as providing a
good fit to the data.

In the analyses described below, xi2 is a centered FEV variable, obtained by
subtracting the mean FEV value across all subjects from each FEV value.

Both sets of models are easily fitted using standard survival analysis soft-
ware. We used the S-PLUS function coxph for (i) and survReg for (ii); com-
mands are shown in Appendix C.

Results are shown in Table 4.2. The results for W1 indicate a strong posi-
tive treatment effect after adjustment for FEV; as one might expect, FEV is
also highly significant. The first gap times wi1 are highly significant in connec-
tion with W2. This indicates a strong positive association between Wi1 and
Wi2 even after adjustment for treatment and FEV, suggesting that unobserved
individual factors also influence the occurrence of exacerbations. Because of
the limited amount of data on second gaps and the strong association between
Wi1 and the covariates seen in the analysis of first gap times, it is impossi-
ble to separate clearly the effects of w1, treatment, and FEV on W2. We see
in Table 4.2 that neither treatment nor FEV is in fact significant for W2,
following adjustment for W1. A further complication is that the duration of
antibiotic treatment for a first exacerbation has an effect on time to a second
exacerbation, with longer treatment times increasing the risk of a second ex-
acerbation. This can be seen by including the duration of treatment for the
first exacerbation as an additional covariate in models for W2. The effects of
treatment (rhDNase or placebo) and FEV remain insignificant however.

Checks for treatment by FEV interactions did not provide evidence of an
interaction. Diagnostic checks indicate that both models provide good fits to



136 4 Analysis of Gap Times

Table 4.2. Fitted models for W1 and for W2 given W1.

Cox PH Log-normal AFT
Gap Time Parameter EST. S.E. EST. S.E.

W1 β10 (intercept) - - 5.40 0.11
β11 (trt) -0.38 0.13 0.43 0.14
β12 (FEV) -0.021 0.003 0.022 0.003
σ1 1.45 0.07

W2 β20 (intercept) - - 3.21 0.49
β21 (trt) 0.36 0.23 -0.23 0.21
β22 (FEV) 0.001 0.005 -0.005 0.005

β23(w1 or log w1)
† -0.014 0.004 0.42 0.13

σ2 - - 1.23 0.11

†w1 for PH model and log w1 for AFT model.

the data. Although the PH and AFT models differ in important respects,
the relatively few first exacerbations, and many fewer second exacerbations,
do not provide sufficient information to favor one model over the other. It is
noted that the two models give very similar p−values in tests for covariate
effects.

The analysis here illustrates a general problem in assessing the effects of
fixed baseline covariates on gap times with a conditional approach. If the gap
times are not independent (after conditioning on the baseline covariates), then
the effects of covariates on second and subsequent gap times are confounded
with the effects of prior gap times. It is possible to average over Wi1 in the
models for Wi2, in order to obtain the marginal distribution of Wi2. This is
unwieldy for the PH model but is not difficult for the normal model, and
calculation shows that in the marginal distribution for Wi2 given xi1 and xi2,
neither treatment or FEV is significant.

Another way to approach this is by considering joint distributions for
W1,W2, . . . which involve convenient parameterizations for the effects of co-
variates on the marginal distributions. This can be done according to models
(4.17) and (4.18) or the methods in Section 4.2.3. Taking the approach in
Section 4.2.3, and considering only the first two gap times, we would fit a
bivariate model for (Wi1,Wi2) given the covariates xi1 (trt) and xi2 (FEV).
Let us consider a bivariate normal model for (Yi1, Yi2) = (log Wi1, log Wi2).
As discussed in Section 4.2.3 this is equivalent to the model (ii) above, and
takes (Yi1, Yi2) bivariate normal with

E(Yi1|xi1, xi2) = β10 + β11xi1 + β12xi2

E(Yi2|xi1, xi2) = γ20 + γ21xi1 + γ22xi2
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and var(Yi1|xi1, xi2) = σ2
1 , var(Yi2|xi1, xi2) = σ2

2m, cov(Yi1, Yi2|xi1, xi2) =
ρσ1σ2m. We have retained here the same parameter labels for Yi1 as in model
(ii), and by the results (4.22) in Section 4.2.3 the parameters for Yi2 are related
to those of model (ii) as follows:

γ2j = β2j + β1jβ23 j = 0, 1, 2,

σ2
2m = β2

23σ
2
1 + σ2

2 = σ2
2/(1 − ρ2) .

Maximum likelihood estimates (with standard errors in brackets) for
the parameters in the marginal distribution for Yi2 are γ̂20 = 5.46 (0.30),
γ̂21 = −0.048 (0.215), γ̂22 = 0.0045 (0.0053) and σ̂2m = 1.37 (0.15). As re-
marked above, neither treatment nor FEV is significant and the indicated
effects of these covariates on W2 are much different than their effects on W1.
A qualification of this and similar analyses is that under half of the subjects
in the study experienced even a first exacerbation, and it may be mislead-
ing to compute the marginal distribution of W2, which implicitly assumes
that everyone eventually experiences a first exacerbation. Furthermore, it is
assumed that the log-normal model (or some other model) provides an ad-
equate description of the upper half of the distribution, which is effectively
unobserved in the study.

We can similarly fit proportional hazards joint frailty models such as
(4.16). Doing this for W1 and W2 by using the S-PLUS or R function coxph
with a gamma random effect, and allowing the effects of treatment and FEV
to differ for W1 and W2, we obtain results very similar to those for the bivari-
ate normal models. In particular, the effects of treatment and FEV on W2 are
insignificant, and there is strong evidence of association between W1 and W2,
captured here by the variance φ of the random effect.

The association between the gap times for an individual makes it more
difficult to address clinically important questions concerning persistence or
time trends in the treatment effects, in a gap time analysis. We look further
at this point in Section 4.4.3 and also in Section 5.5.1, where more general
intensity-based models are considered.

4.4 Estimation of Marginal Gap Time Probabilities

As discussed in Sections 4.2.2 and 4.2.3, we may wish to consider the marginal
distributions of specific gap times, even though the successive gap times for
an individual are not independent. For example, in some settings there may
be a hypothesis that, even after conditioning on fixed observable covariates,
the gaps Wj (j = 1, 2, . . .) between successive events tend to decrease as j
increases. An example for the case of episodes of affective disorder in psychi-
atric patients is given by Kessing et al. (1998, 1999). As stressed in Sections
2.3.2 and 4.1, it is in most settings improper simply to fit marginal models
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for jth gap times Wj (j ≥ 2) by ignoring the possibility of association within
individuals. This is because the effective censoring time for Wj depends on
W1 + · · ·+Wj−1, and hence is not independent of Wj when gap times are non-
independent. An exception is when a specified number of events are observed
for every individual, but this type of observation scheme is rather rare.

Figure 4.1 provides an illustration of this effect of dependent censoring. It
shows results from a simulated random sample of 200 individuals, where the
log gap times, Yij = log Wij (j = 1, 2, . . .), were generated from a multivariate
normal distribution in which each Yij was identically distributed as N(2, 2),
and with equal correlations corr(Yij , Yik) = 0.5 for j �= k. A common censoring
time Ci = 52 was imposed on each process. This simulation mimics studies in
which individuals are followed for 52 weeks, and where the number of events
per individual is small. Figure 4.1 shows Kaplan–Meier estimates Ŝj(w) for the
first four gap times Wj (j = 1, 2, 3, 4), based on the observed or censored gap
times, with no accounting for association. As expected, the survivor functions
for the second and subsequent gap times are severely underestimated, with
the problem worsening for higher gap times.
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Fig. 4.1. Kaplan–Meier estimates for the first four gap times, improperly ignoring
dependent censoring.

One way to facilitate examination of specific gap time distributions is to
fit random effects models described in Section 4.2.2. A second approach is
to specify a family of multivariate distributions for gap times, as in Section
4.2.3. A third way is to fit conditional models as discussed in Section 4.2.1,
and then to obtain marginal distributions from them. A difficulty in the latter
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case is that the effects of covariates in the marginal distributions will gener-
ally (except for normal models) be complex. In addition, nonparametric or
semiparametric estimation is rather difficult with all approaches, as far as
obtaining the marginal distributions is concerned. A fourth approach, which
we consider below, is to use the idea of inverse probability of censoring (IPC)
weights, as first introduced by Robins and Rotnitzky (1992). This allows es-
timators of a simple form to be used; we consider this in the next section.

4.4.1 Nonparametric Estimation of Marginal Gap Time
Distributions

Nonparametric estimates of the marginal or joint distributions of successive
gap times W1,W2, . . . can be useful when there is no conditioning on covari-
ates. We begin by considering the first two gap times W1,W2; as discussed
later this also allows the consideration of the marginal distributions of higher
gaps. Assume that the pairs (Wi1,Wi2) are independent and identically dis-
tributed for i = 1, . . . ,m, with joint distribution function

F (w1, s2) = Pr(Wi1 ≤ w1,Wi2 ≤ w2) . (4.27)

Let Ci represent the censoring time for individual i, so that what we may
observe is T̃i1 = min(Wi1, Ci), T̃i2 = min(Wi1 + Wi2, Ci), δi1 = I(Wi1 ≤ Ci),
and δi2 = I(Wi1 +Wi2 ≤ Ci), with (t̃i1, t̃i2, δi1, δi2), i = 1, . . . ,m used to refer
to the actual observed data. The likelihood function is as in (4.10),

L =
m∏

i=1

f1(wi1)δi1S1(Ci)1−δi1f2|1(wi2|wi1)δi1δi2S2|1(Ci − wi1|wi1)δi1(1−δi2) ,

where f2|1 and S2|1 are the conditional density and survivor functions for
W2 given W1. The Kaplan–Meier estimate for S1(w) based on the data
(t̃i1, δi1), i = 1, . . . ,m is a nonparametric maximum likelihood estimate. How-
ever, maximization of L with respect to S2|1 is not feasible unless the model is
discrete and there are sufficiently many events at each value w1. In some set-
tings it may be sensible to discretize the time axis and maximize with respect
to S2|1(·|w1) for each value of w1. This can be combined with the maximum
likelihood estimate of S1(·) to obtain an estimate of the joint distribution
function (4.27); from this we can obtain an estimate of the marginal proba-
bilities for W2. Here we consider an alternative approach, based on the idea
of inverse probability of censoring weights (IPCW), used by Lin et al. (1999)
and developed further by van der Laan et al. (2002).

As discussed by Lin et al. (1999), it is convenient to consider instead of
F (w1, w2) the function

H(w1, w2) = Pr(Wi1 ≤ w1,Wi2 > w2) , (4.28)

from which F (w1, w2) and other quantities of interest can be obtained. A
crucial observation is that H(w1, w2) is estimable from a given dataset only for
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values (w1, w2) for which w1 + w2 ≤ Cmax, where Cmax = max(C1, . . . , Cm).
This has repercussions, discussed below, for the estimation of the marginal
distribution of W2 or any higher gap times. For now we assume that censoring
times Ci are completely independent of the event processes {Ni(t), 0 ≤ t} and
let G(c) = Pr(Ci > c) be the survivor function for Ci; ways to relax this
independence assumption are discussed later.

The estimate for H(w1, w2) of Lin et al. (1999) is based on the observation
that

E

{
I(Wi1 ≤ w1,Wi2 > w2)I(Ci > Wi1 + w2)

G(Wi1 + w2)

}

= H(w1, w2) , (4.29)

where the expectation is taken over the distributions of the full event process,
and Ci. To see that (4.29) holds, note that because Ci is independent of
(Wi1,Wi2, . . .), E{I(Ci > Wi1 + w2|N (∞)

i )} = G(Wi1 + w2) and then that
E{I(Wi1 ≤ w1,Wi2 > w2)} = H(w1, w2). If we use an estimate Ĝ(c) of G(c),
then (4.29) motivates the estimate

Ĥ(w1, w2) =
1
m

m∑

i=1

I(wi1 ≤ w1, wi2 > w2, Ci > wi1 + w2)

Ĝ(wi1 + w2)
. (4.30)

This can be expressed in the equivalent form

Ĥ(w1, w2) =
1
m

m∑

i=1

I(t̃i1 ≤ w1, t̃i2 − t̃i1 > w2)

Ĝ(t̃i1 + w2)
,

where we note that for w1 > 0, w2 > 0, the condition t̃i2 − t̃i1 > w2 implies
that t̃i1 = wi1 and δi1 = 1. Assuming that Ĝ(c) is a consistent estimator of
G(c), (4.30) is a consistent estimator of H(w1, w2).

The estimate Ĝ(c) can be the empirical survivor function, if all of C1, . . . ,
Cn are observed. If not, a Kaplan–Meier estimate based on the data (t̃i2, 1 −
δi2) can be used for settings where Ci is censored by the time Ti2 of the second
event, and other estimates can be obtained for other situations. The estimate
of the marginal distribution F1(w) = H(w1, 0) that comes from (4.30) is

F̂1(w1) =
1
m

m∑

i=1

δi1
I(t̃i1 ≤ w1)

Ĝ(t̃i1)
.

If Ĝ(c) is the Kaplan–Meier estimate based on the data (t̃i1, 1 − δi1) then
1− F̂1(w) can be shown to equal the Kaplan–Meier estimate for S1(w) based
on the data (t̃i1, δi1).

Estimation of the marginal probabilities for W2 requires careful examina-
tion when censoring is present. As noted above, H(w1, w2) can be estimated
only for values (w1, w2) for which w1 + w2 ≤ Cmax. A consequence of this is
that, unless W1 has finite support (0, τ1) with τ1 < Cmax, we cannot estimate
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marginal probabilities S2(w2) for any values w2 > 0. Superficially, it might ap-
pear that because S2(w2) = H(∞, w2), we can estimate S2(w2) as Ĥ(∞, w2).
However, when w1 = ∞ is put into (4.30), the estimate exists only for w2 such
that wi1 + w2 ≤ Cmax for all i = 1, . . . ,m, and what is actually being esti-
mated is not S2(w2), but H(Cmax−w2, w2), or Pr(W1 ≤ Cmax−w2,W2 > w2).
Unless Pr(W1 > Cmax−w2,W2 > w2) equals zero, this does not equal S2(w2).

In general, for W2 we can consider estimated probabilities

P̂r(W2 > w2|W1 ≤ w1) =
Ĥ(w1, w2)

Ĥ(w1, 0)
, (4.31)

for (w1, w2), where w1 + w2 < Cmax.
Lin et al. (1999) provide variance estimates for Ĥ(w1, w2) and for (4.31),

which can be used to obtain pointwise confidence limits. The estimate for
(4.31) is rather complicated with v̂ar{P̂r(W2 > w2|W1 ≤ w1)} given by

1

m2Ĥ(w1, 0)2

m∑

i=1

⎧
⎨

⎩
δi1I(t̃i ≤ w1)

[
Ĥ(w2|w1)

Ĝ(t̃i1)
− I(t̃i2 − t̃i1 > w2)

Ĝ(t̃i1 + w2)

]2

− m2(1 − δi2)B̂(w1, w2; t̃i2)2[
1 +
∑m

j=1 I(t̃j2 > t̃i2)
]∑m

j=1 I(t̃j2 > t̃i2)

⎫
⎬

⎭
,

where Ĥ(w2|w1) = Ĥ(w1, w2)/Ĥ(w1, 0) and

B̂(w1, w2;u)= Ĥ(w2|w1){Ĥ(w1, 0)−Ĥ(u, 0)}+−{Ĥ(w1, w2)−Ĥ(u−w2, w1)}+

where a+ = max(a, 0). An alternative for getting variance estimates or confi-
dence limits is to use a naive bootstrap, in which samples of size m are drawn
with replacement from the m observations (t̃i1, t̃i2, δi1, δi2).

It should be noted that the estimate (4.31) is not necessarily strictly
monotonic in w2, for given w1, although it tends to be as the sample size
increases. A monotonic estimate is given by

P̂r(W2 > w2|W1 ≤ w1) =
min
u≤w2

Ĥ(w1, u)

Ĥ(w1, 0)
. (4.32)

This has the same asymptotic properties as (4.31).
Van der Laan et al. (2002) describe more general estimators and show how

to relax the assumption that the Ci are completely independent of the event
processes. Their approach allows censoring to depend on prior event history
or on previously observed covariates. Put into the present framework, the
idea is to consider estimation of a parameter θ that is defined as θ = E(Bi),
where Bi = g(Wi1, . . . ,Wik) is a function of some number of gap times. For
example, if Bi = I(Wi1 ≤ w1,Wi2 > w2) for given values w1 > 0, w2 > 0 then



142 4 Analysis of Gap Times

θ = H(w1, w2). Let us also define ∆i = I(Bi is observed) and let Vi represent
the earliest time in the process {Ni(t), 0 ≤ t} at which Bi can be observed.
For simplicity we suppress any dependence on covariates in the notation. The
key idea is based on having a model for

E(∆i|N (∞)
i ) = Pr(Ci > Vi|N (∞)

i ) , (4.33)

where N
(∞)
i = {Ni(t), 0 ≤ t}, and noting that

E

{
∆iBi

E(∆i|N (∞)
i )

}

= E(Bi) = θ .

This motivates the estimator

θ̂ =
1
m

m∑

i=1

∆iBi

Ê(∆i|N (∞)
i )

. (4.34)

For this to be usable, we need assumptions about E(∆i|N (∞)
i ) that allow it to

be estimated from the observed data. It is certainly possible to do this if we
assume that censoring times Ci are completely independent of the full event
history N

(∞)
i , but we can also do it if we assume that the hazard function for

the censoring time depends only on past observations. That is, we can allow
the hazard for Ci at process time t to be

λc(t|N (∞)) = λc(t|N (t−)) ,

where N (t−) is the process history up to time t−. Covariates can also be added,
and a convenient strategy for modeling the censoring time hazard would often
be to use a Cox model with λc(t|N (∞)) = λ0(t) exp(z′(t)β), where z(t) is
a vector of observable variables that can include information on N (t−) and
covariates.

With Bi = I(Wi1 ≤ w1,Wi2 > w2) for fixed (w1, w2), the indicator ∆i is
equal to I(Wi1 + w2 < Ci) and Vi = Wi1 + w2. If Ci is assumed completely
independent of N

(∞)
i , then (4.34) gives the estimator (4.30). If, however, it

was thought that the risk of censoring might change with the occurrence of
the first event, then we could consider a model for Ci with hazard function
λc(t) = λ0(t) exp{βI(Ni(t−) > 0)}. Then,

Pr(Ci > Vi|N (∞)
i ) = Pr(Ci > wi1 + w2|N (∞)

i )
= exp{−Λ0(wi1) + eβ [Λ0(wi1 + w2) − Λ0(wi1)]} ,

where Λ0(t) =
∫ t

0
λ0(u)du. This can be estimated by fitting a Cox model to

the observed data, with zi(t) = I(Ni(t−) > 0) as a covariate. Other regression
models for Ci can similarly be considered.
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The methodology above can be used to consider the distribution of any
subsequent gap time Wj , by treating Wj as W2 and Tj−1 = W1 + · · ·+ Wj−1

as W1 in the estimators above. Although one might like to consider marginal
probabilities Sj(w) = Pr(Wj > w), the best that can be done is to estimate
Hj(t, w) = Pr(Tj−1 ≤ t,Wj > w) for pairs (t, w) that satisfy t + w < Cmax.
We can also consider joint distributions such as F (w1, w2, w3) by using the
approach of van der Laan et al. (2002) described above. Variance estimation
or confidence intervals are most conveniently approached with the bootstrap.

We have not considered the estimation of marginal gap time distributions
under the assumptions that they are the same. This can be satisfactorily
approached using methods analogous to those above, but only if the support
of the Wj is finite and if Cmax is sufficiently large. It is preferable, and simpler,
to use the methods in this section to suggest parametric forms, and then to
consider the possibility of identical marginal distributions within a parametric
family of models. An example of this approach, in a setting where there was
little association among gap times, was given in Section 4.3.1. An illustration
involving the methods in this section is given in Section 4.4.3 below.

4.4.2 Estimation for Marginal Regression Models

In many ways, the most satisfactory approach to estimation of the mar-
ginal distribution of individual gaps, conditional on baseline covariates x, is
through parametric distributions as in Section 4.2.3; log-normal models are
especially convenient, and rather flexible. Model checking can be undertaken
through methods discussed in Section 4.4.3. Semiparametric random effects
models, as in (4.16) of Section 4.3.2., also allow a straightforward assessment
of the effects of covariates but the estimation of marginal probabilities such as
Pr(W2 > w|x) is awkward. Other possible approaches include the semipara-
metric specification of regression models for the distribution of Wj , given that
T1−j ≤ t, by analogy with (4.31); Schaubel and Cai (2004b) describe an ap-
proach based on Cox models and IPCW methods. Weighted estimators based
on ranks have also been proposed for multivariate location-scale models for the
log gap times, log Wij (e.g. Chang, 2004). We consider a more straightforward
approach, based on conditional models, in the following section.

4.4.3 Pulmonary Exacerbations in Cystic Fibrosis

We consider some further analysis of the data discussed in Section 4.3.2, where
conditional regression models for W1 and for W2 given W1 were fitted. The
analysis there showed a strongly significant effect of treatment on the time W1

to a first exacerbation, but in the models for W2 given W1, treatment was no
longer significant. It is also interesting to consider the effect of treatment on
W2 without conditioning so heavily on W1. We considered estimation of the
marginal distribution of W2 in Section 4.3.2, and found no effect of treatment.
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However, we noted that because of the heavy censoring of both W1 and W2,
an undesirable degree of extrapolation was involved. Here, we consider the
distribution of W2, given that W1 ≤ 100 days, which is more reasonable. We
do this in two ways.

First, we use the methodology in Section 4.4.1 to examine the distribution
of W2, given that a first exacerbation occurs before 100 days; that is, given
that W1 ≤ 100. We chose 100 days because we wished to allow sufficient
followup time that a substantial number of second exacerbations could be
observed. We consider the distributions for W2 and also for W1 separately for
each treatment group, without adjusting for the covariate FEV. This provides
a valid comparison of the treatment groups, because treatment is randomly
assigned to subjects and is therefore independent of FEV.

The top panel of Figure 4.2 shows the Kaplan–Meier estimates for the
survivor functions S1(w1) = Pr(W1 > w1), for the two treatment groups. As
expected from the analysis of Section 4.3.2, there is a clear indication that time
to a first exacerbation tends to be longer for persons receiving rhDNase. The
bottom panel of Figure 4.2 shows estimates of Pr(W2 > w2|W1 ≤ 100), given
by (4.31). Unlike in the case of first exacerbations, there is now no indication
of a difference between the rhDNase and placebo groups. We remark that
Pr(W2 > w2|W1 ≤ 100) is estimable only for W2 ≤ Cmax − 100, as discussed
in Section 4.4.1. In this study almost all subjects were followed for close to
169 days, but a very few were followed longer, so that for the placebo group,
for example, Cmax = 196 days. The estimates beyond w2 = 69 days in the
bottom panel are consequently very imprecise and the divergence of the two
estimates in that region does not indicate a significant difference.

We can take another look at W2 by using the conditional regression models
fitted in Section 4.3.2 to estimate marginal probabilities, Pr(W2 > w2|W1 ≤
L, x) where L is a specified value and x contains specified values for the
treatment and FEV covariates. In principle, we can use the log-normal model
shown in Table 4.2 to estimate the marginal distribution for W2, given x, as
discussed in Section 4.3.2. However, we cannot assess the validity of the model
for values (w1, w2) with w1 +w2 larger than about 170 days, so we once again
consider instead the conditional distribution of W2, given that W1 ≤ L, with
L chosen to be 100 days.

Letting y1 = log w1, y2 = log w2, and yL = log L, we have via the log-
normal model in Table 4.2 that

Pr(W2 > w2|W1 ≤ L, x) = (4.35)
∫ yL

−∞ F̄N

(
y2−x′β2−β23y1

σ2

)
σ−1

1 fN

(
y1−x′β1

σ1

)
dy1

FN

(
yL−x′β1

σ1

) ,

where x = (1, x1, x2)′, and fN (·), FN (·), F̄N (·) are, respectively, the density,
distribution, and survivor functions for the standard normal distribution. The
parameter values are taken from Table 4.2, as follows: β̂1 = (5.40, 0.43, 0.022)′,
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Fig. 4.2. Estimates of survivor functions for times to pulmonary exacerbations W1

and for W2, given W1 ≤ 100, for two treatment groups.

σ̂1 = 1.45, β̂2 = (3.21,−0.23,−0.005)′, and β̂23 = 0.42, σ̂2 = 1.23. Estimated
conditional probabilities are shown in Table 4.3 for L = 100 and selected
values of w2, for persons with x2 = 0 (the mean FEV value across all subjects),
x1 = 0 (placebo), and x1 = 1 (rhDNase), respectively.

We also show in Table 4.3 estimates of Pr(W2 > w2|W1 ≤ 100, x) that
are based on the Cox proportional hazards model given in Table 4.2. For this
model we have

Pr(W2 > w2|W1 ≤ L, x) = (4.36)
∫ L

0
exp{−Λ20(w2)ex′β2+β23w1} exp{−Λ10(w1)ex′β1}ex′β1dΛ10(w1)

1 − exp{−Λ10(L)ex′β1} ,
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where x = (x1, x2)′. To estimate (4.36) we plug in the parameter estimates
given in Table 4.2: β̂1 = (−0.38,−0.021)′, β̂2 = (0.36, 0.001)′, β̂23 = −0.014,
and the generalized Nelson–Aalen estimates for the baseline hazard functions
Λ10(w) and Λ20(w), which are given in the output from the S-PLUS or R
function coxph. The resulting estimate of the numerator in (4.36) then be-
comes

m∑

i=1

[
I(wi1 ≤ L, δi1 = 1) exp{−Λ̂20(w2)ex′β̂2+β̂23wi1}ex′β̂1

∑m
�=1 I(w�1 ≥ wi1)ex′

�
β̂1

]

,

where m is the total number of subjects in the study.

Table 4.3. Estimated probabilities Pr(W2 > w2|W1 ≤ 100) for persons with average
FEV, in the rhDNase and placebo treatment groups.

rhDNase Group Placebo Group
w2 Log-Normal PH Log-Normal PH

20 .894 .876 .917 .909
40 .758 .741 .800 .807
60 .647 .634 .699 .721
80 .559 .537 .616 .639

We observe that the estimated conditional survival probabilities under the
two models are similar. The survival probabilities are slightly higher for the
placebo group, but the difference is not significant. We observe as well that
the probabilities shown, for a person with average FEV, are similar to those
shown in Figure 4.2, where survival is averaged over the FEV covariate.

4.5 Left Truncation of First Gap Times and Initial
Conditions

In the notation of Section 1.4.3 and subsequently, we think of t = 0 as the
starting time for an individual’s event process, and assume that in a study
the individual is observed over a time interval [τ0, τ ] with τ0 ≥ 0. In some
settings the process of interest may actually have been going on for some
period of time before the individual enters a study. For example, Sections
1.2.3, 1.5.2, and 3.8.2 all describe settings in which individuals have chronic
conditions that make them susceptible to recurrent infections or outbreaks of
symptoms. In this type of situation we frequently do not know the precise time
at which the process started. In this case it is convenient for a prospective
study to define τ0 = 0 as the start of followup, which will provide information
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on {N(t), 0 ≤ t}. The event process may, however, have started earlier and
we may have information about it over some time period prior to τ0. Such
information is part of the initial conditions H(0) for the process. In fact,
the selection of an individual for a study sometimes depends on prior event
history, which then should be included in H(0).

Similar situations occur in many areas and indeed, for observational studies
it is the norm that the event process for an individual has started prior to
her selection for a study. In this section we consider some of the implications
for analysis when the event process has been under way prior to the start of
followup. We consider the special case of a simple renewal process first, and
then more general processes where the focus is on gap times.

4.5.1 Initial Conditions and Renewal Processes

We assume that an individual is followed over the time interval [0, τ ], so that
the times of events t1 < t2 < · · · are potentially observed. In addition, we
assume the process has been under way before t = 0, and we let t0 ≤ 0 denote
the time of the last event in (−∞, 0]. If there is an intervention (e.g. the
assignment of a treatment) at t = 0 that affects the event process, then we
may decide to ignore t0 in defining the first gap time as W1 = T1. However,
if there is no such intervention then we may prefer to define the first gap
time as W1 = T1 − t0. Then, W1 is left-truncated, because it must satisfy the
condition W1 ≥ −t0. The benefit of this definition of W1 is that when the
event process (before and after t = 0) is a renewal process, it can be related
to the distribution of W2 = T2 − T1, W3 = T3 − T2, and so on. We consider
this situation here.

If the process is a renewal process as described, the essential information
in H(0+) is just t0, and

Pr{T1 > t|H(0+)} = exp
{

−
∫ t

0

h(u − t0)du

}

=
S(t − t0)
S(−t0)

, (4.37)

where S(w) is the common survivor function for gap times. The distribution
of W1 = T1−t0 is left-truncated at −t0; given H(0), W1 satisfies the condition
W1 ≥ −t0. The term delayed entry is also sometimes used in this context: the
entry of the individual to the study is “delayed” for a time −t0 after the event
at t0 occurs. Of course, if t0 = 0 then the start of followup is an event time
and there is no left truncation. We assume from now on in this section that
t0 < 0.

If the time t0 < 0 of the last event before time t = 0 is missing, there
are two options. One is to ignore the incomplete first gap and to treat the
individual’s followup as starting from the time t1 of the first event after t = 0,
as far as estimation of S(w) is concerned. This does not create any bias,
because we are effectively redefining τ0 to equal t1, and the choice τ0 = t1 is a
stopping time. Thus, the likelihood function (4.2) starting with wi1 = ti2− ti1
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is valid. This approach may involve a significant loss of information when
followup of individuals is short enough that few events are observed. The
other option is to impose a distributional assumption on the times of events
occurring before t = 0. Let f0(t) denote the event rate at time t < 0. We can
think of f0(t)dt as the probability an individual has an event in [t, t + dt).
Then, the marginal density of T1 > 0 is

f1(t1) =

∫ 0

−∞ f0(t)f(t1 − t)dt
∫ 0

−∞ f0(t)S(−t)dt
, (4.38)

where f(w) and S(w) are the density and survivor functions for the gap times.
The difficulty with this approach is the need to specify f0(t); it is necessary
to have reliable information on which to base this. In the case where f0(t) = c
for t < 0 and where W has finite mean µ, (4.38) reduces to

f1(t1) =
1
µ

S(t1) . (4.39)

This is known as the equilibrium forward recurrence time density, and is the
density of the time to the first event after t = 0 in a renewal process that
started an arbitrarily long time prior to t = 0; see Problems 2.8 and 4.10.

Sometimes those conducting a study may ascertain the times t0 > t−1 >
t−2 . . . of one or more events prior to τ0 and wish to treat these as responses.
This is termed a retrospective study, and care must be taken in the analysis;
we discuss such studies in Section 7.3. The following example considers the
points discussed above, including the information in t0.

Example 4.5.1

Suppose the gap time distribution is taken to be parametric, with survivor
function S(w; θ) and density f(w; θ). Consider a random sample of n individ-
uals who are selected at chronological time τo = 0, with the times ti0 ≤ 0 of
their most recent events being available. If the individuals are then followed
prospectively until chronological times τi, the time ti1 of the next event is
observed if and only if ti1 ≤ τi. Let ti = min(ti1, τi) and δi1 = I(ti1 ≤ τi); the
portion of the likelihood function that is based on these first events after time
τ0 is then, from (4.37),

L(θ) =
m∏

i=1

f(ti − ti0; θ)δiS(ti − ti0; θ)1−δi

S(−ti0; θ)
. (4.40)

There will also be additional terms for any subsequent gap times observed
over the intervals (0, τi], as per (4.2).

The likelihood (4.40) is unavailable if the times ti0 are unknown. As dis-
cussed, one option is then to ignore ti1, i = 1, . . . , m and (4.40), and to base
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the likelihood on events occurring after these times. In settings where there
are very few events over (0, τi] for the individuals, this may severely limit the
amount of information and it may be desirable to adopt a rate function f0(t0)
for events prior to t = 0. In this case information about f(w; θ) can be re-
covered from ti1, i = 1, . . . ,m via (4.38). However, this information depends
on the assumed f0(t0), whose validity cannot be checked with the data on
hand. Therefore, this approach should be used only when there is reasonable
external information on which to base f0(t0), and the sensitivity of results to
changes in f0(t0) should be examined.

A special case that is often considered is where the event processes have
been under way a long time prior to time t = 0, and where the selection
of individuals is independent of their prior event history. This “equilibrium”
setting (see Problem 2.8) is consistent with f0(t0) = c (t0 < 0), and we find
as in (4.39) that the marginal distribution of Ti1 is then

f1(ti1; θ) =
1

µ(θ)
S(ti1; θ) ti1 > 0 ,

where µ(θ) = E(Wi1) =
∫∞
0

S(w; θ)dw is the expected time between succes-
sive events (i.e. the average gap time). The likelihood function based on the
observations (ti, δi), i = 1, . . . , m is then

L1(θ) =
m∏

i=1

1
µ(θ)

S(ti; θ)δiG(ti; θ)1−δi , (4.41)

where G(t; θ) =
∫∞

t
S(w; θ)dw.

A third possibility is that f0(t) is assumed known, and ti0, i = 1, . . . , m are
observed. In that case one might wish to treat both ti0 and ti1 as responses.
Their joint density gives the terms in the following likelihood,

m∏

i=1

f0(ti0)f(ti − ti0; θ)δiS(ti − ti0; θ)1−δi

∫ 0

−∞ f0(t)S(−t; θ)dt

and in the special case where f0(t) = c (t < 0) this becomes

L2(θ) =
m∏

i=1

1
µ(θ)

f(ti − ti0; θ)δiS(ti − ti0; θ)1−δi . (4.42)

This is an example of the use of retrospective information (i.e. the ti0) as
responses. The likelihood L2(θ) contains more information than L(θ) or L1(θ),
if f0(t) = c is valid. In the case of exponential gap times, for example, where
S(w; θ) = exp(−w/θ) and µ(θ) = θ, we find that

L(θ) = L1(θ) =
m∏

i=1

1
θδi

exp(−ti/θ)

L2(θ) =
m∏

i=1

1
θ1+δi

exp(−(ti − ti0)/θ) .
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These give asymptotic variances for
√

m(θ̂ − θ) as the inverse of the Fisher
information I(θ) = m−1E{−∂2 log L(θ)/∂θ2}, which are (see Problem 4.9)

I(θ) = I1(θ) =
E(δi)

θ2
, and I2(θ) =

1 + E(δi)
θ2

. (4.43)

In the case where there is no censoring of Ti1, the information in L2(θ)
is twice that in L(θ) or L1(θ). This arises from the fact that the backward
recurrence time −Ti0 has an exponential distribution with mean θ, just as Ti1

does. See Problem 4.9 for some additional discussion.
When covariates are present, the case where values ti0 are missing is more

difficult to handle if the covariates affect the distribution of Ti0. We turn to
the question of initial conditions in such more complex situations next.

4.5.2 Initial Conditions and General Gap Time Analysis

As seen earlier in this chapter, gap time analysis is reasonably straightforward
when the time τi0 at which the ith individual is selected and followup starts is
the beginning of their event process. However, as noted above, there are many
instances where this is not the case. For example, in observational followup
studies on persons with psychiatric disorders or chronic disease, each person
typically has some history of events prior to τi0. Furthermore, the selection of
an individual for followup at time τi0 may depend on her covariate and process
history Hi(τi0). It is important to consider how the initial conditions Hi(τi0)
influence the event process over t ≥ τi0, and to what extent the information in
Hi(τi0) is available. This can affect what choices for modeling and analysis are
feasible; for example, we have seen in Section 4.5.1 that if the time ti0 of the
last event prior to τi0 is unavailable then additional assumptions or discarding
of information are necessary even if the process is a renewal process.

It is difficult to give a completely general discussion, in view of the varying
degrees of information that may be available about individuals, and different
types of study objectives. We consider essentially the same setup as in the
preceding section: the ith individual is followed over the time period τi0 ≤ t ≤
τi, where with no essential loss of generality we may take τi0 = 0. Information
available in Hi(τ+

i0) often includes the time ti0 of the last event prior to τ+
i0 , and

for simplicity we assume that any other previous event history is contained in
a vector zi1 of fixed covariates that is observed at τi0 = 0. Let Wij = tij−ti,j−1

(j = 1, 2, . . .) denote the gap times starting with the event at ti0; sometimes
we may choose to define Wi1 alternatively as ti1, but for the discussion here
we define it as stated. We assume that the distribution of Wi1,Wi2, . . ., is the
focus of analysis.

Assuming that ti0 and zi1 are available, we can consider a likelihood con-
tribution of the form (4.40), based on Pr(Wi1|zi1, ti0,Wi1 > −ti0). If ti1 is
observed (i.e. if ti1 ≤ τi) then an additional term based on Wi2 is available
and so on, giving a likelihood function of the form (4.10), except with the
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terms for Wi1 reflecting the conditions Wi1 > −ti0. A key requirement is that
the model for each Wij condition on enough history w

(j−1)
i , in addition to zi1,

to provide a satisfactory representation of the event process.
In many settings we wish to relate the models for Wi1 and for later gaps

Wi2,Wi3, . . .. We have seen in Section 4.5.1 how missing information can create
problems. When baseline covariates xi are present and ti0 is missing, the
approach described there is more complicated, because one should allow the
distribution of ti0 to depend on xi. There may, however, be little empirical
basis for doing this, except possibly when xi is categorical and takes only a
few values.

Models incorporating random effects pose even greater problems. Random
effects are commonly introduced in models as a way to represent heterogene-
ity among individuals, caused by covariates or other factors which influence
individual event processes but are unobserved. A key assumption in most
models is that the random effects are independent of observable covariates
and other factors such as ti0 and Hi(τ+

i0), given the covariates. This cannot be
maintained under the general types of initial conditions discussed here. For
example, suppose that Wi1 and ti0 are not thought to be independent, but
that there is a random effect ui, with density function g(u) in the study pop-
ulation, which may make such independence reasonable, as follows: given zi1

and ui, Wi1 and ti0 are independent. For simplicity, we suppress zi1 notation-
ally and let f1(w|ui) and S1(w|ui) denote the density and survivor functions
for Wi1, given ui and zi1. Then, the conditional density for Wi1 given zi1, ti0
and that Wi1 > −ti0, is

Pr (wi1|zi1, ti0,Wi1 > −ti0) =

∫∞
−∞ f1 (wi1|u) f0 (ti0|u) g(u)du
∫∞
−∞ S1 (−ti0|u) f0(ti0|u)g(u)du

, (4.44)

because ti0 can in general be expected to depend on ui. Note that (4.44) can
be rewritten as ∫ ∞

−∞

f1(wi1|u)
S1(−ti0|u)

g1(u|Hi(0+))du , (4.45)

where

g1

(
u|Hi(0+)

)
=

f0 (ti0|u) S1 (−ti0|u) g(u)
∫∞
−∞ f0 (ti0|u′) S1 (−ti0|u′) g(u′)du′

is the density of ui given the initial conditions Hi(0+), which include the
information on ti0 and that Wi1 > −ti0. Therefore, random effects modeling
should not ignore information in Hi(0+).

In circumstances like those described, it is perhaps best to avoid random
effects, and to handle issues such as possible dependence of Wi1 on ti0, by
including ti0 as a covariate in the density for Wi1. When ti0 is missing, one
option is to disregard Wi1 in the analysis, and begin with the next gap time
Wi2. As discussed earlier, this amounts to redefining τi0 = ti1. In doing so,
one should allow for the distinct possibility that Wi2 may not be independent
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of ti1 and so include ti1 as a covariate in the model for Wi2. A second option
is to consider analyses of Wi1,Wi2, . . . as in Section 4.2.1 or Section 4.4, with
Wi1 defined as ti1. A negative aspect of this approach is that the distributions
of Wi1 and later gap times are not linked, whereas we might wish to do so in
some contexts. An example involving these issues is given in Section 6.7.2.

4.6 Bibliographic Notes

Methods for gap time analysis in renewal processes are essentially just the
methods of survival analysis, which are discussed at length by Kalbfleisch and
Prentice (2002), Lawless (2003a), and others. Certain technical issues arise in
the justification for the semiparametic analysis of the Cox model (Dabrowska
et al., 1994; Lawless et al., 2001), although it was used for some time before
rigorous justification was provided (e.g. Gail et al., 1980; Prentice et al., 1981).
Similarly, technical issues arise in a rigorous justification of the Kaplan–Meier
and Nelson–Aalen estimators for a common gap time distribution (Gill, 1980;
Andersen et al., 1993, Sections 10.1 and 10.2).

The assumption of independent gap times in a renewal model is a strong
one, and methods based on independence are markedly nonrobust to depar-
tures from independence. Cox and Lewis (1966) discussed methods for check-
ing independence when no covariates are present. More recently, a wide variety
of gap time models that include independence models as special cases has been
proposed. Conditional methods described in Section 4.2 are once again based
on survival analysis. Early examples based on the Cox model were given by
Gail et al. (1980) and Prentice et al. (1981), with rigorous justification for such
methodology given by Dabrowska et al. (1994). Chang and Wang (1999) and
Therneau and Grambsch (2000) provided other examples of gap time analyses
using Cox models. Frailty or random effects models were discussed by Aalen
and Husebye (1991) and Follman and Goldberg (1988). Clayton (1994) and
Pickles and Crouchley (1994) surveyed random effects in the general context
of event history analysis; Xue and Brookmeyer (1996), Cook et al. (1999),
Lawless and Fong (1999), and Fong et al. (2001) considered random effects
models in slightly more complex repeated gap time settings. Chang (2004)
considered rank-based methods for accelerated failure time frailty models.
Multivariate survival distributions have received much recent attention (e.g.
Joe, 1997; Hougaard, 2000; Lawless, 2003a, Ch. 11). Examples with gap time
analysis were given by Pena et al. (2001) and He and Lawless (2003).

Nonparametric estimation of marginal survivor functions for different gap
times has been discussed by Visser (1996), Wang and Wells (1998), Wang and
Chang (1999), Schaubel and Cai (2004a), and Lin et al. (1999), whose ap-
proach was described in Section 4.4.1. Van der Laan et al. (2002) considered
more general problems of marginal estimation using inverse-probability-of-
censoring weights, and also discussed how to increase efficiency. The IPCW
idea itself originated with Robins and Rotnitzky (1992) and Robins (1993).
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Gomez et al. (2006) applied this approach to the estimation of a second gap
time, given the first, and Chang and Tzeng (2006) considered left trunca-
tion of first gap times. Huang (2002), Chang (2004), and Strawderman (2005)
considered marginal accelerated failure time models for gap times; Huang and
Chen (2003) considered proportional hazards. Schaubel and Cai (2004b) con-
sidered estimation via semiparametric Cox regression models for separate gap
times, without making assumptions about association among an individual’s
gap times.

Left truncation and initial conditions issues for renewal processes and gap
time models have been discussed by Guo (1993), Aalen and Husebye (1991),
Lawless and Fong (1999), Wang (1999), and others. There is considerable
discussion of these topics and general issues of modeling in the econometrics
and social sciences literatures, where the analysis of times between events such
as repeated pregnancies or job losses is of interest. See, for example, Chapter
2 of Heckman and Singer (1985), Heckman and Singer (1986), and Hamerle
(1991). Nonparametric estimation of survivor functions under left truncation
was reviewed by Lawless (2003a, Section 3.5.1 and p. 138). Nonparametric
estimation of the gap distribution in a renewal process when the start time
for the first gap is unknown has been extensively studied, starting with Cox
(1969), Laslett (1982), and Vardi (1982a,b). Asgharian et al. (2002) provided
a review and references.

4.7 Problems and Supplements

4.1. Weibull lifetime distributions (Lawless, 2003a, Ch. 1) have hazard func-
tions

h(t;α, γ) =
γ

α

(
t

α

)γ−1

t ≥ 0 , (4.46)

where γ > 0 and α > 0 are parameters. If T has hazard function (4.46)
then Y = log T has an extreme value location-scale distribution with survivor
function

S(y;µ, σ) = Pr(Y ≥ y;µ, σ) = exp{− exp(y−µ
σ )} −∞ < y < ∞ ,

where µ = log α and σ = γ−1.

a. For the bowel motility data discussed in Example 4.1.1, use survival analy-
sis software to fit separate Weibull models to (i) first cycles (gaps), and
(ii) second and later cycles. Assume that gap times are mutually inde-
pendent within and between subjects. Compare the survivor functions for
the fitted models with the Kaplan–Meier estimates for first and for sub-
sequent gaps, and with the log-normal survivor functions from model (ii)
in Example 4.1.1.

b. Fit a Weibull model analogous to the log-normal Model A in Section 4.3.1;
in this case Yij = log Wij has an extreme-value distribution, given y

(j−1)
i .
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[Sections 4.1, 4.2]

4.2. Parametric multiplicative intensity models for gap times are sometimes
useful, and can be fitted using general optimization software (Appendix B).
In particular, consider the model (4.11), with the baseline hazard functions
specified parametrically as h0j(w;αj). The log-likelihood function from (4.10)
is then

�(α, β) =
m∑

i=1

⎧
⎨

⎩

ni∑

j=1

log hij(wij ;αj , βj) −
ni+1∑

j=1

Hij(wij ;αj , βj)

⎫
⎬

⎭
, (4.47)

where

hij(w;αj , βj) = h0(w;αj) exp(z′ijβ) (4.48)

Hij(w;αj , βj) =
∫ w

0

hij(u;αj , βj)du .

Fit Weibull models for first and second gap times for the pulmonary ex-
acerbation data of Section 4.3.2, where zij = (xi1, xi2, wi1I(j = 2)) and

h0j(w;αj) =
(

γj

αj

)(
w

αj

)γj−1

j = 1, 2 .

Compare the results with those for the Cox proportional hazards model in
Table 4.2.

Note: You can use general optimization software to obtain parameter es-
timates. Alternatively, you can use survival analysis software for accelerated
failure time (AFT) models, because the Weibull model is both an AFT and
a proportional hazards model (Lawless, 2003a, Section 6.1). In AFT form, we
consider the equivalent location-scale models (4.14) for Yij = log Wij , with
extreme value errors. Then β0j = log αj , σj = γ−1

j and the regression para-
meters βj = βAFT

j in (4.14) are related to the regression parameters βj = βPH
j

in (4.11) by βAFT
j = −βPH

j /γj .

[Section 4.2]

4.3. Parametric multiplicative intensity models of the form (4.11) with
h0j(w;αj) taken to be piecewise-constant are sometimes useful, and they pro-
vide insight into methodology for the semiparametric models of Section 4.2.
They have

h0j(w;αj) = αjr aj,r−1 < w ≤ ajr (4.49)

(r = 1, . . . , Rj), where 0 = aj0 < aj1 < · · · < ajRj
are specified cutpoints,

with ajRj
greater than or equal to the largest observed jth gap time. Often,

we might take the cutpoints to be the same across j = 1, 2, . . .. Such models
can, with appropriately chosen cutpoints, approximate underlying baseline in-
tensities rather well. They are also easy to handle and, with large Rj , provide
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inferences about the regression parameter vectors βj in (4.11) that are close
to those given by the Cox likelihood functions (4.12). In addition, they pro-
duce estimates of the cumulative baseline hazard functions H0j(w;αj) that
are close to the generalized Nelson–Aalen estimates (4.13). In fact, letting the
Rj become arbitrarily large, and the distances ajr − aj,r−1 between succes-
sive cutpoints become arbitrarily small, we obtain the semiparametric results
(4.12) and (4.13).

a. Working from (4.11), (4.47), and (4.48) with h0j(w;αj) given by (4.49),
show that the likelihood equations ∂�(α, β)/∂αjr = 0 give

α̃jr(βj) =

m∑

i=1

I(j ≤ ni)I(aj,r−1 < wij ≤ ajr)

m∑

i=1

I(j ≤ ni + 1)ez′
ij

βj ∆ijr

, (4.50)

where
∆ijr =

∫ ajr

aj,r−1

I(wij ≥ u)du

is the length of the intersection of (aj,r−1, ajr] and (0, wij ]. Note that the
numerator of (4.50) is the number of jth gap times falling into the interval
(aj,r−1, ajr] and if β = 0 the denominator is the total time at risk for a
jth event occurring in the interval (aj,r−1, ajr].

b. By inserting (4.50) into (4.47) we obtain a sum of profile log-likelihood
functions for each βj , which can be maximized to give estimates β̂j fol-
lowing which α̂jr can be obtained from (4.50). Show that if the Rj → ∞
and max |ajr − aj,r−1| → 0, then the profile likelihood function for βj

approaches (4.12).
c. Show that the estimates of the cumulative baseline hazard functions

H0j(w) =
∫ w

0

h0j(u;αj)du

are

Ĥ0j(w) =
Rj∑

r=1

⎧
⎪⎪⎨

⎪⎪⎩

ejr∆jr(w)
m∑

�=1

∆jr(w�j) exp(z′�j β̂j)

⎫
⎪⎪⎬

⎪⎪⎭
, (4.51)

where ejr is the numerator of (4.50), and

∆jr(w) =
∫ ajr

aj,r−1

I(w ≥ u)du .

Show that (4.51) approaches (4.13) under the limit described above.

[Section 4.2; Lawless et al., 2001; Lawless, 2003a, Section 7.4]
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4.4. Consider the random effects model (4.16) in the case where the ui have
gamma distributions with mean 1 and variance φ, with density function (2.28).
Show that the likelihood contribution for an individual with ni observed gap
times wij (j = 1, . . . , ni) and a final censored gap time wi,ni+1 is

Li =

⎧
⎨

⎩

ni∏

j=1

hij(wij)

⎫
⎬

⎭
Γ (ni + φ−1)

Γ (φ−1)
φni

{
1 + φ

∑ni+1
j=1 Hij(wij)

}ni+φ−1 ,

where

hij(w) = h0j(w) exp(x′
ijβj) and Hij(w) = H0j(w) exp(x′

ijβj) .

Models where the h0j(w) are specified parametrically can be fitted using gen-
eral optimization software.

[Section 4.2.2]

4.5. As noted following (4.20), certain copula models are closely related to
random effects models, and (4.20) is in fact related to a model with gamma
random effects. In particular, consider the multiplicative model where, given
ui, the gap times wij (j = 1, 2, . . . , J) are independent with hazard functions
uihij(wj).

a. If ui has a gamma distribution with density (2.28), show that the joint
distribution of Wi1, . . . ,WiJ has a survivor function of the form (4.20),
where

Sij(wj) = {1 + φHij(wj)}−φ−1

. (4.52)

b. Show that if hij(w) has the multiplicative form in Problem 4.4, then the
marginal distribution (4.52) does not have a hazard function of multiplica-
tive form. Moreover, the marginal distributions involve φ. This shows that
one must be clear whether covariate effects are being considered condi-
tional on a random effect ui, or unconditionally.
A model (4.20) in which the marginal hazard functions for wij are multi-
plicative is an alternative to the random effects model above. This would
use Sij(wj) = exp{−Hij(wj)}, where

Hij(wj) = H0j(wj)ex′
ijβj .

[Section 4.2; Lawless, 2003a, Section 11.2]

4.6. Use the general results for multivariate normal models (4.21), given in
(4.22) and the line following it, to obtain the conditional means and variances
mij and vij for Model B in Section 4.3.1. Give an alternative derivation by
considering the distributions of ui given wi1, . . . , wij for successive j = 1, 2, . . ..
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[Sections 4.2.2, 4.3.1]

4.7. McGilchrist and Aisbett (1991) discussed data on recurrent times to in-
fection around the catheter for kidney dialysis patients. They gave data for
only the first two waiting (gap) times to infection, as shown in Table 4.4. Either
of the gap times may be censored, because catheters were sometimes removed
for reasons other than infection. Covariates of interest were also given: age
(years), sex (1 = male, 2 = female) and types of kidney disease (labeled 0, 1,
2, 3).

Assess the effects of covariates and the shape of the distribution of time
to infection; note that times to infection for the same patient might display
association even after conditioning on covariates.

[Section 4.2]

4.8. Testing for trends in gap times is sometimes of interest, and can be carried
out in ways analogous to approaches in Section 3.7.1. For example, suppose
that the null hypothesis is that events follow a renewal process with gap time
hazard function h0(w) for each of m independent individuals. Consider now
the expanded model where the intensity function is given by (4.24), which we
rewrite as the hazard function for Wij ,

hij(w) = h0(w) exp
(
z′i(tNi(t−) + w)β

)
. (4.53)

To develop trend tests we typically choose a scalar covariate zi(t) that repre-
sents trend, and then test that β = 0 in (4.53). For simplicity, let us assume
that zi(tj−1 +w) = zij ; that is, zi(tNi(t−) +w) has a fixed value zij during the
jth gap (ti,j−1, tij ]. This is very useful; for example, we might use zij = ti,j−1

or zij = j − 1 or other scores zi1 < zi2 < · · · designed to reflect trend.

a. Using (4.53) with
hij(w) = h0(w) exp(zijβ) ,

develop a score test of H0 : β = 0 for the Cox semiparametric model,
working from the likelihood (4.25). Show that this gives the test statistic

U(0) =
m∑

i=1

ni∑

j=1

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

zij −

m∑

�=1

n�+1∑

k=1

I(w�k ≥ wij)z�k

m∑

�=1

n�+1∑

k=1

I(w�k ≥ wij)

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

,

and obtain a variance estimate for U(0).
b. The preceding test is not valid when there is heterogeneity across individ-

uals. Consider the model where (4.53) is generalized to give

hij(w) = h0i(w) exp(zijβ) i = 1, . . . ,m ,
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where zij is defined as in part (a). In this case each individual forms
a stratum. Consider the stratified partial likelihood L(β) =

∏m
i=1 Li(β),

where

Li(β) =
ni∏

j=1

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

eβzij

ni+1∑

k=1

I (wik ≥ wij) eβzik

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

.

Use L(β) to develop a score test for β = 0, showing that the test statistic
obtained is

U(0) =
m∑

i=1

I(ni > 0)
ni∑

j=1

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

zij −

ni+1∑

k=1

I(wik ≥ wij)zik

ni+1∑

k=1

I(wik ≥ wij)

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

.

Obtain a variance estimate for U(0).
For this test to be effective, we need ni that are not too small.

[Section 4.2]

4.9. Consider the case of left-truncated initial gap times when the gap time
distribution is exponential, as discussed at the end of Example 4.5.1. Use the
condition E{∂ log L(θ)/∂θ} = 0 with each of L1(θ) and L2(θ) to show that
E(δi) = E(ti)/θ in each case. Use this to obtain the Fisher information values
in (4.43.)

[Section 4.4]

4.10. Let f0(t0) be the rate function for t0 < 0, as defined for (4.38). Show
that the probability density function f∗

0 (t0) of t0, given both that t0 < 0 and
that t1 > 0, is

f∗
0 (t0) =

f0(t0)S(−t0)
∫ 0

−∞ f0(u)S(−u)du
.

Show also that when f0(t0) = c, the form of f∗
0 (t0) is the same as f1(t1) given

by (4.39). Explain why this makes sense intuitively.

[Section 4.5]
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Table 4.4. Times to two successive infections for patients on dialysis.

Disease

Patient Times Censoring† Age Sex Type

1 8, 16 1, 1 28 1 3
2 23, 13 1, 0 48 2 0
3 22, 28 1, 1 32 1 3
4 447, 318 1, 1 31-32 2 3
5 30, 12 1, 1 10 1 3
6 24, 245 1, 1 16-17 2 3
7 7, 9 1, 1 51 1 0
8 511, 30 1, 1 55-56 2 0
9 53, 196 1, 1 69 2 1
10 15, 154 1, 1 51-52 1 0
11 7, 333 1, 1 44 2 1
12 141, 8 1, 0 34 2 3
13 96, 38 1, 1 35 2 1
14 149, 70 0, 0 42 2 1
15 536, 25 1, 0 17 2 3
16 17, 4 1, 0 60 1 1
17 185, 177 1, 1 60 2 3
18 292, 114 1, 1 43-44 2 3
19 22, 159 0, 0 53 2 0
20 15, 108 1, 0 44 2 3
21 152, 562 1, 1 46-47 1 2
22 402, 24 1, 0 30 2 3
23 13, 66 1, 1 62-63 2 1
24 39, 46 1, 0 42-43 2 1
25 12, 40 1, 1 43 1 1
26 113, 201 0, 1 57-58 2 1
27 132, 156 1, 1 10 2 0
28 34, 30 1, 1 52 2 1
29 2, 25 1, 1 53 1 0
30 130, 26 1, 1 54 2 0
31 27, 58 1, 1 56 2 1
32 5, 43 0, 1 50-51 2 1
33 152, 30 1, 1 57 2 2
34 190, 5 1, 0 44-45 2 0
35 119, 8 1, 1 22 2 3
36 54, 16 0, 0 42 2 3
37 6, 78 0, 1 52 2 2
38 63, 8 1, 0 60 1 2

†1-uncensored, 0-censored.
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General Intensity-Based Models

5.1 Time Scales and Intensity Modeling

Previous chapters have discussed models that emphasize either event counts
or gaps between successive event times for individual processes. In this chapter
we consider more general intensity-based modeling in which the intensity func-
tion can depend on arbitrary features of previous event history. Such models
may incorporate dependence on previous gap times or event counts.

We assume that a process time scale t with a well-defined origin has been
specified, as discussed in Section 1.4.1, and let H(t) = {N(s) : 0 ≤ s < t}.
Models that incorporate various aspects of previous event history are readily
written down. For example, the intensity function

λ(t|H(t)) = exp{α + βg1(t) + γI(N(t−) > 0)g2(B(t))} , (5.1)

where B(t) = t−TN(t−) is the time since the most recent event, and g1 and g2

are specified functions, allows the intensity at t to depend on both calendar
time and the gap since the last event. It is of neither Markov nor renewal
(semi-Markov) form, but includes such models as special cases with γ = 0
and β = 0, respectively.

As illustrations of where “hybrid” models involving both calendar time
and gap times are useful, consider the following.

(i) In studies of recurrent infections over an extended period of time, it is
desirable to allow for both calendar time trends reflecting exposure and
trends in a person’s susceptibility, and gap time factors that reflect adjust-
ments to an individual’s susceptibility when they experience an infection.

(ii) In models for equipment or software failures, we may wish to include
calendar time trends that reflect aging or deterioration, and gap time
factors that reflect repairs or adjustments to deal with previous failures.

For effective model formulation, specific frameworks that posit some pri-
mary structure are essential, especially when covariates are present. Two gen-
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we consider more general intensity-based modeling in which the intensity func-
tion can depend on arbitrary features of previous event history. Such models
may incorporate dependence on previous gap times or event counts.

We assume that a process time scale t with a well-defined origin has been
specified, as discussed in Section 1.4.1, and let H(t) = {N(s) : 0 ≤ s < t}.
Models that incorporate various aspects of previous event history are readily
written down. For example, the intensity function

λ(t|H(t)) = exp{α + βg1(t) + γI(N(t−) > 0)g2(B(t))} , (5.1)

where B(t) = t−TN(t−) is the time since the most recent event, and g1 and g2

are specified functions, allows the intensity at t to depend on both calendar
time and the gap since the last event. It is of neither Markov nor renewal
(semi-Markov) form, but includes such models as special cases with γ = 0
and β = 0, respectively.

As illustrations of where “hybrid” models involving both calendar time
and gap times are useful, consider the following.

(i) In studies of recurrent infections over an extended period of time, it is
desirable to allow for both calendar time trends reflecting exposure and
trends in a person’s susceptibility, and gap time factors that reflect adjust-
ments to an individual’s susceptibility when they experience an infection.

(ii) In models for equipment or software failures, we may wish to include
calendar time trends that reflect aging or deterioration, and gap time
factors that reflect repairs or adjustments to deal with previous failures.

For effective model formulation, specific frameworks that posit some pri-
mary structure are essential, especially when covariates are present. Two gen-
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eral approaches are through modulated Markov or renewal processes, as dis-
cussed in Sections 2.2.2 and 2.3.1. For the former, we specify a time-varying
covariate vector z(t) that may include both external and internal covariates;
the latter may represent features of previous event history. The intensity func-
tion is then taken to be of the form

λ(t|H(t)) = λ0(t) g(z(t)) . (5.2)

Modulated renewal models are of the analogous form

λ(t|H(t)) = h0(B(t)) g(z(t)) . (5.3)

For either (5.2) or (5.3), log-linear specifications where g(z(t)) = exp(z′(t)β)
are often useful, provided covariates are satisfactorily defined. It may be noted
that (5.1) is a model in both the families (5.2) and (5.3).

In choosing one of (5.2) and (5.3) we decide to take either chronological
time (t) or gap time (w, or B(t)) as the primary time scale in the sense that
the reference or “baseline” process, against which the effects of external co-
variates or event history are measured, has an intensity of the form λ0(t) or
h0(B(t)), respectively. Which time scale we choose to emphasize depends on
their relevance for the context at hand and, generally, on a desire for par-
simonious models. Another important consideration is the representation of
treatment or fixed covariate effects; their interpretation and estimated val-
ues depend heavily on the type of model adopted. These points are discussed
further in subsequent sections.

The likelihood function from m independent event processes whose inten-
sities depend on parameters θ is, from (2.7) or (2.55),

L(θ) =
m∏

i=1

ni∏

j=1

λi(tij |Hi(tij)) · exp
{

−
∫ ∞

0

Yi(u)λi(u|Hi(u))du

}

, (5.4)

where λi(t|Hi(t)) is the intensity for the ith process, which has ni ≥ 0 ob-
served events, at times tij (j = 1, . . . , ni). As in (2.55), Yi(u) indicates whether
process i is under observation at calendar time u (1 = yes, 0 = no) and we as-
sume that the observation of the event processes is conditionally independent
of the process in the sense described in Section 2.6.

For fully parametric models such as (5.1), maximum likelihood estimation
and associated inference procedures can be based on (5.4), as we discuss in
Section 5.2. However, semiparametric models of various types can also be
formulated, and provide relief from certain types of parametric assumptions.
Convenient models of this type are given by (5.2) and (5.3), with λ0(t) and
h0(w) allowed to be arbitrary nonnegative functions. Semiparametric analysis
is discussed in Sections 5.3 and 5.4.

Random effects may also be incorporated in models such as (5.2) or (5.3).
Random effects induce additional dependence on previous event history in
the intensity function. For example, the process given by (2.26), which is



5.2 Parametric Analysis for Two Useful Models 163

conditionally Poisson given a random effect, has an intensity function (2.33)
that depends on the number of previous events. A criticism of commonly
used random effects models, though, is that the random effects are time-
invariant and are too simplistic for complex processes. The main approach in
this chapter is to model the intensity directly on observable quantities, rather
than through unobservable random variables. Nevertheless, random effects are
useful for reflecting heterogeneity across individuals due to unmeasured fixed
covariates, and in the examples of Section 5.5, we consider whether there is
excess variability that could be described by individual-specific random effects.

5.2 Parametric Analysis for Two Useful Models

Analysis for models that are fully specified parametrically can be based on
the likelihood function (5.4). In this section we describe two rather flexible
families of models and consider inference procedures for them. Software for
semiparametric models of the form (5.2) or (5.3) place restrictions on the
intensity and on the form of time-varying covariates, and parametric models
provide additional flexibility.

We remark that in this section, and later in this chapter, multiplicative
models are emphasized. Multiplicative models can be made very flexible, and
the availability of straightforward maximum likelihood methodology and soft-
ware makes them a convenient and natural choice in many settings. Additive
models, as discussed in Section 3.4.4, are sometimes useful and could also be
considered. For fully parametric additive models, maximum likelihood estima-
tion is in principal straightforward although restrictions on parameter values
that are needed to keep the intensity function positive can introduce practical
complications. Semiparametric models that extend the basic model of Section
3.4.4 can also be used; Martinussen and Scheike (2006) provide a detailed
development of methodology.

5.2.1 Log-Linear Intensity Models

We consider models where the intensity function can be written in the form

λ(t|H(t)) = exp{z′(t)θ} , (5.5)

where z(t) = (z1(t), . . . , zp(t))′ is a vector of observable functions that may
depend on t and on features of H(t), and θ is a vector of parameters. Many
common models are special cases of (5.5); for example, z(t) = (1, log t, x′(t))′

and θ = (log α, δ, β′)′ give a Poisson model with intensity αtδ exp(x′(t)β)
and z(t) = (1, log B(t), x′(t))′ with the same θ gives a renewal model with
intensity function αB(t)δ exp(x′(t)β). Poisson models of this general form
were introduced in Section 3.2.2.

From (5.4), the log-likelihood function for θ in (5.5) is
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�(θ) =
m∑

i=1

⎧
⎨

⎩

ni∑

j=1

z′i(tij)θ −
∫ ∞

0

Yi(t) exp(z′i(t)θ)dt

⎫
⎬

⎭
. (5.6)

A nice property of (5.5) is that the log-likelihood (5.6) is convex under mild
conditions (see Problem 5.1) and so there is a unique maximizer θ̂. It is of-
ten simplest to maximize �(θ) using general-purpose optimization software
that does not require derivatives of �(θ); see Appendix B. For many models
numerical integration is needed to evaluate (5.6). This can be handled with
standard software but for most practical purposes the following approach is
satisfactory. First, noting there are often discontinuities in the functions zj(t)
at the event times tij , we write

∫ ∞

0

Yi(t) exp(z′i(t)θ)dt =
ni+1∑

j=1

∫ tij

ti,j−1

exp(z′i(t)θ)dt , (5.7)

where ti0 is the start-of-observation time τi0 for individual i, ti,ni+1 is the
end-of-observation time τi, and where we have assumed that individual i is
observed continuously from ti0 to ti,ni+1. More generally, the integrals in (5.7)
should be split at any discontinuity points for each zi(t) but for simplicity we
assume here that jumps in zi(t) occur only at the event times tij .

Numerical integration software can be applied to the separate integrals
in (5.7), or a simple but robust procedure such as the trapezoidal rule or
Simpson’s rule (Press et al., 1986, Ch. 4) can be used to approximate �(θ)
to a desired degree of accuracy. Using the trapezoidal rule, we select positive
integers rij and define ∆ij = (tij − ti,j−1)/rij and constants aijk by

aijk = ti,j−1 + (k − 1)∆ij k = 1, . . . , rij + 1 .

Then
∫ tij

ti,j−1
exp(z′i(t)θ)dt is approximated as

∆ij{.5 exp(z′i(ti,j−1)θ) + .5 exp(z′i(tij)θ) +
rij∑

k=2

exp(z′i(aijk)θ)}

and �(θ) is approximated by

�A(θ) =
m∑

i=1

⎧
⎨

⎩

ni∑

j=1

z′i(tij)θ −
ni+1∑

j=1

∆ij

rij+1∑

k=1

wijk exp(z′i(aijk)θ)

⎫
⎬

⎭
, (5.8)

where wij1 = wij,rij+1 = 1/2 and wijk = 1 (k = 2, . . . , rij). A simple and
effective way to choose ∆ij is to select a small incremental value ∆ and then
to define rij = top {(tij − ti,j−1)/∆}, the smallest integer greater than or
equal to (tij − ti,j−1)/∆. The value of ∆ may be reduced in a sequence of
calculations of �A(θ) until a desired degree of accuracy is reached.
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Some optimization software requires, or optionally accepts, first and second
derivatives of �(θ). The approximation �A(θ) gives easily computed approxi-
mations to U(θ) = ∂�(θ)/∂θ as

UA(θ) =
m∑

i=1

⎧
⎨

⎩

ni∑

j=1

zi(tij) −
ni+1∑

j=1

∆ij

rij+1∑

k=1

wijkzi(aijk) exp(z′i(aijk)θ)

⎫
⎬

⎭
(5.9)

and to I(θ) = −∂2�(θ)/∂θ∂θ′ as

IA(θ) =
m∑

i=1

⎧
⎨

⎩

ni+1∑

j=1

∆ij

rij+1∑

k=1

wijkzi(aijk)z′i(aijk) exp(z′i(aijk)θ)

⎫
⎬

⎭
. (5.10)

The main requirement for (5.8)–(5.10) is that the values of the zi(aijk) be
available. When zi(t) is a function of the process history there is no difficulty.
As is the case in general, when z(t) includes time-varying covariates that are
measured only intermittently it is necessary to impute some values.

An illustration of this methodology is given in Section 5.2.4.

5.2.2 A Trend-Renewal Model

Linqvist et al. (2003) introduced a model which they term the trend renewal
process (TRP). It is defined as follows in the absence of covariates. Let A(t)
be an increasing function for t ≥ 0, and assume that for T0 = 0 and successive
event times Tj (j = 1, 2, . . .) the values Vj = A(Tj)−A(Tj−1) are independent
and identically distributed with distribution function F (v), on v ≥ 0. This
model includes Poisson processes as the special case where F is an exponential
distribution with mean 1, whereupon A(t) is the mean or cumulative rate
function. Renewal processes are also included as the special case where A(t) =
t. Scale factors in A(t) and F (t) will be confounded so we usually assume a
fixed scale parameter for F , designed for example to make the mean or median
of F equal to one.

This model nicely combines a trend in calendar time with a renewal after
each event. The intensity function is, from the definition of the process,

λ(t|H(t)) = h[A(t) − A(tN(t−))]a(t) , (5.11)

where h(v) is the hazard function F ′(v)/(1 − F (v)) for Vj and a(t) = A′(t)
is the derivative of A(t). This model cannot be expressed in the form (5.5),
and combines renewal and trend features in a different way than (5.5) does.
A model of the form (5.5) incorporates the effect of trend into the intensity
as a multiplicative factor. The model (5.11), on the other hand, is a time
transform, or accelerated time, model; the effect of trend is expressed in the
time scale A(t). The TRP model might be plausible when an individual’s
propensity for events changes over time, but the process triggering events is
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stationary, whereas the models of the form (5.5) might be used when the
process triggering events has a time trend, but an individual’s propensity for
an event is renewed or adjusted each time an event occurs.

Fixed covariates x can be incorporated into the TRP framework by gen-
eralizing A(t) to

A(t|x) = A0(t)g(x) ,

where g(x) is a positive-valued function. Random effects can also be intro-
duced in the same multiplicative fashion, but we do not pursue this here.
Alternative specifications where the distributions F (v) = Pr(Vi ≤ v) depend
on covariates or random effects could also be given. Dealing with time-varying
covariates is more difficult: the appropriate extension to the model above is
to define

a(t|x) = a0(t)g(x(t)) and A(t|x) =
∫ t

0

a0(u)g(x(u))du (5.12)

giving models analogous to accelerated failure time models used in survival
analysis (Lawless, 2003a, Section 8.2.2). In fact the model (5.11) with tN(t−) =
0, corresponding to the intensity for the time to the first event, is the hazard
function for an accelerated failure time regression model when A(t|x) is of the
form (5.12).

Likelihood inference is reasonably straightforward for the TRP model.
Assuming that individual i (i = 1, . . . , m) is observed from t = 0 to the
stopping time τi, the likelihood function can be given using (5.4) and (5.11),
or in the more convenient form

L(θ) =
m∏

i=1

⎧
⎨

⎩

ni∏

j=1

f [Ai(tij) − Ai(ti,j−1)]ai(tij)

⎫
⎬

⎭
S[Ai(τi) − Ai(ti,ni

)] , (5.13)

where Ai(t) = A0(t)g(xi), ai(t) = a0(t)g(xi) and where f(v) = F ′(v) and
S(v) = 1−F (v) are the density and survivor functions for the random variables
Vij = Ai(Tij) − Ai(Ti,j−1).

The log of the likelihood (5.13) can be maximized using general-purpose
optimization software. For example, consider a model where Ai(t) takes the
Weibull accelerated failure time form

Ai(t) = {t/ exp(x′
iβ)}δ ,

where we include an intercept in x′
iβ by defining xi1 = 1, and where the

Vij have a Weibull distribution with scale parameter one. The density and
survivor function for Vij = Ai(Tij) − Ai(Ti,j−1) are then

f(v;α) = αvα−1 exp(−vα) , and S(v;α) = exp(−vα) ,

respectively. With θ = (α, δ, β), the log-likelihood is readily computed for any
given θ with α > 0, δ > 0.

An illustration involving TRP models is given in Section 5.2.4.
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5.2.3 Model Checking

The most flexible and powerful way to assess model assumptions is by fitting
expanded models within which a base model may be tested. However, informal
graphical methods can provide insight, and in this regard generalized residuals
analogous to those considered for Poisson processes in Section 3.7.3 are useful.

If a process has intensity function λ(t|H(t)), then under the conditions of
Section 2.1 the quantities

Ej =
∫ Tj

Tj−1

λ(t|H(t))dt j = 1, 2, . . . ,

are independent exponential random variables with mean 1; see (2.46) and
the following discussion. The Ej are determined by the event times T1 <
T2 < · · · in an individual process, with T0 for convenience defined as the start
of observation. If we denote Tn+1 as the end of observation, then En+1 is a
right-censored exponential variable. As usual it is assumed that T0 and Tn+1

satisfy conditions laid down in Section 2.6. The properties of the Ej imply
that the transformed times Rj = E1+ · · ·+Ej are equivalent to event times in
a homogeneous Poisson process. Thus, procedures described in Section 3.7.3
can be applied to the more general processes considered in this chapter. With
independent processes i = 1, . . . , m, we can define generalized residuals Êij

(j = 1, . . . , ni + 1) and R̂ij (j = 1, . . . , ni + 1) and use plots described in
Section 3.7.3.

Martingale residuals can also be defined as in Section 3.7.3. In particular,
if N̄i(t) =

∫ t

0
Yi(u)dNi(u) as before, the processes

M̂i(t) = N̄i(t) −
∫ t

0

Yi(u)λ̂i(u|H(u))du t > 0 ,

should be roughly mean zero processes with uncorrelated increments, for suf-
ficiently large m and assuming the process intensities are correctly specified.
Plots of residuals such as M̂i(∞) against covariates, and test statistics similar
to (3.49), can indicate lack of fit, as in Section 3.7.3.

5.2.4 An Illustration: Air-Conditioning System Failures

To illustrate the use of the models and diagnostics in the preceding sections,
we consider some much-discussed data on airplane air-conditioning system
failures (Proschan, 1963). The times wj (j = 1, . . . , 30) between successive
failures for a single plane, denoted plane 6 by Cox and Lewis (1966, p. 6), are
considered; times are in hours of operation. The wj (j = 1, . . . , 30) are

23 261 87 7 120 14 62 47 225 71
246 21 42 20 5 12 120 11 3 14
71 11 14 11 16 90 1 16 52 95
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and the event times are tj = w1 + · · · + wj (j = 1, . . . , 30).
In this setting, because we are considering a single plane, there is a single

event process. Figure 5.1 shows a plot of the cumulative number of events N(t)
versus t, where we have left out the usual staircase feature. Figure 5.1 also
contains a curve which is the estimate of the mean function µ(t) = E{N(t)}
for a Poisson process model, described below.

We first fit models of the form (5.5). Figure 5.1 suggests that the rate
of failures is increasing over time, and also that failures may tend to clus-
ter somewhat. We consider two models, motivated by the plot, with intensity
functions as follows.

Model 1: λ(t|H(t)) = exp{α + βt + γz(t)} t ≥ 0 ,
where z(t) = I(N(t−) > 0)(t − tN(t−)) is the time since the last
event.

Model 2: λ(t|H(t)) = exp{α + βt + γz(t)} t ≥ 0 ,
where z(t) = I(N(t−) > 0)I(t − tN(t−) ≤ 20) is a binary covariate
equalling 1 for up to 20 hours after a failure.

Maximum likelihood estimates are obtained by maximizing the log-likelihood
(5.6), which in the case of both Models 1 and 2 has a closed form. The esti-
mates, with standard errors in parentheses obtained from the inverse of the
observed information matrix, are as follows.

Model 1: α̂ = −4.87(0.57) β̂ = 0.000865(0.000400) γ̂ = −0.00148(0.00326)
�(α̂, β̂, γ̂) = −149.37.

Model 2: α̂ = −5.17(0.48) β̂ = 0.000801(0.000392) γ̂ = 0.746(0.371)
�(α̂, β̂, γ̂) = −147.52.

In Model 1, the renewal term parameter γ is not statistically significant but
in Model 2 it is, at the 5% level of significance. This agrees with the impres-
sion conveyed by Figure 5.1, which shows instances of rather closely clustered
failures, but because the specific form of z(t) in Model 2 was guided by an
examination of Figure 5.1, the results should be considered provisional. Never-
theless, there is a suggestion that the probability of a new failure is increased
temporarily after a failure; this phenomenon is not uncommon in repairable
systems.

As an additional check on the need for a renewal term in the intensity, we
fit a nonhomogeneous Poisson process,

Model 3: λ(t|H(t)) = exp(α + βt) t ≥ 0 ,
α̂ = −5.02(0.47) β̂ = 0.000917(0.000386)
�(α̂, β̂) = −149.47.
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The estimated mean function µ(t) = exp(α̂)(exp(β̂t) − 1)/β̂ is shown in
Figure 5.1, and mimics the data well. A likelihood ratio test of Model 3 versus
Model 1 does not indicate evidence against Model 3, but a test of Model 3
versus Model 2 gives a likelihood ratio statistic of 2(−147.52+149.47) = 3.902.
Using χ2

1, this gives a p−value just under .05, in close agreement with a Wald
test based on γ̂ in Model 2. Finally, another check on the Poisson model can
be made using the score test statistics (3.47) described in Section 3.7.3. With
the parameter estimates for Model 3, and defining z(t) as in Model 2, we
find the observed value of the statistic (3.47) to be S(0) = 5.222, and the
corresponding variance term is V (0) = 6.045; the scaled test statistic is then
S(0)/V (0)1/2 = 2.12. Here there is only one process, but fairly many events,
so we compute a p−value for the test of the Poisson model using the standard
normal distribution, as described in Section 3.7.3 and as used here for the
Wald test. This gives a p−value of 0.034, in agreement with the Wald and
likelihood ratio tests.
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Fig. 5.1. Cumulative air-conditioning failures and estimated mean function.

Let us also consider the trend renewal process model of Section 5.2.2.
We fit a model with a(t) = exp(α + βt) and A(t) = exp(α)(exp(βt) − 1)/β
and F (t) chosen to be a Weibull distribution with unit scale, so that F (t) =
1 − exp(−tδ), where δ > 0 is an unknown parameter. Using the likelihood
function (5.13), we find maximum likelihood estimates for this model, termed
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Model 4 as follows.

Model 4: TRP with a(t) = exp(α + βt) and S(t) = exp(−tδ)
α̂ = −5.01(0.52) β̂ = 0.000947(0.000426) δ̂ = 0.918(0.130)
�(α̂, β̂, δ̂) = −149.25.

The special case δ = 1 gives an exponential distribution for S(t), in which case
Model 4 becomes the nonhomogeneous Poisson process, Model 3. A Wald test
of the hypothesis δ = 1 based on δ̂ (giving Z = (δ̂ − 1)/s.e.(δ̂) = 0.63 and
Z2 = 0.40) and a likelihood ratio test of Model 3 versus Model 4 (giving
the likelihood ratio statistic Λ = 2(−149.25 + 149.47) = 0.44) are in close
agreement, and provide no evidence against the Poisson process.
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Fig. 5.2. Exponential residual plot for Model 3 (top panel) and Model 2 (bottom
panel).

In this example we see that neither Model 1 nor Model 4 provides evidence
against the Poisson process, which is Model 3. However, Model 2 confirms a
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visual impression from Figure 5.1, and suggests that there may be a temporary
elevation of the failure intensity following a failure (and its subsequent repair).
This indicates the need for a close examination of event patterns, flexibility
in modeling, and a careful assessment of model fit. We can also assess the fit
of Model 4 by plotting residuals discussed in Section 5.2.3. Figure 5.2 shows
an exponential probability plot of the residuals Êj described in Section 5.2.3,
for Models 2 and 3. The Êj are defined as follows for the two cases, with the
estimates being the maximum likelihood estimates for each model.

Model 3: Êj = {exp(α̂ + β̂tj) − exp(α̂ + β̂tj−1)}β̂−1

Model 2: Ê1 = {exp(α̂ + β̂t1) − 1}β̂−1

Êj = {exp(α̂ + γ̂ + β̂tj) − exp(α̂ + γ̂ + β̂tj−1)}β̂−1

if j ≥ 2 and tj − tj−1 ≤ 20
Êj = {exp(α̂ + β̂tj) − [1 + eγ̂−20β̂ − eγ̂ ] exp[α̂ + β̂(tj−1 + 20)]}β̂−1

if j ≥ 2 and tj − tj−1 > 20.

Figure 5.2 gives plots of the ordered Ê(j) against the standard exponential
quantiles, defined as − log{1− (j − 0.5)/30}, for j = 1, . . . , 30. The top panel,
for Model 3, has a departure from linearity that might reflect a mixture of two
distributions for the Ej instead of a single standard exponential. The bottom
panel, for Model 2, is more nearly linear and does not provide strong evidence
against Model 2. Similar residual plots for Models 1 and 4 show patterns like
that for Model 1; this is in line with our finding that Models 1 and 4 do not
improve significantly on the Poisson process, Model 3.

5.3 Semiparametric Markov Analysis

5.3.1 Models with Dependence on Prior Counts

Modulated Markov models of the general form (5.2) often provide parsimo-
nious descriptions of event processes when a calendar time such as age, time
on study, or time from some other specified origin is a natural scale. Fre-
quently it is desirable to consider dependence of the intensity on the number
of previous events. One way to do this is by letting z(t) = N(t−) in (5.2) and
specifying a parametric form such as g(z(t)) = exp(βN(t−)). Models of this
type, where z(t) includes information on previous event history, can be fitted
and analyzed exactly as for the multiplicative models in Section 3.4.2, as we
discuss in Section 5.3.3.

A more general approach is obtained by considering the multistate Markov
model depicted in Figure 5.3. In this model, states represent the cumulative
number of events experienced, and only transitions from state k to k + 1 are
possible. Thus the counting process {Ni(t), 0 ≤ t} also indicates the state
occupied over time. If Hi(t) = {N(s) : 0 ≤ s < t} then
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αk(t) = lim
∆t↓0

Pr(∆Ni(t) = 1|Ni(t−) = k,Hi(t))
∆t

(5.14)

is the intensity function for transitions from state k to k + 1 under a Markov
model. If Yik(t) = I(Ni(t−) = k), then the intensity function for the event
process can be written as

λi(t|Hi(t)) =
∞∑

k=0

Yik(t)αk(t) .

Under this Markov model, the intensities αk(t), k = 0, 1, . . . , are assumed
to be functionally independent. We also let Ak(t) =

∫ t

0
αk(u)du denote the

cumulative transition intensity out of state k. If αk(t) = αk−1(t) exp(β) then
we obtain the simpler model mentioned in the first paragraph of this section,
for which

λi(t|Hi(t)) = λ0(t) exp(βNi(t−)) , (5.15)

with λ0(t) = α0(t). Note also that if αk(t) = α0(t), for t > 0 and k = 1, 2, . . .,
then a Poisson model is obtained.

0
α0(t)

1
α1(t)

2 K
αK(t)

K+1

Fig. 5.3. A multistate representation for a recurrent event process.

The transition probability functions under the Markov model above are
defined as

pk�(s, t) = Pr(N(t) = �|N(s) = k) 0 ≤ s ≤ t . (5.16)

For any given setting there is typically some upper limit on the number of
events that could be seen for an individual over the time period 0 ≤ t ≤ τ .
For convenience, we let K denote a value greater than or equal to such a
limit, and assume that αK(t) = 0 for 0 ≤ t ≤ τ . Then we write the transition
probabilities as a (K +1)× (K +1) matrix P(s, t) = [pk�(s, t)], where 0 ≤ k ≤
� ≤ K and 0 ≤ s ≤ t ≤ τ . The transition probability functions and transition
intensity functions are linked via the product integral (Andersen et al., 1993,
p. 93),

P(s, t) =
∏

(s,t]

(I + A(u)du) , (5.17)

where I is the identity matrix and A(t) is the (K + 1) × (K + 1) matrix of
transition rates given by
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A(t) =

⎡

⎢
⎢
⎢
⎢
⎣

−α0(t) α0(t) 0 0 . . . 0 0
0 −α1(t) α1(t) 0 . . . 0 0
...

...
...

. . .
. . .

...
...

0 0 . . . . . . . . . −αK−1(t) αK−1(t)
0 0 . . . . . . . . . 0 0

⎤

⎥
⎥
⎥
⎥
⎦

.

The state occupancy probabilities at time t are the probabilities for N(t) and
are given by the first row of P(0, t):

Pr(Ni(t) = k|Ni(0) = 0) = p0k(t) k = 0, 1, . . . , K.

There is considerable appeal to a multistate formulation of recurrent events
because it can be used to address many natural questions that arise. Features
of common interest include the probabilities above and the cumulative mean
function µ(t), which can be expressed here as

µ(t) = E{Ni(t)} =
∞∑

k=1

k p0k(t) . (5.18)

We now discuss estimation of these quantities.

5.3.2 Markov Nonparametric Estimation

Consider a dataset of m subjects in which subject i is followed over [0, τi]
where τi is a censoring time independent of {Ni(t), 0 ≤ t}, the event process
for subject i. Let Yik(t) = I(Ni(t−) = k) indicate, as before, whether subject
i is at risk of a transition at time t out of state k (i.e. is at risk of a (k + 1)st
event), k = 0, 1, . . .. Let dNik(t) = 1 if subject i makes a transition from state k

to k +1 at time t, and dNik(t) = 0 otherwise. Finally, let Nik(t) =
∫ t

0
dNik(u)

indicate whether a transition from k to k + 1 occurred for subject i over
[0, t]. As before, we denote the corresponding observable quantities so that
Ȳik(t) = Yi(t)Yik(t) indicates whether individual i is under observation and
at risk of a k → k + 1 transition, dN̄ik(t) = Yi(t)dNik(t) indicates whether a
k → k + 1 transition is observed at t, and N̄ik(t) =

∫ t

0
Yi(u)dNik(u) indicates

whether a k → k + 1 transition was observed over the interval [0, t].
The Nelson–Aalen estimate of the k → k+1 cumulative intensity function

is

Âk(t) =
∫ t

0

I(Ȳ·k(u) > 0)dN̄·k(u)
Ȳ·k(u)

, (5.19)

where dN̄·k(u) =
∑m

i=1 dN̄ik(u) and Ȳ·k(u) =
∑m

i=1 Ȳik(u), k = 0, 1, . . . ,
and where 0/0 is defined as 0. This is the same form as the Nelson–Aalen
estimate (3.17) for the cumulative rate (mean) function for a simple recurrent
event, applied here to the (k + 1)st event, but Ak(t) is not the expected
number of (k + 1)st events. As discussed in Section 3.4.1, Âk(t) estimates
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Ak(t) only when Ȳ·k(s) > 0 for 0 ≤ s ≤ t. If Ȳ·k(s) > 0 only for τ
(k)
0 ≤ s ≤ t,

then (5.19) estimates Ak(t) − Ak(τ (k)
0 ) = Ak(t; τ (k)

0 ) and more generally it
estimates only increments in Ak(t). This point is especially important here,
because individuals are not at risk of a (k + 1)st event until they experience
a kth event.

Here, the expected number of (k +1)st events by time t is the same as the
probability of at least k + 1 events occurring by time t. The Aalen–Johansen
estimate (Aalen and Johansen, 1978) of the transition probability matrix pro-
vides estimates of these probabilities, and is obtained from (5.17) as

P̂(s, t) =
∏

(s,t]

(I + Â(u)du) , (5.20)

where Â(u) is the estimated matrix of transition rates, with dÂk(u) =
I(Ȳ·k(u) > 0)dN̄·k(u)/Ȳ·k(u). The estimate P̂(s, t) can be easily computed
because the product integral in (5.20) becomes a product over a finite num-
ber of unique time points where at least one transition was observed. The
prevalence functions are then estimated from P̂(0, t) as p̂0k(t). Andersen et
al. (1993; Section IV.4.1.3) provide variance estimates for (5.20) under the
Markov model; see also Præstgaard (1991).

If Ȳ·k(s) > 0 only for τ
(k)
0 ≤ s ≤ t then the observed data do not give any

information on Ak(t) for t < τ
(k)
0 . Asymptotic properties of (5.20) depend

on there being information about Ak(u) for s ≤ u ≤ t (Andersen et al.,
1993, Section IV.4.1.2) but with real data we should note any limits on the
information. Our use of (5.20) here is solely for estimation of the p0k(t) and for
this purpose the estimates, with the convention that 0/0 = 0 in (5.19), seem
reasonable. In the case where there is no censoring of event histories before
time t, (5.20) gives the empirical estimates p̂0k(t) = Ȳ·k(t)/m = Y·k(t)/m (see
Problem 5.7).

Aalen et al. (2001) and Datta and Satten (2001) have pointed out that
the Aalen–Johansen estimator of the prevalence functions, although formally
justified under a Markov assumption, provides a consistent estimate of the
state occupancy probabilities (prevalence functions) for non-Markov multi-
state processes provided the censoring is independent of the processes. That
is, the censoring process cannot depend on features of the event history for
non-Markov models; for Markov models the censoring process can be adap-
tive. To see this, note that the αk(t), defined in (5.14) for a Markov model,
can also apply to general models, if interpreted as rates

αk(t) = lim
∆t↓0

Pr (∆Ni(t) = 1|Ni(t−) = k)
∆t

.

For the Nelson–Aalen estimates dÂk(s) = α̂k(s)ds to be valid more generally
for dAk(s) = αk(s)ds, we need

E
{
Ȳik(s)[dNik(s) − dAk(s)]

}
= E {Yi(s)Yik(s)(dNik(s) − dAk(s))}
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to equal zero. This holds if {Yi(t), 0 ≤ t} is independent of {Ni(t), 0 ≤ t} or
if E{dNi(s)|Yi(s) = 1, Ni(s−) = k} = E{dNik(s)|Ni(s−) = k}.

Glidden (2002) discusses robust variance estimation of the prevalence
functions obtained from the estimated transition probability matrix and de-
scribes how to construct simultaneous confidence bands for the prevalence
functions via simulation. In our context these give confidence bands for
p0k(t) = Pr(Ni(t) = k), for t > 0.

Another estimate of p0k(t) can be based on estimates of the survivor func-
tions for Tik, k = 1, 2, . . .. Specifically, although Pr(Ni(s) = k) = Pr(Tik ≤
s) − Pr(Ti,k+1 ≤ s), if F̂k(s) is the Kaplan–Meier estimate of the cumu-
lative distribution function for Tik, (k = 1, 2, . . .), then P̂r(Ni(s) = k) =
F̂k(s) − F̂k+1(s). Such an estimate is obviously robust to distributional as-
sumptions for the event process under independent censoring. Pepe (1991)
provides robust variance estimates under completely independent censoring.
Because this is a strictly marginal approach (i.e. there is no conditioning on
the process history for estimation of Fk(s), k = 1, 2, . . .), inconsistent esti-
mates of Pr(Ni(s) = k) are obtained under adaptive (e.g. state-dependent)
censoring and so this approach should be used with caution. The effects of
adaptive censoring are discussed in Section 7.2.

The mean function µ(t) can be estimated with the Nelson–Aalen estimate
(3.17), which is valid for Poisson processes but also more generally, provided
censoring is completely independent of the event processes. A second approach
is to use estimates of p0k(t) in (5.18); if the Aalen–Johansen estimates from
(5.20) are used, this has the added advantage of being valid under event-
dependent censoring, provided the Markov process of Figure 5.3 is satisfactory.

5.3.3 Models with Covariates

Modulated Markov models are of the multiplicative form (5.2). In the present
section we allow the baseline intensity in the multiplicative model to vary with
k. If a p× 1 covariate vector x is available, we may specify common covariate
effects for the intensity functions αik(t), k = 0, 1, 2, . . . for (k + 1)st events as

αik(t) = αk0(t) exp(x′
i(t)β) k = 0, 1, 2, . . . .

This is sometimes referred to as the stratified Andersen–Gill model when
αk0(t) has an unspecified form, because subjects advance to different “strata”
as they experience new events. The model is not Poisson like the ordinary
Andersen–Gill model, but the methods of analysis of Section 3.4.3 may be
adapted.

Different covariate effects may also be allowed as

αik(t) = αk0(t) exp(x′
i(t)βk) k = 0, 1, 2, . . . .

The former model is fit in S-PLUS or R using the coxph function with the
strata(·) option, whereas the latter arises from specifying a “strata by co-
variate” interaction or, equivalently, by fitting separate models for each k,
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k = 0, 1, . . .. In terms of the intensity function we can write the more general
expression as

λi(t|Hi(t)) =
∞∑

k=0

Yik(t)αk0(t) exp(x′
i(t)βk) . (5.21)

There is of course an upper limit for the number of strata with any par-
ticular dataset and we indicate this by K in what follows. We remark that
the covariates in (5.21) may include functions of previous event history, but
this should be done in accordance with the assumption of different baseline
intensity functions for each k.

Assume that individual i is observed over [0, τi]. The product integral
representation of the likelihood function (2.7) reveals that for the stratified
model with common regression coefficients, profiling arguments can be applied
as in Sections 3.4.2 and 3.4.3 to give a partial or profile likelihood for the model
with common β as

L(β) =
m∏

i=1

K−1∏

k=0

⎧
⎪⎪⎨

⎪⎪⎩

exp(x′
i(Vi,k+1)β)

m∑

l=1

Ȳ�k(Vi,k+1) exp(x′
�(Vi,k+1)β)

⎫
⎪⎪⎬

⎪⎪⎭

δi,k+1

, (5.22)

where Vik = min(Tik, τi) and δik = I(Vik = Tik), k = 1, 2, . . . ,K; i = 1, . . . , m.
Technically K can be taken equal to the largest number of events observed
across all subjects, but if very few individuals reach that maximum number,
we may choose a smaller K. The data from subjects observed to have more
than K events will then be censored at TiK , which is a stopping time, so
likelihood-based inferences remain valid. An alternative that is sometimes
used is to assume all events after the kth have the same intensity as the kth
events, and include them in the kth stratum. Note that because Yik(u) is
zero unless Ni(u−) = k, (5.22) can only be maximized using packages for
survival analysis that allow for stratification and delayed entry in the Cox
model; coxph in S-PLUS and R does this.

With different regression coefficients βk for each stratum, we can factor
the overall likelihood into functionally independent parts and maximize these
separately. The kth part gives the partial or profile likelihood function

Lk(βk) =
m∏

i=1

⎧
⎪⎪⎨

⎪⎪⎩

exp(x′
i(Vi,k+1)βk)

m∑

�=1

Ȳ�k(Vi,k+1) exp(x′
�(Vi,k+1)βk)

⎫
⎪⎪⎬

⎪⎪⎭

δi,k+1

. (5.23)

Likelihood ratio tests can be carried out for H0 : βk = β by assessing
2[
∑K−1

k=0 �k(β̂k) − �(β̂)] against a χ2
(K−1)p distribution, where p = dim(βk),

�k(β̂k) = log Lk(β̂k), and �(β̂) = log L(β̂).
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Estimates of the baseline cumulative intensity functions Ak0(t) =∫ t

0
ak0(u)du are given by the generalized Nelson–Aalen estimates (3.24):

Âk0(t) =
m∑

i=1

⎧
⎪⎪⎨

⎪⎪⎩

I(Vi,k+1 ≤ t, δi,k+1 = 1)
m∑

�=1

Ȳ�k(Vi,k+1) exp(x′
�(Vi,k+1)β̂k)

⎫
⎪⎪⎬

⎪⎪⎭
k = 0, 1, . . . , (5.24)

where β̂k is either the common β̂ obtained from (5.22) or the distinct β̂k

obtained from (5.23), depending on the model.

5.3.4 Analysis of Outbreaks Due to Herpes Simplex Virus

Section 3.8.2 reported on analyses of data from a two-period crossover trial of
patients with herpes simplex virus infection, based on Poisson process models.
Here we consider data from patients receiving episodic treatment with vala-
cyclovir during period I of this trial to illustrate the use of Markov models
described in this section. This provides insight into the recurrent infections
process. Figure 5.4 gives the empirical distribution function for the time of
crossover to period II in this trial, which varies across subjects from 161 to
196 days (median 170); because this analysis is restricted to period one data,
this represents the duration of followup. First we consider some descriptive
analysis, ignoring covariates.

The cumulative marginal rates for transitions from state k to state k + 1
(k = 0, 1, 2, 3) are estimated based on (5.19) and plotted in Figure 5.5. They
feature some separation but we must remember the effect on Âk(t) of times
when Ȳ·k(t) = 0. The functions for the third and fourth events cross those
for the first and second, but this is essentially because most persons are not
at risk for the third or fourth events for small values of t. In effect, only
Ak(t) − Ak(tmin

k ) for t > tmin
k is estimated for k = 1, 2, 3, where tmin

k is the
smallest kth event time in the data. In comparing Nelson–Aalen estimates we
should examine their “slopes”, which estimate the event rate functions. Doing
this in Figure 5.5, we see that the predominant message is that a person with
one event at time t is at slightly higher risk of a new event at time t than a
person with zero events, and that persons with two or three prior events are
at still higher risk of a new event.

Figure 5.6 shows the estimated prevalence functions p̂0k(t) based on (5.20)
as well as based on the difference in Kaplan–Meier estimates, F̂k(t)− F̂k+1(t),
for successive states, which for k = 1, 2, 3, 4 estimate the proportion of patients
with exactly 1, 2, 3, and 4 events over time. These two estimates agree closely
over most of period I but differ slightly towards the end of observation where
the censoring times begin to occur. In fact, if there is no censoring before time
t, both estimates of p0k(t) can be shown to equal

∑m
i=1 Yik(t)/m. The pro-

portion of subjects with one outbreak rises fairly quickly over the first month
and then begins to decline as patients go on to have additional outbreaks.
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Fig. 5.4. Empirical distribution of the crossover time in herpes trial for the episodic-
suppressive sequence group.

Figure 5.7 gives the Nelson–Aalen estimates (3.17) of the mean functions for
patients taking episodic treatment with valacyclovir for the outbreak of symp-
toms, as well as the corresponding estimate for patients taking valacyclovir
daily to suppress outbreaks; these estimates are truncated versions of Figure
3.4 in Section 3.8.2. Superimposed on these are the respective mean function
estimates obtained from (5.18) by replacing p0k(t) with its estimate obtained
from (5.20). These two methods can be shown to give identical estimates in the
absence of censoring (see Problem 5.7). The mean functions diverge rapidly
reflecting a large effect of suppressive therapy on reducing the occurrence of
outbreaks.

The suggestion that the risk of a new infection at time t increases with
the number of prior infections is consistent with the analysis of Section 3.8.2,
where there was evidence of extra-Poisson variation. However, some fixed
covariates were also considered there, and these may account for some or all
of the apparent increased risk for later events seen here.

Table 5.1 contains estimates obtained by fitting various multiplicative
Markov regression models to the data on outbreaks from patients on episodic
therapy for period I. As in Section 3.8.2, the baseline covariates include age
(years), sex (males versus females), type of herpes simplex virus (HSV type II
versus type I), and the number of recurrences in the year before entry to the
study. The Poisson, or Andersen–Gill, model (Model 1) suggests that males
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Fig. 5.5. Estimated cumulative transition rates from herpes trial (Period I - episodic
arm).

have a lower rate of outbreaks than females (p = 0.053), and that those with
a higher number of recurrences in the previous year have a higher risk of
recurrence on study (p = 0.017); the other covariate effects are not signifi-
cant. When controlling for the cumulative number of prior outbreaks since
study entry (Model 2) as in (5.15), the findings are broadly similar but sex
and the number of recurrences in the previous year are no longer significantly
associated with event occurrence; the coefficient for Ni(t−) is significant, sug-
gesting that the greater the cumulative number of events since study entry the
greater the risk of subsequent events. This is in line with the evidence from
the plots of the cumulative transition rates in Figure 5.5 and also with the
analysis of the full dataset in Section 3.8.2, where there was an indication of
some extra-Poisson variation when Ni(t−) was not included. Specifically, from
this model there is an estimated 21.1% relative increase in the risk of future
events associated with each additional event (RR = 1.211, 95% CI (1.112,
1.319), p <0.001). Model 3 is the negative binomial analogue of Model 2 but
here the variance φ of the gamma random effect is estimated to be 0.678,
indicating some evidence of overdispersion relative to Model 2. A likelihood
ratio test of φ = 0 gives an observed value of 4.96, based on a comparison
of the maximum log-likelihoods for Models 2 and 3. The p−value based on
0.5 · Pr(χ2

1 > 4.96) = 0.013.
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Fig. 5.6. Estimated state occupancy probabilities based on (5.20) and by taking
the difference of Kaplan–Meier estimates (Period I - episodic arm).

An alternative is to generalize Model 2 with event-dependent stratification,
as in Section 5.3.3. In the stratified Andersen–Gill analysis represented in
(5.21) (Model 4) the simple effect of event occurrence on future events (see
Model 2) is lost, but one can examine plots analogous to Figure 5.5. In Model
4 the regression coefficients and standard errors for age, sex, virus type, and
previous recurrences are very similar to those in Model 2. There is no evidence
of strata by covariate interactions for the covariates in this model. In Model 5
we consider possible additional effects of prior event history on the intensity
function. When controlling for the duration of the previous three gaps the
estimates suggest that the longer the most recent and second most recent
gaps, the lower the risk of a subsequent outbreak, but conclusions concerning
covariate effects are unchanged.

Tests of the multiplicative intensities assumption (Section 3.7) for the co-
variates in Model 5, carried out using the S-PLUS or R function cox.zph, give
significant evidence of nonproportionality in the effect of the most recent gap
time (p = 0.016). The corresponding diagnostic plot of Schoenfeld residuals
in Figure 5.8 suggests fitting a model with an interaction between the most
recent gap and I(t < 100), thereby allowing the effect to be constant over the
first 100 days and then fixed at a different level for the remaining time. This
more general model (Model 6) is reported in the last column of Table 5.1. The
tests for this model do not suggest any serious problems.
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Fig. 5.7. Nelson–Aalen and Aalen–Johansen estimates of the mean functions (Pe-
riod I - episodic arm and suppressive arm).

Model 6 mildly suggests a lower risk of outbreaks for males, and a higher
risk of outbreaks among individuals with more recurrences in the previous
year. Subjects who have had a long delay between their most recent out-
breaks tend to be at lower risk of a new outbreak over the first three months
following this outbreak; long gaps between the previous two outbreaks are also
associated with lower risk. In the previous analysis of Section 3.8.2, which fo-
cused on treatment effects in the full study, males showed a moderate but
nonsignificant decrease in risk in mixed Poisson models. The present analysis
gives a more detailed examination of outbreak patterns across individuals,
and gives a similar result. Such an analysis can also be applied to the full
dataset.

Stratification offers a method of conditioning on the event history which
is more general than including a time-dependent covariate Ni(t−), because a
multiplicative effect of event occurrence is not assumed. As shown in Section
3.5.2, the introduction of gamma distributed random effects also produces
intensity functions which are conditional on cumulative event counts, but the
event counts modulate the intensity in a very specific way; different random
effect distributions lead to different forms of intensities. Stratification allows
more flexibility, but the models are still of modulated Markov form.

It must be stressed that although the types of models fitted here can shed
light on the dynamics of event occurrence within individuals, the regression
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Table 5.1. Regression estimates from several models for herpes outbreak for the
episodic group during period I.

Nonstratified Models
Model 1 Model 2 Model 3

Covariate EST. S.E. EST. S.E. EST. S.E.

Age Years -0.001 0.006 -0.0005 0.006 -0.002 0.009
Sex Male -0.249 0.129 -0.205 0.129 -0.326 0.223
Virus type II 0.155 0.115 0.130 0.116 0.205 0.212
Previous recurrences 0.059 0.025 0.038 0.025 0.084 0.046
Event count Ni(t

−) – – 0.240 0.065 0.356 0.094

Variance φ – – 0.678

Log-likelihood -1408.699 -1401.651 -1398.719

Stratified Models
Model 4 Model 5 Model 6

Covariate EST. S.E. EST. S.E. EST. S.E.

Age Years 0.0001 0.006 0.001 0.006 0.002 0.006
Sex Male -0.201 0.129 -0.206 0.130 -0.219 0.130
Virus type II 0.124 0.118 0.151 0.118 0.183 0.120
Previous recurrences 0.038 0.026 0.044 0.026 0.046 0.026

Previous gaps‡

gap1 – – -0.008 0.004 – –
gap1; t < 100 – – – – -0.022 0.007
gap1; t ≥ 100 – – – – -0.003 0.004

gap2 – – -0.016 0.006 -0.017 0.006
gap3 – – -0.013 0.008 -0.013 0.008

Log-likelihood -1077.739 -1070.995 -1068.427

‡ gap1 is the most recent gap, gap2 the second most recent gap, and gap3 the third
most recent gap.

coefficients βj represent different effects in different models, so their estimates
may not be directly comparable. In particular, models may involve different
types of conditioning on prior event history, and regression coefficients must
be interpreted with other covariates and event history in the intensity held
fixed.
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Fig. 5.8. Plot of Schoenfeld residuals with loess smooth for Model 5.

5.4 Semiparametric Modulated Renewal Analysis

5.4.1 Analysis Based on the Cox Model

The preceding section has described how analysis can be based on Markov
(Andersen–Gill) models, modulated or supplemented with covariates that may
depend on previous event history. This methodology treats baseline intensity
functions nonparametrically, and can be implemented using software for the
Cox model. In this section we discuss analogous methods for modulated re-
newal processes (5.3) with the intensity function of the form

λ(t|H(t)) = h0(B(t)) exp(z′(t)β) , (5.25)

where B(t) is the backward recurrence time, or time since the last event. This
is in fact model (4.24), and models of this type were discussed in Section 4.2.
They can be handled using software for the Cox model, as described there.

Let wij = tij−ti,j−1 represent the jth gap time (j = 1, 2, . . .) for individual
i, where ti0 = τi0, the start-of-observation time for individual i. We assume
for convenience that τi0 = 0, unless it is specified otherwise. Let τi represent
the end-of-followup time for individual i so that if ni events are observed, we
have the values wij (j = 1, . . . , ni) and, if τi > tini

, a final censored gap time,
w∗

i,ni+1 = τi − tini
. For the model (5.25), the Cox partial likelihood function
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for β is then given by (4.25), and the cumulative baseline hazard function
H0(w) is estimated by (4.26).

The covariates zi(t) in (5.25) can include terms such as Ni(t−), allowing
dependence on the previous number of events. As in the case of the modulated
Markov models in Section 5.3.3, we can also use a stratified Cox model, where
for j = 0, 1, 2, . . . ,

λ(t|H(t), N(t−) = j) = h0j(B(t)) exp(z′(t)β) . (5.26)

Different β could be used in (5.26), in which case analysis amounts to a sep-
arate treatment for each of gap times W1,W2,W3, . . .. A dependence on cal-
endar time can also be included, for example, using tj−1 as a covariate when
considering the jth gap times Wj .

It has been emphasized in Chapter 4 that the validity of analyses based
on partial likelihoods such as (4.8) or (4.25) depends on the conditional in-
dependence of a gap time Wij and its censoring time, given any observed
covariates. Thus, if (5.26) or another model used for analysis is misspecified
in the sense that Wij is not conditionally independent of Cij = τi − ti,j−1,
given the observed values of covariates in the model, then estimates of regres-
sion parameters and baseline cumulative hazard or survivor functions may
be biased. An illustration involving the estimation of survivor functions in
the absence of covariates was given in Section 4.4.1. As discussed in Section
4.4, we can protect against this by incorporating terms in the covariates for
Wij that account for any dependence on previous event history, including
gap times. If there is a desire to examine the individual gap times dependent
only on baseline covariates, however, then we may need to either (i) use ran-
dom effects or a joint distribution for gap times in order to model association
among an individual’s gap times, or (ii) use inverse probability of censoring
(IPC) weights in conjunction with marginal models. These approaches were
discussed in Section 4.4.

Although the emphasis in this section is on semiparametric proportional
intensity models, recall that because Wij (j = 1, 2, . . .) can be considered as a
sequence of failure times, parametric survival analysis methods and software
can also be used, as described in Chapter 4.

It should also be noted that in many contexts, especially with observa-
tional studies, a time origin for the process under study may be unknown or
uncertain. In addition, as discussed in Section 4.5, the start of observation for
an individual may fall between successive events. For example, in studying
episodes of hospitalization or other events for persons with psychiatric disor-
ders (e.g. Kessing et al., 1999), the process might be considered to start with
the diagnosis of the disorder, but this could be made after the person has
already been hospitalized. In carrying out gap time analyses, the first gap is
often defined as Wi1 = Ti1 − τi0, where τi0 and Ti1 are the calendar times
of the start-of-followup and the first event after followup starts, respectively,
for the ith individual. Because it is not an ordinary gap time unless an event
occurs at τi0, we may wish to treat Wi1 separately from subsequent gap times.
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In some settings, the start-of-followup for an individual is taken for analysis
purposes to be the time at which his first observed event occurs. As discussed
in Section 4.5, doing this does not lead to any bias, assuming that the model
used is appropriate.

5.4.2 Illustration: Cerebrospinal Fluid Shunts

Tuli et al. (2000) discussed an observational study on children who had inter-
nal shunts inserted surgically to deal with hydrocephalus. Such shunts drain
excess cerebrospinal fluid away from the head, typically to the abdominal area,
and have led to a major decline in neurological deficit and death. Shunts are
designed to stay in patients indefinitely, but “failures” occur due to blockages,
infections, and other conditions. In the case of a failure, the existing shunt is
typically partially replaced. Tuli et al. (2000) discussed data for 839 children
who had initial shunts inserted during the years 1987–1996 at one Canadian
hospital. The data include the dates of the initial shunt insertion and any
subsequent failures up to the end of 1997. Three primary modes of failure
are indicated: Obstruction, Infection, and Other (other causes). About 70%
of the failures are due to Obstruction, with the Infection and Other causes
accounting for about 15% each. Information on deaths is also available; 121
patients died over the study period.

We consider analysis of the data with a view to identifying risk factors
associated with failure. There are four primary types of factors,

Age: the age of the child at the time of shunt insertion. This is categorized
here as age < 0, 0 ≤ age ≤ 1 year, and age > 1 year. The age < 0
category is due to the fact that some children were born prematurely and
had shunts inserted before their full-term birth date.

Etiology: cause of the hydrocephalus which necessitates the shunt. This
is represented by eight categories: IVH (intraventricular hemorrhage),
Men (meningitis), Adsten (acqueductal stenosis), Tumor, Trauma, MMC
(myelominingocele), Other (other causes), and Con (congenital).

Shunt type: categorized as vp (ventriculoperitoneal) or other.

Concurrent surgery: whether there was other surgery at the same time as the
shunt insertion.

The shunt failures for an individual are recurrent events, and some patients
experience a large number. Table 5.2 shows the distribution of total shunt
failures across the 839 patients, but we should remember that followup times
for individuals range from about one year to eleven years. Each new shunt
has its own characteristics and “lifetime” and so it is natural to focus on
these lifetimes, or gap times between successive failures. There are multiple
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event types, but in this section we consider shunt failure as a single type of
event. We consider the separate types of failures, along with death, in Section
6.2. Lawless et al. (2001) provided additional background on these data, and
observed that the effects of risk factors were for the most part similar for the
different failure modes.

Table 5.2. Number of shunt failures per patient.

No. of failures 0 1 2 3 4 5 6–10 >10
No. of patients 386 209 102 49 31 16 32 14

We consider analyses of first, second, and third failures based on semipara-
metric proportional intensity models of the form (5.26), but we allow both the
regression coefficients βj and baseline intensity functions h0j(t) to vary across
successive failures j = 1, 2, . . .. That is, the models used are of the form (4.11),
with βj estimated from the partial likelihood (4.12) and H0j(t) estimated by
(4.13). The factor Age is represented by two binary covariates indicating 0 ≤
age ≤ 1 and age > 1, respectively, so that age < 0 is baseline; Etiology is rep-
resented by seven binary covariates, with Con (congenital) as baseline; Shunt
type is represented by a binary covariate (= 1 if type = vp, 0 otherwise), as
is Concurrent Surgery (= 1 if yes, 0 if no). Etiology is fixed, but type of shunt
and concurrent surgery may vary across repeated shunt insertions.

We fit models of the form (4.11) with vectors zij which include covariates
for age, etiology, shunt type, and concurrent surgery, as described. The jth gap
or failure time Wj for a patient equals the age of the patient at the time shunt
j + 1 was inserted minus the age when shunt j was inserted (j = 1, 2, . . .);
age and time are measured in days. The age at insertion of the first shunt
varies widely across patients. For j = 2, 3 we also considered prior failure
times (w1 for j = 2 and w1, w2 for j = 3) as covariates, in order to assess any
association between successive times after conditioning on covariates. Doing
this also makes it more plausible that censoring times for w2 and w3, due to
end-of-followup, are independent. It should be noted, however, that death is a
competing risk, so the intensity models for first, second, and third failures are
interpreted in the competing risks framework for failure times (e.g. Lawless
2003a, Ch. 9). We also considered the effect of the type of the previous failure
on second and third failures, but this did not prove significant. Finally, we
considered age at the time of the jth shunt insertion as a covariate for Wj (j =
2, 3). The effects of age and of prior failure times are necessarily ambiguous
because the factors are confounded (e.g. age at first shunt insertion plus time
to first failure equals age at second shunt insertion). Therefore we consider
two types of models:

(a) Models where “age” is the age at first surgery for j = 1, 2, 3, and with the
previous failure time wj−1 (in 1000-day units) also taken as a covariate
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for j = 2, 3

(b) Models in which “age” is the age at the time of the current (j = 1, 2, 3)
shunt insertion, with wj−1 also included as a covariate for j = 2, 3.

Estimates of regression coefficients for the various fitted models are shown
in Table 5.3. There is a substantially increased risk of first failures for young
patients, with estimated relative risks (exp(β̂)) of 1.88 for the 0–1-year age cat-
egory, and 2.64 for the age < 0 category that refers to premature infants. We
remark that these age categories were defined following preliminary analysis,
and capture the age effect well. Diagnostic checks on the proportional inten-
sity assumption using the function cox.zph in S-PLUS indicated mild but
not conclusive evidence that the increased risk for younger patients decreases
with time since surgery.

The etiology categories all have estimated relative risk over one for first
failures, relative to the baseline congenital category, but for second and third
failures etiology effects, aside from IVH and Men for second failures, are not
significant. The effect of shunt type is significant for first shunts only, and
appears to decline thereafter. Concurrent surgery shows a consistent increased
risk, but is statistically significant only for first failures. For model (a), in
which age at first surgery is a covariate, a strong positive association with
time to first failure is indicated for second failures, but as we might expect,
the age at first surgery is then insignificant. For third failures neither the
baseline age nor previous failure time is significant. For model (b), the age
factor is age at the current shunt insertion; it is significant for both second
and third failures. We also observe that its effect is similar across first, second,
and third failures. The previous failure time is significant for second but not
for third failures.

The models (b) are more plausible and more easily interpreted. Once ad-
justment is made for age at the current shunt insertion, the association be-
tween first and second failure times is much reduced, and for second and third
failures it disappears.

There is not much motivation for considering second or subsequent failure
times conditional only on baseline covariates, because of the clear importance
of covariates (age, concurrent surgery) that vary across failure times. However,
there is clinical interest in whether time between successive failures tends to
shorten, after accounting for fixed and time-varying risk factors; this would
be expected if there are other unobserved risk factors that affect failure. A
reasonable look at this can be based on the models (b) in Table 5.3; the
effect of the previous gap time is only mildly significant for j = 2 and is not
significant for j = 3 so let us consider models (b) in which the previous failure
time is dropped. Figure 5.9 shows the generalized Nelson–Aalen estimates
Ĥ0j(t) for these models, given by (4.13), for j = 1, 2, 3. Note that they are
the estimated cumulative failure intensity functions for a patient with age >
1, etiology = Congenital, shunt type = other, and concurrent surgery = no.
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Table 5.3. Fitted Cox models for first, second, and third shunt failures.

Age as Age at First Surgery
First Shunt Second Shunt Third Shunt

Covariate EST. S.E. EST. S.E. EST. S.E.

Age at 1st surgery (yrs)
< 0 0.97∗ 0.20 0.44 0.27 0.67 0.40
0–1 0.63∗ 0.16 0.20 0.23 0.07 0.36

> 1 – – – – – –
Etiology

Adsten 0.60∗ 0.25 -0.26 0.39 -0.01 0.50
IVH 0.61∗ 0.21 0.61∗ 0.30 0.05 0.40
Men 0.72∗ 0.26 0.75∗ 0.34 -0.06 0.46
MMC 0.53∗ 0.19 -0.03 0.29 -0.01 0.39
Trauma 1.05∗ 0.36 0.35 0.52 0.05 0.68
Tumor 0.76∗ 0.23 0.47 0.33 0.03 0.44
Other 0.41 0.21 0.21 0.31 -0.37 0.44
Con – – – – – –

VP shunt type -0.36∗ 0.16 -0.19 0.23 -0.01 0.31
Concurrent surgery 0.44∗ 0.15 0.30 0.27 0.57 0.33
Previous failure time – – -0.56∗ 0.17 -0.24 0.17

Age as Age at Current Shunt Insertion
First Shunt Second Shunt Third Shunt

Covariate EST. S.E. EST. S.E. EST. S.E.

Age at current surgery (yrs)
< 0 0.97∗ 0.20 0.89∗ 0.34 1.21∗ 0.52
0–1 0.63∗ 0.16 0.24 0.20 0.43 0.23

> 1 – – – – – –
Etiology

Adsten 0.60∗ 0.25 -0.22 0.38 -0.29 0.51
IVH 0.61∗ 0.21 0.56 0.30 0.17 0.39
Men 0.72∗ 0.26 0.77∗ 0.34 -0.17 0.46
MMC 0.53∗ 0.19 0.00 0.28 -0.15 0.38
Trauma 1.05∗ 0.36 0.31 0.52 -0.09 0.68
Tumor 0.76∗ 0.23 0.46 0.32 0.02 0.40
Other 0.41∗ 0.21 0.22 0.31 -0.50 0.43
Con – – – – – –

VP shunt type -0.36∗ 0.16 -0.19 0.23 -0.03 0.30
Concurrent surgery 0.44∗ 0.15 0.28 0.27 0.59 0.33
Previous failure time – – -0.38 0.20 0.00 0.20

∗ |β̂/s.e.(β̂)| > 1.96.
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The plots indicate increasing risks of failure as we go from first to second
to third shunts. A point of caution, however, is that for second shunts we
have ignored the mild but significant positive association with the first shunt
failure time. This makes the censoring times for w2 slightly dependent on w2,
and similarly for w3, especially for persons with shorter followup, and may
result in a slight inflation of the estimates for H02(t) and H03(t). It should
also be noted that only about 50% of individuals become at risk for even a
second event, and additional selection effects may be present. This could be
addressed with longer followup.
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Fig. 5.9. Baseline cumulative hazard estimates for gaps 1, 2, and 3 between shunt
failures.

5.5 Some Additional Illustrations

Many processes that produce recurrent events are complex, and of course
the models that we employ to represent them are, at best, approximations
to reality. What types of intensity specifications to consider, and whether to
emphasize gap times or cumulative time on study (calendar time), are deter-
mined by the objectives of analysis and by evidence concerning the adequacy
of the models in describing the event process. Different objectives may call for
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quite different approaches. For example, rather detailed intensity-based mod-
els that incorporate previous event history or random effects may be useful
in understanding the dynamics of individual event processes. However, such
models usually do not provide easily interpreted comparisons of treatments,
or assessment of fixed covariates. For that purpose simpler descriptive models,
such as those for mean functions in Section 3.6, may be preferable.

When scientific background and objectives do not point clearly to one type
of approach, it is worth examining the data through a variety of models. In
presenting conclusions, parsimonious models are desirable, but fitting more
complex models may provide additional insights concerning the processes un-
der study. We consider here a pair of illustrations which involve different looks
at the data and the processes which give them.

5.5.1 Pulmonary Exacerbations in the Study of rhDNase

In Sections 4.3.2 and 4.4.3 we considered data on the occurrence of pulmonary
exacerbations in a randomized clinical trial on persons with cystic fibrosis. The
distribution of number of exacerbations per subject, in each of two treatment
arms, was shown in Table 1.2, and it is noted that subjects in the experimental
treatment (rhDNase) group tend to experience fewer exacerbations than those
in the control (placebo) group. However, only 139 of 324 placebo subjects, and
104 of 321 rhDNase subjects, experienced at least one event (exacerbation),
and only 42 and 39 subjects, respectively, experienced two or more events, over
the study period. Finally, when an individual experiences an exacerbation he is
treated with antibiotics, and a new exacerbation cannot occur until treatment
has ended and the person has recovered. Many of these time periods are in
the range 10–15 days, but there is a high degree of variability.

One reason to consider a gap time analysis is that once an exacerbation
has been cleared, the subject is in a sense renewed. Exacerbations promote
scarring of the lungs, which tends to decrease lung function and increase
susceptibility to infection, but we hope to deal with this by allowing the
distributions of successive times W1,W2, . . . to be different. However, there
is undoubtedly subject-to-subject heterogeneity in susceptibility, even after
controlling for treatment and FEV, because the subjects vary in terms of age
and the effects of disease. This manifests itself in the observed association
between first and subsequent gap times.

In Section 4.3.2 we fitted conditional models to the gap times W1,W2, . . .
between successive exacerbations. The results for W1 (see Table 4.2) show that
rhDNase use and higher baseline forced expiratory volume are both strongly
associated with longer times W1 to a first exacerbation. However, the first
gap time W1 is strongly positively associated with second gap time W2, in
models that include treatment and FEV as covariates, and the effects of these
covariates are no longer significant. Because of the strong positive association
between W1 and the covariates, it is impossible to separate the effects of W1,
treatment, and FEV on W2 and so this analysis does not provide insight into
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whether treatment or FEV has persistent effects beyond a first exacerbation.
As discussed in Sections 4.3.2 and 4.4.3, we can also obtain estimates of the
marginal distribution for W2. When this is done, and bearing in mind that
under half of the subjects in the study experienced a first exacerbation and so
were at risk for a second, no evidence of an effect of treatment or FEV on W2

is found. Similar analysis of third gap times W3 likewise shows no covariate
effects.

Modulated Markov models, based on time on study t, provide another way
to assess persistence of treatment effect. We show in Table 5.4 the results of
fitting four models, which are as follows, with λi(t) used to mean λ(t|Hi(t)).

Model 1: λi(t) = Yi(t)λ0(t) exp(β1xi1 + β2xi2) ,
where xi1 = I ( subject i received rhDNase), xi2 = centered FEV, and
Yi(t) indicates whether subject i is at risk of an exacerbation at time t. In
particular Yi(t) = 0 when a subject is being treated for an exacerbation.

Model 2: λi(t|ui) = uiYi(t)λ0(t) exp(β1xi1 + β2xi2) ,
where the ui are independent random effects, each with a gamma distri-
bution with mean 1 and variance φ.

Model 3: λi(t|ui) = uiYi(t)λ0(t) exp(β1xi1I(t ≤ 80)+β′
1xi1I(t > 80)+β2xi2) .

Model 4: λi(t) = Yi(t)λ0(t) exp(β1xi1I(t ≤ 80) + β′
1xi1I(t > 80) + β2xi2 +

β3zi(t)) , where zi(t) = I(Ni(t−) > 0).

Models 1 and 2 are just semiparametric Markov (Andersen–Gill) models
with and without random effects, as discussed in Sections 3.4 and 3.5. Ta-
ble 5.4 indicates that φ in Model 2 is significantly different from zero, thus
providing strong evidence against Model 1. This was to be expected, given
the previous indication of dependence in the gap times. Although Model 1 is
strongly contradicted by the data, it gives estimates of treatment effects that
are close to those for Model 2, but the standard errors are smaller. This is
in line with the discussion in Sections 3.5.3 and 3.6, where it is noted that
when observation (at-risk) periods are independent of the event processes,
both Models 1 and 2 produce robust estimates of the process mean function.
At-risk periods are not quite independent of event history here because a
person is not at risk while being treated for an exacerbation, but the effect
of this is relatively small. Adding the duration of the immediately preceding
antibiotic treatment for second and subsequent exacerbations takes away the
marginal interpretation of treatment and FEV that we have in Models 1 and
2, but their estimates remain roughly the same.

Diagnostics for Model 2 discussed in Section 3.7 suggest that the treat-
ment effect may vary over time. Model 3 incorporates time dependence; the
discontinuous effect here is not highly realistic but allows a rough look. Table
5.4 suggests that the treatment is highly effective at reducing exacerbations
over the first 80 days, but much less so thereafter. Finally, Model 4 presents
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an alternative to the use of a random effect, by including a time-dependent
covariate that indicates whether a subject has a previous exacerbation. An ex-
tension to Model 4 would be to use zi(t) = Ni(t−), but in view of the rather
small number of subjects with two or more events, we consider the simpler
model. The intensity function in Model 3, with ui integrated out, is of the
form shown in (2.33), and is qualitatively similar to the intensity in Model 4
in the sense that the occurrence of an event increases the intensity of a new
event.

The regression parameters β measure somewhat different things in terms
of the intensities in Models 3 and 4 and hence the estimates are different.
In particular, in Model 3 the parameters give relative risks for an individual,
conditional on the random effect ui that affects their baseline risk. In Model
4 the parameters are relative risks for individuals, adjusting for whether they
have had a prior exacerbation. As discussed in Sections 3.5 and 3.6, the para-
meter estimates in Model 4 are expected to be smaller, but the Wald statistics
and p−values for the regression parameters are similar.

Table 5.4. Modulated Markov models for pulmonary exacerbations.

Model 1 Model 2 Model 3 Model 4
EST. S.E. EST. S.E. EST. S.E. EST. S.E.

Treatment -0.29 0.11 -0.31 0.13 – – – –
Treatment (t ≤ 80) – – – – -0.51 0.18 -0.42 0.16
Treatment (t > 80) – – – – -0.16 0.16 -0.14 0.14
FEV -0.017 0.002 -0.019 0.003 -0.019 0.003 -0.017 0.002
I(N(t−) ≥ 1) – – – – – – 0.81 0.23

Variance (φ) – – 0.94 48.0† 0.94 48.0† – –

†No standard error available from software; value shown is likelihood ratio statistic
for testing φ = 0 (1 d.f).

The modulated Markov analyses give conclusions consistent with the gap
time analysis. In each case there is an indication of variability across subjects
that is not explained by treatment or FEV, and also a suggestion that the
treatment effect may diminish somewhat with the time on study. In experi-
mental studies it is often important to provide easily interpreted estimates of
treatment effects which may be understood in population terms. Among the
analyses conducted so far, Models 2 and 3 provide the best such summaries,
because the regression coefficients can be interpreted in terms of the rate of
events per subject; see Sections 2.2.3 and 3.5.1. If it were not for the antibi-
otic treatment periods, we would also have an interpretation through mean
functions and the population rate at time t would be the conditional rate with
ui = 1. However, this does not hold exactly here, because E(ui|Yi(t) = 1) is
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not equal to E(ui), and so in models 2 and 3 the regression coefficients are
not exactly population average effects.

A way to look at the population average effect of treatment is to consider
a mean function for the number of events per subject, estimated as in Section
3.6, without model assumptions. One approach is to consider the model

E{Ni(t)|xi} = µ0(t) exp(β1xi1 + β2xi2) , (5.27)

which represents the expected number of exacerbations up to t days on study,
without any adjustment for days not at risk due to treatment for an infec-
tion. The followup time (as opposed to total at-risk time) of approximately
169 days for most subjects is independent of their event process, and so the
methodology of Section 3.6.2 can be applied. Table 5.5 shows the resulting
estimates of β1 and β2. Consistent with the discussion above concerning the
fairly small effect of periods where subjects received antibiotics, this gives
estimates that are similar to those for Models 1 and 2. Diagnostic checks of
(5.27) show that the effect of treatment may not be constant over time, so we
fit a second model that stratifies on treatment:

E{Ni(t)|xi} = µ0,xi1(t) exp(βxi2) . (5.28)

The estimated effects of FEV, shown in Table 5.5 are comparable but the
more interesting point is to compare µ̂0(t) and µ̂1(t), shown in Figure 5.10.
This indicates a roughly linear mean function, and roughly constant rate of
exacerbations, for the placebo group (xi1 = 0), but suggests a very slightly
increasing rate of exacerbations for the rhDNase group. This is consistent with
a treatment effect that is diminishing slightly with time on study.

Table 5.5. Estimates of mean function for rhDNase study based on models (5.27)
and (5.28).

Model (5.27) Model (5.28)
EST. S.E. EST. S.E.

Treatment -0.27 0.12 – –
FEV -0.017 0.003 – –

Stratified model
FEV for control patients – – -0.019 0.004
FEV for rhDNase patients – – -0.015 0.004

5.5.2 Analysis of Asthma Exacerbations

We consider data from a multicenter randomized trial designed to assess the
effect of 400 versus 200 µg/day of fluticasone propionate for the prevention of
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Fig. 5.10. Expected cumulative number of pulmonary exacerbations versus time
on study for rhDNase study.

exacerbations among children with asthma between four and eleven years of
age (Verona et al., 2003). In the study, 261 and 267 children were randomized
to received 400 µg and 200 µg daily doses, respectively. The original protocol
specified 3 months followup but after discussion, a protocol amendment was
established to extend followup to 12 months. During followup, participants
attended scheduled assessments and clinical examinations to record use of
additional medications, assess quality of life, and obtain lung function and
other laboratory measurements. The primary outcome in the following analy-
ses is the occurrence of exacerbations. Table 5.6 displays the distribution of
the number of exacerbations experienced across all subjects, but it should be
noted that a substantial number of subjects dropped out of the study after 3
months, as described below.

Figure 5.11 gives the Nelson–Aalen estimates of the cumulative mean func-
tions µ̂(t) for the two groups. Comparison of the estimates reveals a separation
early on which increases slightly over the followup period. A robust test of a
treatment effect based on (3.52) with a(u) = 1 gives p = 0.0732. The relative
rate of exacerbations for individuals receiving 400 µg/day versus 200 µg/day
of fluticasone propionate based on a proportional rate function model as in
Section 3.6.3 is 0.793 and a 95% confidence interval based on a robust variance
estimate is (0.616, 1.022). This is a robust estimate of the effect of treatment
dose, relevant for primary analysis of this clinical trial. As discussed in Section
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Table 5.6. Distribution of frequency of exacerbations in asthma study with daily
doses of fluticasone propionate.

Dose of Treatment

Frequency of 200 µg/day 400 µg/day

Exacerbations Number Percent Number Percent Total

0 126 47.2 132 50.8 258
1 59 22.1 55 21.2 114
2 38 14.2 39 15.0 77
3 14 5.2 15 5.8 29
4 7 2.6 10 3.8 17
5 9 3.4 0 0.0 9
6 4 1.5 2 0.8 6
7 5 1.9 2 0.8 7
8 2 0.7 3 1.2 5
9 0 0.0 2 0.8 2
10 1 0.4 0 0.0 1
11 0 0.0 0 0.0 0
12 2 0.7 0 0.0 2

Total 267 100.0 261 100.0 528

3.6, robust marginal comparisons of this sort are valid provided the censoring
process is completely independent of the event process.

The regression analyses that follow are more directed at understanding
prognostic variables for exacerbations and process dynamics. These types of
analyses are driven by questions regarding risk factors associated with event
occurrence, which may help identify high-risk patients or time periods of
higher risk. We include the treatment covariate because there is some evidence
that it has an effect, based on direct comparisons of the two treatment arms.
As discussed earlier, we caution readers regarding the different interpretations
of the treatment effect in the models that follow, however. Models featuring
conditioning on event occurrence after randomization (i.e. events responsive
to treatment) can lead to quite different estimates than marginal comparisons;
often the estimate of treatment effect is attenuated. In intensity-based models
the treatment effect is interpreted as the relative intensity of events among
subjects with the same covariate values and relevant event histories.

Regression Analysis

We consider here regression analyses involving the following covariates: xi1, a
treatment indicator such that xi1 = 1 if subject i was randomized to receive
400 µg/day and xi1 = 0 otherwise, xi2 such that xi2 = 1 if subject i is male
and 0 otherwise, xi3 which is the subject’s age in years (centered on the sample
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Fig. 5.11. Nelson–Aalen estimates of the cumulative mean function for the groups
receiving 400 and 200 µg/day of fluticasone propionate.

mean), xi4 which is the subject’s weight in kilograms (centered on the sample
mean), xi5 which is the subject’s centered percentage predicted expiratory
flow (PEF) rate, a measure of lung function, and a categorical time-dependent
covariate xi6(t) denoting the season, with xi6(t) = 1 during January–March,
xi6(t) = 2 during April–June, xi6(t) = 3 during July–September, and xi6(t) =
4 during October–December.

Table 5.7 displays the results of fitting several multiplicative models to the
data. The first model (Model 1A) is Poisson with intensity

λi(t|Hi(t)) = ρ0(t) exp(x′
i(t)β) ,

where xi(t) = (xi1, xi2, xi3, xi4, xi5, x
∗
i6(t))

′, with x∗
i6(t) = (I(xi6(t) = 2),

I(xi6(t) = 3), I(xi6(t) = 4)). Model 2A is a more general model control-
ling for the cumulative number of exacerbations up to the fifth. The intensity
is of the form

λi(t|Hi(t)) = λ0(t) exp(x′
i(t)β + γN∗

i (t−)) ,

where N∗
i (t) = Ni(t) for Ni(t) ≤ 5 and N∗

i (t) = 5 if Ni(t) > 5. A Wald
or likelihood ratio test of Model 2A versus 1A (i.e. of γ = 0) suggests that
the introduction of γN∗

i (t−) significantly improves the fit and so Model 2A is
preferred over 1A. The estimate of treatment effect in Model 1A represents
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the log-relative rate of exacerbations among subjects with the same sex, age,
weight, %PEF, and during the same season. In Model 2A, the treatment
comparison is further restricted to subjects with the same cumulative number
of events and it is not surprising that the estimates of effect are quite different
in Models 1A and 2A. For each additional previous exacerbation, the risk of
subsequent exacerbation increases by an estimated 60% (RR = 1.60, p <
0.0001).

Model 3A represents a further generalization through stratification. Based
on the frequency distribution in Table 5.6 we consider six strata and assume
that the baseline rate of events is the same for the fifth and subsequent events;
this is equivalent to stratifying on N∗

i (t−) to give

λi(t|Hi(t)) =
5∑

k=0

Yik(t)αk0(t) exp(x′
i(t)β) .

This model relaxes the assumption in Model 2A of the proportional effect of
each exacerbation on the intensity. The estimates and conclusions regarding
covariate effects are very similar to those of Model 2A; their interpretations
are quite similar too. Event rates αk0(t) can be compared through plots of
the estimated cumulative baseline rate functions (5.24).

It should be noted that the log-likelihood for model 3A is not comparable
to those for Models 1A and 2A because of the stratification. We discuss later
in the example how to assess the need for stratification.

Table 5.7. Results from fitting several models to data on recurrent asthma exacer-
bations.

Unstratified Stratified

Model 1A Model 2A Model 3A
Covariate EST. S.E. EST. S.E. EST. S.E.

Treatment -0.212 0.080 -0.106 0.080 -0.101 0.081
Sex -0.066 0.088 -0.052 0.088 -0.072 0.089
Age -0.135 0.024 -0.069 0.024 -0.073 0.024
Weight 0.015 0.005 0.007 0.005 0.007 0.005
% PEF 0.003 0.002 0.003 0.002 0.001 0.002
Season Jan–March – – – – – –

April–June 0.001 0.347 -0.071 0.350 -0.138 0.350
July–Sept 0.156 0.468 0.129 0.466 -0.043 0.469
Oct–Dec 0.369 0.424 0.381 0.425 0.291 0.426

Event count – – 0.468 0.029 – –

Log-likelihood -3894.650 -3778.942 -2992.146
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Table 5.8. Results from fitting several random effect models to data on recurrent
asthma exacerbations.

Unstratified Stratified

Model 1B Model 2B Model 3B
Covariate EST. S.E. EST. S.E. EST. S.E.

Treatment -0.211 0.127 -0.158 0.107 -0.110 0.085
Sex -0.102 0.142 -0.083 0.118 -0.080 0.094
Age -0.128 0.037 -0.102 0.032 -0.079 0.025
Weight 0.015 0.009 0.011 0.007 0.008 0.006
% PEF 0.002 0.003 0.003 0.002 0.001 0.002
Season Jan–March – – – – – –

April–June -0.024 0.345 -0.047 0.348 -0.132 0.349
July–Sept 0.141 0.465 0.140 0.464 -0.033 0.469
Oct–Dec 0.355 0.424 0.370 0.423 0.297 0.426

Event count – – 0.209 0.037 – –

Variance (φ) 1.187 0.569 0.066

Log-likelihood -3778.729 -3775.373 -2991.887

Models 2A and 3A incorporate dependence on prior events in the intensity
function. Some or all of the apparent dependence could be due to unobserved
individual effects, so we also consider analogous random effects models of the
form (3.28). Table 5.8 gives the estimates and standard errors obtained from
models with gamma random effects using coxph with the frailty(id) option.
We refer to the mixed Poisson model analogous to Model 1A as Model 1B.
The maximum likelihood estimate of the random effect variance is φ̂ = 1.19,
suggesting the presence of extra-Poisson variation. This is also indicated by
a comparison of the maximum log-likelihoods under Models 1A and 1B, and
reflected in the substantially larger standard errors for regression coefficient
estimates in Model 1B than in 1A. Although the point estimates are similar
in the two models, treatment and weight are not strongly significant in Model
1B. The gamma variance parameter estimate is quite a bit smaller in Model
2B where N∗

i (t−) is controlled for; here one obtains φ̂ = 0.57. The difference
in maximum log-likelihoods for Models 2A and 2B is much smaller than for
1A and 1B, but still significant. The maximum likelihood estimate of φ in
Model 3B is only 0.07 and the standard errors are much closer to those of
Model 3A, indicating little need to model any subject to subject variability
beyond that explained by the fixed effects in Model 3A.

Note that the models in Table 5.7 are nested within the corresponding
models in Table 5.8 (e.g. 3A is nested within 3B). Thus likelihood ratio tests
performed for the need for random effects are based on a 50:50 mixture of
a point mass at zero and a χ2

1 distribution under the null hypothesis that
φ = 0 (e.g. Moran, 1971). The likelihood ratio test of 3A versus 3B gives p =
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0.24. Figure 5.12 gives the profile relative likelihood functions for φ based on
Models 1B–3B, respectively. These are obtained using the coxph function with
a specified value for the variance parameter; the command is +frailty(id,
theta=theta.fixed), where theta.fixed is the specified value of φ.

We consider Model 3A as a possible final model for the exacerbation
process. Additional analyses did not yield any evidence of a dependence on
previous gap times. For a more formal assessment of the need for stratification
we also consider the model

λi(t|Hi(t)) = λ0(t) exp(x′
i(t)β +

4∑

k=1

γkI(Ni(t−) = k) + γ5I(Ni(t−) ≥ 5))

which over the first few exacerbations may be viewed as a model intermediate
between 2A and 3A. It is more general than 2A because it does not assume
the same multiplicative increase in the rate for the second event as for the first
event. If γk = kγ1 for k = 2, 3, 4, 5, then these models would be comparable for
up to the fifth event. This model is less general than 3A however, because it
assumes that the baseline functions for the four strata are proportional, but it
facilitates testing the need for stratification. The estimated coefficients (s.e.)
are γ̂1 = 0.729 (0.105), γ̂2 = 1.000 (0.138), γ̂3 = 1.797 (0.167), γ̂4 = 1.763
(0.201), γ̂5 = 2.314 (0.169), and the corresponding log-likelihood is −3772.816.
The likelihood ratio test of this model versus Model 2A gives a likelihood ratio
statistic 23.362 with p = Pr(χ2

4 > 12.252) = 0.016. Because the intermediate
model appears superior to Model 2A, we take this as evidence that some
form of stratification is warranted. The tests for the proportionality of the
covariates effects for I(Ni(t−) = k), k = 1, 2, 3, 4, and I(Ni(t−) ≥ 5) in
this intermediate model give fairly strong evidence against the assumption
of multiplicative effects for I(Ni(t−) = 1) and I(Ni(t−) ≥ 5) with p−values
p = 0.012 and p = 0.023, respectively, although the global test of fit based
on cox.zph gives p = 0.299. Because of the evidence against multiplicative
effects for some of these variables we conclude that full stratification as given
in Model 3A is a more appropriate way of addressing the dependence on the
event history for these data and therefore Model 3A preferred.

The estimates in Model 3A suggest that, when controlling for all other
covariates, there may be a mild reduction in the risk of exacerbations with
400 µg/day versus 200 µg/day of fluticasone (RR = 0.90, 95% CI (0.77, 1.06),
p = 0.212). For each additional year of age the risk of exacerbations decreases
by an estimated 7% (RR = 0.93, 95% CI (0.89, 0.97), p = 0.002). There is no
significant assocation between weight or percentage predicted peak expiratory
flow on the risk of exacerbations (p = 0.193 and p = 0.403, respectively). A
three degree of freedom Wald test reveals that there is no significant seasonal
variation in the rate of exacerbations (p = 0.807).

There is always the question as to whether dependence on prior event
history is partly or fully due to heterogeneity across subjects. In this case we
prefer the fixed effect Model 3A to the random effects Model 2B, because in
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Model 2B there remains a strong effect due to prior event count, whereas the
addition of a random effect to Model 3A (see Model 3B) is insignificant. Note,
however, that although Models 3A and 2B have different covariate effects, the
Wald statistics and p−values for tests of no effect are similar.
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Fig. 5.12. Profile relative likelihood plots for φ in Models 1B–3B.

5.6 Bibliographic Notes

Intensity-based modeling was discussed in Chapters 1 and 2, and the Bib-
liographic Notes in Sections 1.7 and 2.7 noted that the literature on point
processes (e.g. Cox and Isham, 1980; Daley and Vere-Jones, 1988) contains
much material. In the counting process literature on event history analysis,
Andersen et al. (1993) provide a very thorough account of intensity-based
methods, emphasizing modulated Markov models. Aalen et al. (2004) pro-
vide interesting discussion on intensity-based versus random effects modeling.
Fosen et al. (2006a,b) give an interesting perspective on internal covariates
and the use of path analysis methods to assess internal and external covariate
effects.

Cox (1972b) introduced semiparametric modulated renewal models and
Andersen and Gill (1982) considered Markov models, stimulated by the Cox
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model in survival analysis (Cox, 1972a). Lawless and Thiagarajah (1996) con-
sidered the hybrid parametric models of Section 5.2.1 and Lindqvist et al.
(2003) introduced the trend renewal process of Section 5.2.2, extending an
idea of Berman (1981). Examples of other intensity-based models abound in
the literature associated with long series of events, for example, in the analysis
of earthquake occurrences (Ogata, 1988) and signal processing (Snyder and
Miller, 1991).

Modulated Markov processes and Cox-type statistical analysis were em-
phasized by Prentice et al. (1981), who also introduced stratification. Prentice
et al. (1981) and Gail et al. (1980) considered modulated and stratified renewal
models of the semiparametric Cox type. Different methods of estimating tran-
sition probabilities in multistate models, as used in Section 5.3, were discussed
by Couper and Pepe (1997), Aalen et al. (2001), Datta and Satten (2001),
Glidden (2002), Cook et al. (2003), and others. Maller et al. (2002) consider
the Kaplan–Meier method (Pepe, 1991) for estimation of µ(t) via (5.18). An-
dersen et al. (1993) is an authoritative reference on modulated Markov models
as well as on estimation for Markov multistate models. Formal justification of
the methodology in Section 5.4 for modulated revewal or semi-Markov models
is considered by Oakes and Cui (1994) in the case of a single process and, for
multiple processes, by Dabrowska et al. (1994). Lawless et al. (2001) provide
informal justification by noting the connection between maximum likelihood
methods for semi-Markov models with piecewise-constant baseline intensity
functions and the Cox-type semiparametric analysis. Chang and Wang (1999)
consider further examples of modulated renewal or semi-Markov models with
stratification. Many applications of modulated semi-Markov models are found
in the economics and social sciences literature; see, for example, Heckman and
Singer (1985, 1986) and Heckman and Walker (1992) for insightful discussion
and examples.

A number of authors provide comparisons of calendar time and gap time
analyses of specific datasets, and of different strategies for assessing the effects
of event history on the intensity. For examples, see Therneau and Hamilton
(1997), who consider the rhDNase dataset of Section 5.5.1, Keiding et al.
(1998), Therneau and Grambsch (2000, Ch. 8), Kalbfleisch and Prentice (2002,
Ch. 9), and Cai and Schaubel (2004b). Lin (1994), Clayton (1994), Gao and
Zhou (1997), and Wei and Glidden (1997) consider alternative methods for
settings that include multivariate failure times as well as recurrent events.

5.7 Problems and Supplements

5.1. Obtain the p× p Hessian matrix H = ∂2�(θ)/∂θ∂θ′ for the log-likelihood
function (5.6) for the log-linear model (5.5). Prove that a′Ha ≤ 0 for any real
vector a = (a1, . . . , ap)′, and thus deduce that �(θ) is convex and has a unique
maximizer θ̂, provided

∑m
i=1 Yi(t)zi(t)z′i(t) is positive definite for at least one

value of t > 0.
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Prove a similar result for an additive model where λ(t|H(t)) = z′(t)θ.
What complication does the need to restrict θ so that z′(t)θ ≥ 0 introduce?

[Section 5.1]

5.2. Additive models as in (2.22) sometimes describe recurrent event data
well. For the system failure data of Section 5.2.4, consider parametric models
with intensities of the form

λ(t|H(t)) = g1(t;β) + I(N(t−) > 0)g2(B(t);α) ,

where B(t) = t − N(t−). Fit such models and assess their adequacy.

[Section 5.2]

5.3. Consider the data in Problem 3.18 on unscheduled maintenance events
for engine number 4 on the submarine U.S.S. Grampus.

a. Use parametric models like those in Section 5.2.4 to investigate the na-
ture of the event intensity. Do either Poisson or renewal processes appear
satisfactory?

b. There were also scheduled engine overhauls at various times (Ascher and
Feingold, 1984, p. 76). Overhauls were performed at times (in thousands of
hours of operation) 1.203, 3.197, 5.414, 7.723, 10.594, 14.357, and 15.574.
Assess whether overhauls have any effect on the unscheduled event inten-
sity. Does there appear to be any renewal effect following an overhaul?

[Section 5.2]

5.4. Tests for trend were discussed in Section 3.7.1. Generalize the score tests
there by considering the intensity model

λ(t|H(t)) = h0(B(t); γ) exp(βg(t)) , (5.29)

where h0(w; γ) is a specified parametric hazard function and g(t) is a spec-
ified function. That is, given data over [0, τi] for independent individuals
i = 1, . . . ,m, consider partial score test statistics (A.10) in Appendix A for
H0 : β = 0, where U(0, γ̃(0)) is of the form

U =
m∑

i=1

(
∂�i(β, γ)

∂β

) ∣∣
∣
∣
∣
β=0,γ=γ̃

(5.30)

where γ̃ is the maximum likelihood estimate of γ when β = 0 in (5.29). Note
that γ̃ is obtained by fitting the renewal process where the gap times Wij

have hazard function h0(w), as discussed in Section 4.1. Consider (5.30) in
the special case where g(t) = t; give a variance estimate for U .

[Section 5.2]
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5.5. The model (5.29) is a modulated renewal process (4.24) with z(t) = g(t),
and we can test H0 : β = 0 in the semiparametric model where h0(B(t)) is not
specified parametrically, as described in Section 4.2.4. Use both this approach
and the approach of Problem 5.4, with h0(w) = γ1γ2t

γ2−1 of Weibull form,
to test for trend in the air-conditioning failure data of Section 5.2.4. What
complication does the fact that m = 1 introduce? See also Problem 5.10.

[Sections 5.2 and 5.4]

5.6. Carefully describe why the multistate analysis in Section 5.3.1 provides
estimates of mean functions which are robust to state-dependent censoring,
when the Markov model holds.

[Section 5.3]

5.7. Show that p̂0k(t) from (5.20) equals Y·k(t)/m and then prove that the
Nelson–Aalen estimate of the mean function µ(t) is numerically identical to
the estimate based on (5.18) and(5.20), in the absence of any censoring before
time t.

[Section 5.3; Andersen et al., 1993, Section 4.4.1.4]

5.8. Consider the method of estimating the mean function µ(t) = E{N(t)}
described in Section 5.3.2. That is,

µ̂(t) =
∞∑

k=0

kp̂0k(t) =
∞∑

k=1

F̂k(t) , (5.31)

where Fk(t) = Pr(Tk ≤ t) and F̂k(t) is the Kaplan–Meier estimate based on
data (tik, δik), where δik = I(Tik ≤ τi).

a. Show that if there is no censoring of an individual before time t, then
(5.31) equals the Nelson–Aalen estimate (3.17).

b. Discuss why (5.31) will be biased if censoring times τi depend on the
number of prior events.

[Section 5.3; Pepe, 1991; Cook et al., 2003]

5.9. Consider a clinical trial designed to assess the effect of an experimental
treatment versus a placebo control on the prevention of recurrent complica-
tions such as asthma exacerbations.

a. Discuss the utility of intensity-based models as a basis for the primary
analysis of a treatment comparison on the occurrence of events.

b. Discuss the utility of intensity-based methods for secondary analyses ex-
ploring the natural history of the disease process in the control arm.

[Section 5.3]
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5.10. Consider a modulated renewal process with intensity function of the
form (5.29), and for simplicity consider h0(w; γ) = γ and g(t) = t.

a. Consider maximum likelihood estimation of (γ, β) based on observation
of a single process (m = 1) over the period [0, τ ]. What conditions seem
needed for (γ̂, β̂)′ to be asymptotically normal as τ → ∞?

b. Consider the partial score statistic for testing that β = 0. Show it has a
limiting normal distribution as τ → ∞.

c. Consider the semiparametric model where h0(w) is arbitrary, with β es-
timated using (4.25). What seems needed for β̂ to have a normal limiting
distribution as τ → ∞?

d. Investigate the various distributions above by simulation.

[Sections 3.7.1, 5.2, 5.4; Feigin, 1976; Cox, 1972b; Oakes and Cui, 1994]

5.11. For the pulmonary exacerbation analysis in Section 5.5.1, explain why
it makes sense to assume persons are at risk of an exacerbation event at all
followup times for the estimates shown in Table 5.5, but to exclude periods
where a person is being treated for an exacerbation with antibiotics, for the
models represented in Table 5.4.

[Section 5.5]



6

Multitype Recurrent Events

6.1 Multivariate Event Data

In many studies of chronic disease subjects are at risk of different types of
recurrent events. For example, transient ischemic attacks may be classified
according to location in cardiovascular trials, migraines may be differentiated
by severity in neurological studies, and in respiratory studies asthma exacer-
bations may be subtyped according to cellular analyses of sputum samples. In
other settings, one may record the causes of production stoppages in manu-
facturing, different types of financial transactions in commerce, and the types
of claims filed by insurance policy holders.

It may be sufficient to perform separate analyses for the different event
types, especially if they occur more or less independently of each other. How-
ever, models for multivariate counting processes are most often needed if
events are related or if the occurrence of one event affects the risk of an-
other type of event. The methods discussed in Chapters 2 to 5 can readily
be adapted to facilitate joint analyses. For example, intensity-based models
can provide a full specification of a multivariate point process. Internal time-
dependent covariates may be used to express the effect of one type of event on
the occurrence of other types. It is also sometimes helpful to formulate mul-
tivariate models through assumptions of conditional independence between
events given univariate or multivariate random effects, a natural adaptation
of the approaches of Sections 3.5 and 4.2. Finally, when interest lies in rate
or mean functions, or other marginal features, the robust methods discussed
in Section 3.6 may be adapted.

We consider the approaches just mentioned in Sections 6.2 to 6.4. We also
look at two special settings in Sections 6.5 and 6.6, the first involving repeated
transitions between two states and the second involving recurrent events in the
presence of a terminating event. We present the methodology first, deferring
illustrations to Section 6.7.
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6.2 Intensity-Based Methods

6.2.1 Notation and Intensity Functions

We start by extending the notation of previous chapters to deal with multiple
types of events. Consider a sample of m subjects in which each subject is at
risk of J different types of recurrent events. Let i index subjects and j index
the event types so i = 1, . . . , m, and j = 1, . . . , J . Let Nij(t) be the number of
type j events occurring over the interval [0, t] for subject i, ∆Nij(t) = Nij(t+
∆t−)−Nij(t−), and let dNij(t) = Nij(t)−Nij(t−) indicate whether a type j
event occurred for subject i at time t ≥ 0. The full vector of counting processes
is denoted Ni(t) = (Ni1(t), . . . , NiJ (t))′, and dNi(t) = (dNi1(t), . . . , dNiJ (t))′,
i = 1, . . . , m. We assume that each subject is under observation for all types
of events over the same period of time, although it is possible to relax this
assumption. Let [0, τi] denote the period of observation for subject i and as
before, let Yi(t) = I(t ≤ τi). The event history for subject i is Hi(t) = {Ni(s) :
0 ≤ s < t} and the intensity function for type j events is defined as

λij(t|Hi(t)) = lim
∆t↓0

Pr(∆Nij(t) = 1|Hi(t))
∆t

.

Let tijk, k = 1, . . . , Nij(t), denote the times of type j events over [0, t], j =
1, . . . , J and ti1, . . . , tiNi·(t−) denote the times of all types of events for subject
i over [0, t], with Ni·(t) =

∑J
j=1 Nij(t), ∆Ni·(t) = Ni·(t + ∆t−)−Ni·(t−) and

dNi·(t) =
∑J

j=1 dNij(t). We assume that at most one event can occur at any
given time, with

Pr{∆Nij(t) = 1|Hi(t)} = λij(t|Hi(t))∆t + o(∆t)

Pr{∆Ni·(t) = 0|Hi(t)} = 1 −
J∑

j=1

λij(t|Hi(t))∆t + o(∆t) (6.1)

Pr{∆Ni·(t) ≥ 2|Hi(t)} = o(∆t).

Therefore, if we consider events over a specified time period [0, τ ] for subject
i, and the partition 0 = u0 < u1 < · · · < uR = τ with ∆ur = ur+1 − ur, then
the probability distribution of Ni(u0), . . . , Ni(uR) is

R∏

r=0

Pr(Ni(ur)|Hi(ur)) =
R∏

r=0

Pr(∆Ni(ur)|Hi(ur))

which is given by

R∏

r=0

⎧
⎪⎨

⎪⎩

J∏

j=1

[λij (ur|Hi(ur)) ∆ur]
∆Nij(ur)

⎡

⎣1−
J∑

j=1

λij (ur|Hi(ur)) ∆ur

⎤

⎦

1−∆Ni·(ur)
⎫
⎪⎬

⎪⎭
,
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plus terms of higher order in the ∆ur. The likelihood is obtained by dividing
by
∏

j

∏
k(∆tijk) and taking the limit as R → ∞ as in Section 2.1, to give

Li =

⎧
⎨

⎩

J∏

j=1

nij∏

k=1

λij(tijk|Hi(tijk))

⎫
⎬

⎭
exp(−

J∑

j=1

∫ τi

0

λij(u|Hi(u))du)

=
J∏

j=1

{
nij∏

k=1

λij(tijk|Hi(tijk)) exp(−
∫ τi

0

λij(u|Hi(u))du)

}

. (6.2)

The factorization in (6.2) reveals that with intensity-based analyses where the
type-specific intensity functions are functionally independent, estimates of the
different intensities can be obtained separately by maximum likelihood. As
discussed in Section 2.6, the expression (6.2) can also be used as a likelihood
function when τi is random, provided that it is a stopping time. One may
then adopt a particular intensity-based model, as in Chapter 5, for each of
the specific event types.

6.2.2 Remarks on Intensity-Based Models

Intensity functions of the Poisson form λij(t|Hi(t)) = ρij(t) imply that the
event processes are mutually independent. This is a very special situation, al-
though when covariates are present, the assumption is only one of conditional
independence. However, it is often implausible that the available covariates
will explain the full extent of association between event types and so we should
consider the possibility that the processes are related. Intensity-based models
have great flexibility, but we usually look for fairly parsimonious models that
capture the dynamics of the individual processes and relationships between
them. We mention here a few types of model.

Markov models include ones analogous to (5.14) for each type of event.
Specifically, the intensity function for type j events may adopt a new func-
tional form upon the occurrence of each type j event, j = 1, 2, . . . , J . If
Yijk(t) = I(Tijk ≤ t < Tij,k+1), then we may consider

λij(t|Hi(t)) =
∞∑

k=0

Yijk(t)αjk(t) , (6.3)

where αjk(t) is the rate of type j events among subjects with k such events
over [0, t], k = 0, 1, . . .. This may be modulated by covariate effects. For exam-
ple, let zijh(t), h = 1, 2, . . . , qj denote internal covariates capturing different
aspects of the history for the jth process over [0, t), xij(t) denote external
covariates, zij(t) = (zij1(t), . . . , zijqj

(t), x′
ij(t))

′, and amend Hij(t) to

Hij(t) = {Nij(s) : 0 ≤ s < t; zij(s) : 0 ≤ s ≤ t} .

Then we can consider
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λij(t|Hi(t)) =
∞∑

k=0

Yijk(t)αjk0(t) exp
(
z′ij(t)βj

)
(6.4)

where βj is a vector of coefficients. We may often wish to assume that the
αjk0(t) are the same and denoted αj0(t) in (6.4), and use zij(t) to model the
dependence on event history.

This model does not address possible associations between the different
types of event occurrences, but generalizations which do are easily obtained.
For example, one may set

λij (t|Hi(t)) =
∞∑

k=0

Yijk(t)αjk0(t) exp (z′i(t)βj) , (6.5)

where zi(t) = (z′i1(t), . . . , z
′
iJ (t))′ contains relevant information on the history

of all processes over [0, t), βj is a vector of coefficients for type j events, and

Hi(t) = {Ni(s) : 0 ≤ s < t; zi(s) : 0 ≤ s ≤ t} .

Examples of useful internal covariates include the cumulative number of type
j events (zij1(t) = Nij(t−)), the most recent gap time for type j events,
(zij2(t) = I(Nij(t−) > 0)(tijk − tij,k−1), where Nij(t−) = k), or the number
of type j events in the past s time units (zij3(t) = I(t > s)(Nij(t−)−Nij((t−
s)−))). Another example is

λij(t|Hi(t)) =
∞∑

k=0

I(Ni·(t−) = k)αjk(t) , (6.6)

which has the intensity for type j events depending on the cumulative number
of events of any type.

Semi-Markov models may also be specified. Let Bi(t) denote the backwards
recurrence time for the previous event of any type, and Bij(t) denote the
backwards recurrence time for the previous type j event. Independent semi-
Markov models for each event type have intensities of the form

λij(t|Hi(t)) = hj(Bij(t)) , (6.7)

where hj(·) is the hazard function for the gap time between type j events. If

λij(t|Hi(t)) = hj(Bi(t)) , (6.8)

then renewals occur at the time of each event of any type. Modulated re-
newal models are obtained by the introduction of covariates dependent on the
process history as discussed in Chapter 4. Introducing covariates into (6.7)
gives, for example,

λij(t|Hij(t)) = hj(Bij(t)) exp (z′i(t)βj) , (6.9)

a model with a basic renewal structure for type j events which may be mod-
ulated by other information on past events.
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In some settings, it may be appropriate to use Markov time scales for
modeling the occurrence of some event types and semi-Markov time scales
for others. For example, consider a machine which breaks down from two
causes. One cause (type 1) may be due to failure of a particular part which is
replaced upon failure and the other cause (type 2) may be due to the general
wear of another part which is repairable but cannot be easily replaced. A semi-
Markov model could be used for type 1 failures because the replacement of
the part constitutes a renewal; a Markov time scale could reflect the generally
increasing failure rate with increasing wear on the repairable part. Of course,
intensity functions with both time scales can also be used (see Section 5.1).

6.3 Random Effect Models for Multitype Events

Intensity-based analyses provide explicit expressions for the dependence be-
tween event processes through time-dependent stratification and covariates.
Sometimes, however, it is of interest to formulate models through the intro-
duction of random effects. When appropriate, these models can provide a par-
simonious representation of dependence or association between event types.
Let

λij (t|Hi(t), uij) = lim
∆t→0

Pr (∆Nij(t) = 1|Hi(t), uij)
∆t

(6.10)

denote the event intensity at time t for events of type j, conditional on subject
and type-specific random effect uij > 0, and covariate and event history Hi(t).
Multiplicative random effect models are discussed in Sections 2.2.3 and 3.5.
In the present framework we consider

λij (t|Hi(t), uij) = uijλij (t|Hi(t)) ,

where uijλij (t|Hi(t)) is referred to as the conditional intensity function for
type j events. Let ui = (ui1, . . . , uiJ )′ denote the multivariate random ef-
fect, which we assume arises from distribution G(ui;φ). So-called “genuine
multivariate” random effect models involve separate parameters for variances
and covariances of the component random effects. These are typically para-
meterized so that E(uij) = 1, var(uij) = φj , and cov(uij , uik) = φjk, for
j, k = 1, 2, . . . , J .

The derivation of (6.2) with λij(t|Hi(t)) replaced with λij (t|Hi(t), ui) =
uijλij (t|Hi(t)) gives the likelihood conditional on ui as

J∏

j=1

{
nij∏

k=1

uijλij (tijk|Hi(tijk)) exp
(

−uij

∫ τi

0

λij (u|Hi(u)) du

)}

,

and the marginal likelihood for individual i as
∫ J∏

j=1

{
nij∏

k=1

uijλij(tijk|Hi(tijk)) exp

(
−uij

∫ τi

0

λij(u|Hi(u))du

)}

dG(ui; φ) .

(6.11)
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With multivariate random effects, it is often assumed that λij (t|Hi(t)) =
λij (t|Hij(t)), where Hij(t) = {Nij(s) : 0 ≤ s < t; xij}, because the general
approach is to assume independence of different event types, given the random
effect. Mixed Poisson models are obtained if λij (t|Hij(t)) = ρij(t). As in
Section 3.5, we then find E{Nij(t)} = µij(t) =

∫ t

0
ρij(u)du, var{Nij(t)} =

µij(t) + φjµ
2
ij(t), and by the conditional covariance formula,

cov {Nij(s1, t1), Nij(s2, t2)} = φj µij(s1, t1)µij(s2, t2) , (6.12)

for nonoverlapping time intervals (s1, t1) and (s2, t2). Here however, we obtain
as well, for j �= k and arbitrary intervals,

cov {Nij(s1, t1), Nik(s2, t2)} = φjk µij(s1, t1)µik(s2, t2) . (6.13)

As before, the variances reflect extra-Poisson variation and association of the
event counts from each process, and by (6.13) the covariances between the
random effects accommodate association among the different types of events.

In such multivariate mixed Poisson models, the overall likelihood condi-
tional on ui = (ui1, . . . , uiJ )′ is of the form

J∏

j=1

{
nij∏

k=1

uijρij(tijk) exp (−uijµij(τi))

}

,

and the marginal likelihood is given by (6.11). An appealing choice is to take
ui as multivariate log-normal, with an unrestricted covariance matrix; in this
case, the vector (log ui1, . . . , log uiJ)′ has a multivariate normal distribution.
The marginal likelihood is then

∞∫

0

. . .

∞∫

0

J∏

j=1

nij∏

k=1

uijρij(tijk) exp (−uijµij(τi)) dG(ui;φ) , (6.14)

and is generally intractable. However, with a parametric specification of ρij(t),
say as ρj(t;αj) exp(x′

ij(t)βj), and if there are not too many different types
of events, then (6.14) may be evaluated by numerical integration and maxi-
mized with a general-purpose optimization program to obtain (α̂, β̂, φ̂). For
larger J , simulation-based methods of evaluating the integral in (6.14) can be
used. Standard maximum likelihood results may be used for inference. Pro-
file likelihood methods are convenient for interval estimation and testing of
parameters. Alternatively the observed information matrix, approximated by
numerical differentiation of the log-likelihood, is given by good optimization
software (Appendix B.2), and provides standard errors for estimates.

Semiparametric specifications of ρij(t) are possible to fit, but are consid-
erably more challenging numerically; the EM algorithm (see Section 3.5.3)
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offers one approach but the required conditional expectations can be difficult
to obtain and Monte Carlo methods may prove useful.

A simpler so-called “shared” random effect model is obtained if we set
uij = ui, j = 1, 2, . . . , J , where E(ui) = 1 and var(ui) = φ. In this case

var{Nij(s, t)} = µij(s, t) + φ µ2
ij(s, t) ,

cov{Nij(s1, t1), Nij(s2, t2)} = φ µij(s1, t1)µij(s2, t2) ,

for nonoverlapping intervals (s1, t1) and (s2, t2), and

cov{Nij(s1, t1), Nik(s2, t2)} = φ µij(s1, t1)µik(s2, t2) ,

j �= k and the integration in (6.14) reduces to the one-dimensional integration
of Section 3.5. In the shared random effect setting, the gamma distribution
(2.28) is convenient to adopt because it leads to a tractable likelihood based
on a negative multinomial process; if the values τi are fixed, the probability
function for the numbers of events ni1, . . . , niJ of each type is then

L1i =
Γ (φ−1 + ni·)

Γ (φ−1)ni1! . . . niJ !

×
(

1
1 + φµi·(τi)

)φ−1 (
φµi1(τi)

1 + φµi·(τi)

)ni1

. . .

(
φµiJ(τi)

1 + φµi·(τi)

)niJ

,

and the full likelihood contribution is Li = L1iL2i, where

L2i =
J∏

j=1

nij∏

k=1

{
ρij(tijk)
µij(τi)

}

.

The same likelihood Li, without the nij ! terms in L1i, applies when the τi

are not prespecified. This is the extension of (3.32) for dealing with J types
of events. The semiparametric model with ρij(t) = ρ0j(t) exp(x′

ijβj) for j =
1, . . . , J can be fit using coxph in S-PLUS or R with the frailty option and
a “covariate by strata” interaction to accommodate different baseline rates
and different regression coefficients for the different event types. Although this
type of model leads to convenient analytic forms for the marginal likelihood,
it is very restrictive because it implies the same degree of heterogeneity for the
different event types, and does not have a separate parameter to characterize
associations between processes. Moreover, it is suitable only in settings where
a positive association is anticipated between event types.

More flexible models with tractable marginal likelihoods can be obtained
by defining additive random effects uij = vi + wij where vi has mean µv

and variance φv and wij , j = 1, 2, . . . , J , are independently distributed with
common mean µw and variance φw. Here E(vi + wij) = µv + µw, var(uij) =
φv + φw and cov(uij , uik) = φv. Such models are also most useful in settings
where positive correlations are anticipated; they are more general than the
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shared random effect model because they have a separate parameter for the
covariance of the random effects. Models with additive random effects can lead
to marginal likelihoods of closed form with suitable choice of distribution for
vi and wij ; in particular, if these are taken to be gamma, closed-form marginal
likelihoods are obtained.

The focus here has been on the use of multivariate random effects with
conditionally Poisson models. Multivariate random effects can also be used
with other conditional intensity functions, including those based on semi-
Markov or hybrid time scales.

6.4 Robust Methods for Multitype Events

6.4.1 Methods Based on Working Independence Assumptions

Robust methods for rate and mean functions of multivariate processes, anal-
ogous to the methods of Section 3.6.3, are also available. Here we assume

E{dNij(t)|x(∞)
i } = ρ0j(t)dt exp

(
x′

ij(t)βj

)
t > 0 , (6.15)

j = 1, 2, . . . J , where xij(t) is a pj ×1 vector of external covariates and x
(∞)
i =

{xi(t) : 0 ≤ t}. The observation or censoring process {Yi(t), 0 ≤ t} is assumed
independent of the event processes. In the following, we let τ denote max τi.

If we are not interested in estimation of variance or association parameters,
then it is convenient to base estimation of the µ0j(t) and β = (β′

1, . . . , β
′
J )′

on the Poisson estimating functions (3.19) and (3.21) under a “working inde-
pendence” assumption. In this case, we use the extension of Uβ(β) in Section
3.4.2 with dN̄·j(s) =

∑m
i=1 Yi(s)dNij(s) and set

m∑

i=1

τ∫

0

Yi(s) xij(s)

[
dNij(s) −

dN̄·j(s)∑m

�=1
Y�(s) exp(x′

�j(s)βj)
exp(x′

ij(s)βj)

]
(6.16)

equal to zero to obtain β̂j . The extension of (3.23) gives the estimates

dµ̂0j(s) =
dN̄·j(s)

∑m
i=1 Yi(s) exp(x′

ij(s)β̂j)
, (6.17)

and we then take µ̂0j(t) =
∫ t

0
dµ̂0j(s) as the estimate of the baseline mean

function for events of type j, j = 1, 2, . . . , J .
Robust inference regarding β is possible by writing (6.16) as

Uβj
(βj) =

m∑

i=1

∫ τ

0

Yi(s)Wij(s;βj)dNij(s) (6.18)
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with

Wij(s;βj) = xij(s) −
∑m

�=1 Y�(s) exp(x′
�j(s)βj)x�j(s)

∑m
�=1 Y�(s) exp(x′

�j(s)βj)
. (6.19)

Then if U(β) = (U ′
β1

(β1), . . . , U ′
βJ

(βJ))′, var{√m
−1

Uβj
(βj)} is given along

the lines of Section 3.6.3 by

1
m

m∑

i=1

τ∫

0

τ∫

0

Yi(u)Yi(v)Wij(u;βj)W ′
ij(v;βj) cov {dNij(u), dNij(v)} (6.20)

and cov{√m
−1

Uβj
(βj),

√
m

−1
Uβk

(βk)} is

1
m

m∑

i=1

τ∫

0

τ∫

0

Yi(u)Yi(v)Wij(u;βj)W ′
ik(v;βk) cov {dNij(u), dNik(v)} . (6.21)

Subject to mild regularity conditions and assuming that m−1
∑

Yi(t) ap-
proaches a positive limit in probability as m → ∞, for 0 ≤ t ≤ τ , (6.20)
and (6.21) are consistently estimated by

1
m

m∑

i=1

∫ τ

0

∫ τ

0

Yi(u)Yi(v)Wij(u; β̂j)W ′
ij(v; β̂j)dM̂ij(u)dM̂ij(v) (6.22)

and

1
m

m∑

i=1

∫ τ

0

∫ τ

0

Yi(u)Yi(v)Wij(u; β̂j)W ′
ik(v; β̂k)dM̂ij(u)dM̂ik(v) , (6.23)

respectively, where dµ̂ij(u) = dµ̂0j(u) exp(x′
ij(u)β̂j) and dM̂ij(u) = dNij(u)−

dµ̂ij(u), j = 1, . . . , J . These can be rewritten in a form like that following
(3.37). If β = (β′

1, . . . , β
′
J )′, then following the arguments of Section 3.6.3, we

obtain

V̂ (β̂) = âsvar
{√

m(β̂ − β)
}

= A−1(β̂)B(β̂)
[
A−1(β̂)

]′
, (6.24)

where β̂ is p × 1,
A(β̂) = −m−1∂U(β̂)/∂β̂′

is a p × p block diagonal matrix and B(β̂) is a p × p matrix with diagonal
blocks given by (6.22) and off-diagonal blocks given by (6.23). The matrices
A(β̂) and B(β̂) estimate the limits of

A(β) = m−1E {−∂U(β)/∂β′}

and
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B(β) = m−1E {U(β)U ′(β)} ,

respectively, and the asymptotic variance of
√

m(β̂−β) is A−1(β)B(β)A−1(β).
When the covariates are either fixed or piecewise-constant, the integrals in

(6.22), (6.23), and in A(β̂) are simply sums. Because A(β̂) is block diagonal,
the diagonal blocks in (6.24) that give asvar{√m(β̂j−βj)} for j = 1, . . . , J are
the estimated covariance matrices obtained by considering each of the types of
events on their own. As discussed in Section 3.6.3 and 3.8.1, the function coxph
in S-PLUS or R provides these. The off-diagonal blocks in (6.24) if needed,
currently have to be computed directly. The following paragraph gives one
such instance.

The robust estimate (6.24) allows simultaneous inferences on β1, . . . , βJ .
For example, suppose xij(t) = xi is a scalar taking the value 1 for subjects
in a treatment group and 0 for subjects in a control group. Then if the null
hypothesis is that there is no effect of treatment on any of the event rates,
one may write H0 : βj = 0, j = 1, 2, . . . , J . A global test of H0 may be based
on the statistic

T = mβ̂′V̂ −1(β̂)β̂ .

This test statistic is asymptotically χ2
J under H0 and so the p−value is com-

puted as Pr(χ2
J > t) where t is the realized value of T . If it is anticipated

that the effect of treatment will be comparable for all event types, then a
more powerful test for detecting effects in the same direction is based on a
pooled statistic mC ′V̂ −1(β̂)β̂ where C = (1, 1, . . . , 1)′, which has variance
m2C ′V̂ −1(β̂)C and gives a test statistic

T =
C ′V̂ −1(β̂)β̂
√

C ′V̂ −1(β̂)C

which is asymptotically standard normal under the null hypothesis H0. In
this case the p−value is 2Pr(U > |t|), where U is a standard normal random
variable.

6.4.2 Robust Methods with Covariance Functions

With multivariate processes, one can generalize the approaches of Section 3.6.4
to estimate the variances and covariances of event counts. Consider indepen-
dent bivariate point processes with Ni(t) = (Ni1(t), Ni2(t))′ and increments
dNi(t) = (dNi1(t), dNi2(t))′, i = 1, . . . ,m. Let ρij(t) = ρ0j(t;αj) exp(x′

ij(t)βj)
denote the marginal rate for type j events for subject i and µij(t) =∫∞
0

ρij(s)ds the respective mean function. Let θj = (α′
j , β

′
j)

′ denote the vector
of parameters indexing the marginal mean for type j events, let θ = (θ′1, θ

′
2)

′

be of dimension p, and let ψ = (θ′, φ′)′ denote the full vector of unknown
parameters, where φ = (φ1, φ2, φ12)′ contains the variance and covariance
parameters.
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Poisson estimating functions can be used for θ, which we write as

U1(ψ) =
m∑

i=1

∫ ∞

0

Yi(t)ai(t) [dNi(t) − ρi(t)dt] , (6.25)

where ai(t) is a p × 2 weight matrix implied by (3.4) and (3.5) in the
parametric setting or (3.19) and (3.5) in the semiparametric setting, and
ρi(t) = (ρi1(t), ρi2(t))′.

Consider now a model for association based on mixed Poisson processes
where, given a bivariate random effect ui = (ui1, ui2)′,

E{dNij(t)|ui} = uijρij(t)dt

cov{dNij(s), dNij(t)|ui} = I(s = t)uijρij(t)dt

cov{dNi1(s), dNi2(t)|ui} = 0 .

Then if E(ui) = (1, 1)′ and

var(ui) = Σu =
[

φ1 φ12

φ12 φ2

]

,

we have var(Nij(t)) = µij(t) + φj µ2
ij(t) and the covariances are given by

(6.12) and (6.13). Setting (6.25) equal to zero gives θ̂ and thus ρ̂i(t) and
µ̂ij(τi), j = 1, 2. These can be plugged into the generalization of (3.40), to
give moment estimates

φ̂j =

∑m
i=1

[
(nij − µ̂ij(τi))

2 − µ̂ij(τi)
]

∑m
i=1 µ̂2

ij(τi)
j = 1, 2 , (6.26)

and

φ̂12 =
∑m

i=1 [(ni1 − µ̂i1(τi)) (ni2 − µ̂i2(τi))]∑m
i=1 µ̂i1(τi)µ̂i2(τi)

. (6.27)

Choices for ai(t) in (6.25) which may depend on φ can lead to more efficient
estimation of θ and more efficient estimators of φ may be considered for the
mixed Poisson working model, but in general optimal specifications are dif-
ficult to make. However, an approach that should have high efficiency under
certain mixed Poisson processes with gamma random effects is to obtain φ̂1

and φ̂2 from estimating equations like the one following (3.40), and to use an
analogous equation for φ̂12.

Although the estimates of variances and covariances for multitype event
data given here are based on mixed Poisson processes, they do provide some
insight into the mean–variance–covariance relationship more generally. An-
other way to get insight is to examine values of [nij − µ̂ij(τi)]2 versus µ̂ij(τi)
and [ni1 − µ̂i1(τi)][ni2 − µ̂i2(τi)] versus µ̂i1(τi)µ̂i2(τi). An alternative is to ex-
amine the Poisson residuals [nij − µ̂ij(τi)]/[µ̂ij(τi)]1/2, as is commonly done
with log-linear models for count data (see McCullaugh and Nelder, 1989).
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6.5 Alternating Two-State Processes

Often recurrent events have a duration associated with them, as mentioned in
Section 1.5.3. Such processes may be better characterized as having recurrent
episodes rather than recurrent events, but there are considerable similarities
in the types of questions posed and the models used. Examples include ex-
acerbations in patients with chronic bronchitis, failures in systems which are
inoperable while being repaired, and admissions to hospital for psychiatric
illnesses. In the latter example, an admission arises as a consequence of a
clinically important deterioration of health, and the number of admissions re-
flects, to some extent, the burden of the disease. Simply counting the number
of hospitalizations is not necessarily sensible, however, because some admis-
sions may lead to long stays and others to shorter stays; in the latter, subjects
become at risk for readmission sooner. The duration of previous spells in hos-
pital may also be predictive of future admissions.

In some settings, the duration of an episode is approximately fixed. For
example, episodes of infection which are treated with medication may last
one week or so. In other settings, the durations can be quite variable and
models which incorporate the duration are appealing. Alternating two-state
processes are the canonical models of this type; they feature an “active” and
an “inactive” state, and two types of recurrent events corresponding to the
two types of transitions between these states. The intensity-based models
of Section 6.2 are relatively straightforward to adopt for such alternating
processes. Models based on gap times or sojourn times in each state often
have considerable appeal. As discussed in Chapter 5, models featuring hybrid
time scales are also appealing when a basic semi-Markov structure is modified
by calendar time trends. When covariate data are limited, it may be useful
to introduce random effects to reflect unexplained heterogeneity and model
association between sojourn times.

Suppose m individuals have independent two-state processes with states
labeled 1 and 2. We refer to the time since the initiation of the process as
the Markov or calendar time scale and denote it t ≥ 0. The time t may
be, for example, the time since the diagnosis of a chronic disease, the time
since enrollment in a study, or the age of an individual. Let Nij(t) denote the
number of j → 3− j transitions (j = 1, 2) for subject i over the interval [0, t],
i = 1, . . . , m. Furthermore, let Yij(t) = 1 if individual i is in state j at time
t−, and 0 otherwise. The history of the ith process up to time t is denoted

Hi(t) = {Nij(s) : 0 ≤ s < t; zij(s) : 0 ≤ s ≤ t, j = 1, 2} ,

where zij(t) is a pj × 1 vector of covariates reflecting the process history,
external time-varying conditions, and fixed subject characteristics.

Intensity-based models are often most natural in a modulated alternating
renewal form

λij(t|Hi(t)) = Yij(t)h0j(Bij(t)) exp(z′ij(t)βj) ,
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where Bij(t) is the time since the latest transition into state j for subject i,
and βj is a vector of regression coeffients. In some settings it may be desirable
to allow the baseline functions to be different depending on the cumulative
number of sojourns, but typically covariate effects are assumed to be the same.

If we introduce random effects we define conditional transition intensities
as λij(t|Hi(t), uij). Figure 6.1 is a representation of this process where we
drop the index for individuals. We assume that the covariates and random
effects act multiplicatively on the baseline transition intensities so that given
the random effect ui = (ui1, ui2)′ and covariates, the conditional intensity for
the j → 3 − j transition is

λij (t|Hi(t), ui) = Yij(t)uijh0j(Bij(t)) exp(z′ij(t)βj) (6.28)

where h0j(Bij(t)) is a baseline transition intensity indexed by a parameter αj ,
j = 1, 2. We denote θj = (α′

j , β
′
j)

′ and assume the ui are i.i.d. for i = 1, . . . , m.
Finally, let θ = (θ′1, θ

′
2)

′ denote the full vector of parameters.

1 2

λ12(t | H(t), u1)

λ21(t | H(t), u2)

Fig. 6.1. State diagram for an alternating two-state process.

An attractive distribution for (ui1, ui2) is the bivariate log-normal distri-
bution. In that case, vik = log uik and vi = (vi1, vi2)′ are i.i.d. i = 1, . . . , m as
N(0, Σ), where

Σ =
(

φ1 φ12

φ12 φ2

)

is an unknown 2 × 2 covariance matrix parameterized by φ = (φ1, φ2, φ12)′.
If the random effects are negatively correlated, subjects with shorter active
periods will tend to have longer inactive periods, and vice versa. A model
admitting a negative correlation is often desirable, for example, for chronic
diseases in which states 1 and 2 represent good and poor health.

Consider data on m independent subjects, obtained by observing subject
i over the time period [τi0, τi], i = 1, . . . ,m. Let ni denote the total number of
transitions observed to take place over [τi0, τi] for subject i, and let nij denote
the total number of complete sojourns in state j. Usually τi0 is the time of
entry to the study and τi is a censoring time denoting the end of followup.
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We assume that τi0 and τi are stopping times, as discussed in Section 2.6. Let
ti1 < · · · < tini

be the observed transition times for subject i occurring during
the course of followup.

It follows from (6.2) that the likelihood for subject i, conditional on ui

and denoted Li(θ|ui), is given by

2∏

j=1

⎡

⎣
∏

k∈Sij

λij(tik|Hi(tik), uij) exp

(
−
∫ τi

τi0

Yij(s)λij(s|Hi(s), uij)ds

)
⎤

⎦ , (6.29)

where Sij = {k|dNij(tik) = 1}, and Yij(s) = I (individual i is in state j at
time s−), for j = 1, 2; i = 1, . . . ,m. The marginal likelihood for subject i is
the expectation of (6.29) with respect to the random effect,

Li(ψ) = Eui
{Li(θ|ui)} ,

where ψ = (θ′, φ′)′. The marginal log-likelihood based on all m subjects is

�(ψ) =
m∑

i=1

�i(ψ) =
m∑

i=1

log(Li(ψ)) .

It is generally necessary to use numerical integration to compute such like-
lihoods. When ui1 and ui2 are independent, the likelihood factors into two
pieces for transitions of type j = 1 and j = 2, and in that case software such
as coxph in S-PLUS or R can often be used. When ui1 and ui2 are correlated,
there is no such factorization and then we use general optimization software
to implement the analysis. An example of an alternating process is considered
in Section 6.7.2.

In many studies, the time of randomization does not coincide with a tran-
sition time or the origin of the process. In that case matters are more compli-
cated for models with random effects because the relevant distribution of ui

over which we must average is the conditional distribution of ui, given Hi(τi0);
see Section 4.5.

6.6 Recurrent Events with a Terminal Event

In many settings, interest lies in characterizing the incidence of recurrent
events in conjunction with an event which terminates the recurrent event
process. For simplicity we return to the setting where recurrent events are of
a single type, and we think of the terminal event as a second type of event.
Examples are ubiquitous and include any setting involving patients with a se-
rious disease which is associated with both recurrent complications and high
mortality. In neurovascular trials, for example, one may be interested in reduc-
ing the occurrence of transient ischemic attacks and mild strokes, but deaths
from major strokes or any other cause may also occur. In oncology, one may
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be interested in characterizing the use of health services following diagnosis of
cancer, but use of such services terminates upon death. Methods for the analy-
sis of recurrent and terminal events are also of interest in reliability, where
certain types of failure necessitate the retirement of a piece of equipment. A
multistate diagram representing this sort of process is given in Figure 1.9. We
next consider several approaches for this important setting.

6.6.1 Intensity-Based Approaches

General models for recurrent events and failures are provided by the theory of
multivariate counting processes used with multiple events. As before, we let
∆Ni(t) denote the number of recurrent events over the small interval [t, t+∆t).
Let Ti denote the terminal event time for subject i and define Di(t) = I(t ≤
Ti) and Ȳi(t) = Di(t)I(t ≤ Ci), where Ci is a censoring time corresponding
to the end of followup. If Hi(t) = {(Ni(s),Di(s)) : 0 ≤ s < t} represents the
process history up to time t, a full model for the process may be expressed in
terms of the event intensity functions

λi(t|Hi(t)) = lim
∆t↓0

Pr{∆Ni(t) = 1|Hi(t)}
∆t

(6.30)

γi(t|Hi(t)) = lim
∆t↓0

Pr{Ti < t + ∆t|Hi(t),Di(t) = 1}
∆t

. (6.31)

Covariates can also be added to the histories Hi(t) as in previous sections.
As can be seen from Figure 1.9, the presence of a terminal event creates

a recurrent quasi-competing risk problem in the sense that whenever patients
are at risk of another recurrent event, they are also at risk of the terminal
event. If ni recurrent events are observed at times ti1, . . . , tini

over [0, τi] where
τi = min(Ti, Ci) and δi = I(Ti ≤ Ci), then under independent censoring the
likelihood function is, by (6.2), proportional to

ni∏

j=1

λi (tij |Hi(tij)) [γi(τi|Hi(τi))]
δi (6.32)

× exp
(

−
∫ τi

0

[λi(u|Hi(u)) + γi(u|Hi(u))] du

)

and inferences may be based on partial likelihoods arising from the factor-
ization of this into two pieces (assuming (6.30) and (6.31) do not share any
parameters).

Models for the recurrent event intensity (6.30) can be based on the ap-
proaches in Chapters 2 to 5, although it should be kept in mind that the
termination time that leads to the competing risk problem must be addressed
when computing summary statistics for marginal features of the process. The
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hazard or intensity for the terminal event can include dependency on the
history of recurrent events, for example, as in

γi(t|Hi(t)) = γ0(t) exp
(
x′

i(t)β + ζNi(t−)
)

.

More general models for the terminal event could include some form of strat-
ification, say γi(t|Hi(t)) = γ0k(t) exp(x′

i(t)β) if Ni(t−) = k, or information
on recent gap times. These are all Cox regression models with internal time-
dependent covariates reflecting the recurrent event history.

Intensity-based models are appealing in their flexibility but they can lead
to complicated expressions for marginal features that are often of interest, such
as the marginal survivor function for T and the cumulative mean function for
the number of recurrent events. We next consider random effects models for
which marginal features are readily obtained. We show, however, that here
too such features do not typically take a simple form.

6.6.2 Random Effects Models

The approach described in Section 6.3 can be specialized to the present setting.
Let ui1, ui2 be positive-valued random effects with joint distribution function
G(ui1, ui2) and suppose that conditional on ui = (ui1, ui2)′ and external co-
variates zi(t), the bivariate process {Ni(t),Di(t), 0 ≤ t} has intensities

λi(t|ui,Hi(t)) = ui1λi(t|Hi(t))

and
γi(t|ui,Hi(t)) = ui2γi(t|Hi(t))

for recurrent and terminal events, respectively. Such models are most useful
when the random effects allow event history to be dropped from the con-
ditional intensities, and when marginal features such as E{Ni(t)|Ti > t} or
E{Ni(Ti)} have fairly simple forms. Therefore, we make the additional as-
sumptions that

λi(t|ui,Hi(t)) = ui1Di(t)λ0(t) exp (z′iβ) , (6.33)

γi(t|ui,Hi(t)) = ui2Di(t)γ0(t) exp (z′iα) . (6.34)

That is, the model for recurrent events is conditionally Poisson, although it is
terminated at the time of death. In addition, the association between time of
death Ti and the recurrent events is entirely driven by the association between
ui1 and ui2. Time-varying covariates can also be accommodated in (6.33) and
(6.34) but for simplicity we denote them as fixed here.

It is often assumed that ui1 = ui2 or that ui1 and ui2 are related parametri-
cally, but it is generally preferable to avoid this, because overdispersion in the
recurrent events and their association with Ti is then determined by a single
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factor. If Ci is a censoring time and τi = min(Ti, Ci) then by (6.32) the con-
ditional likelihood function based on data {δi = I(Ti ≤ Ci), τi, zi, Ni(t), 0 ≤
t ≤ τi} for individual i is

⎧
⎨

⎩

ni∏

j=1

ui1λi(tij)

⎫
⎬

⎭
exp (−ui1Λi(τi)) · {ui2γi(τi)}δi exp (−ui2Γi(τi)) ,

where ni = Ni(τi) and for simplicity we write λi(t) for λ0(t) exp(z′iβ) and
γi(t) for γ0(t) exp(z′iα), and where Λi(t) =

∫ t

0
λi(s)ds and Γi(t) =

∫ t

0
γi(s)ds.

The marginal likelihood based on the observable data is then

Li(ψ) =

⎧
⎨

⎩

ni∏

j=1

λi(tij)

⎫
⎬

⎭
γi(τi)δi

×
∫ ∞

0

∫ ∞

0

uni
i1 uδi

i2 exp (−ui1Λi(τi) − ui2Γi(τi)) dG(ui1, ui2) ,

where ψ includes parameters in λi(t), γi(t), and G(ui1, ui2).
As discussed in Section 6.3, a flexible and feasible approach is to assume

that (log ui1, log ui2) has a zero-mean bivariate normal distribution, and to
adopt parametric models for λ0(t) and γ0(t) in (6.33) and (6.34). Other mod-
els, such as additive gamma random effects models mentioned in Section 6.3,
can also be considered.

It should be noted that although such models allow a simple conditional
(on the random effect) interpretation of covariate effects on the mean function
for recurrent events, they do not offer simple marginal features. For example,
a feature of interest is

µi(s; t) = E {Ni(s)|Ti = t} , 0 ≤ s ≤ t .

This is given by

µi(s; t) = E [E {Ni(s)|Ti = t, ui}]
= E (ui1|Ti = t) Λi(s) . (6.35)

Because Ti is conditionally independent of ui1, given ui2, the conditional mean
of ui1 given Ti = t is found to be

E (ui1|Ti = t) =

∫∞
0

fi(t|ui2)g2(ui2)E(ui1|ui2)dui2∫∞
0

fi(t|ui2)g2(ui2)dui2

, (6.36)

where fi(t|ui2) denotes the density of Ti given ui2, and g2(ui2) denotes the
marginal density of ui2. In general, (6.36) will be a complicated function of
the covariates zi and so the effect of covariates in (6.35) will be complicated.
A similar calculation applies for E{Ni(s)|Ti ≥ t} for 0 ≤ s ≤ t. Note that
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when ui1 and ui2 are independent we have, without loss of generality, that
E(ui1|ui2) = 1, in which case (6.36) equals one. However, this case is unin-
teresting to us here, because Ti is then independent of the event process and
the distribution of {Ni(s), 0 ≤ s ≤ t} does not depend on t. The special case
where ui1 = ui2 is no simpler; in that case E(ui1|ui2) = ui2 in (6.36), but
E(ui1|Ti = t) is still a complicated function of covariates. Even in the case
where there are no covariates, we cannot say much without making further as-
sumptions. For example, if E(ui1|ui2) is an increasing function of ui2 it might
be expected that (6.35) would be an increasing function of t, but this appears
to require additional conditions.

We next consider the use of marginal methods that provide direct estimates
of features of common interest.

6.6.3 Robust Methods for Marginal Features

Here we consider models based on the marginal distribution of the termina-
tion time, and the rate function for the recurrent events, conditional on the
termination time. For now, we consider covariates to be fixed. The termination
time distribution function given covariate vector xi is

Pr(Ti ≤ t|xi) = Fi(t) = F (t|xi) , (6.37)

and may be specified and analyzed in ways that are well known in survival
analysis.

Consider next the rate of occurrence functions and associated mean func-
tions that condition on survival to a specified time, given by

ρi(s; t)ds = E {dNi(s)|Ti ≥ t, xi} s ≤ t , (6.38)

and

µi(s; t) =
∫ s

0

ρi(u; t)du = E{Ni(s)|Ti ≥ t, xi} , (6.39)

respectively, i = 1, 2, . . . ,m. The rate function (6.38) and mean function (6.39)
are easily interpreted and directly related to observed data. For example, a
nonparametric estimate of (6.39) is obtained in the case where there are no
covariates by taking all subjects with failure time known to be at least t, and
computing the average number of events up to each time s ≤ t.

A special marginal rate function is given by

ρ∗i (s)ds = ρi(s; s)ds = E{dNi(s)|Ti ≥ s} . (6.40)

This can be estimated nonparametrically from the data, but integrating ρ∗i (s)
does not in general yield anything interpretable unless the recurrent events
are independent of termination time. The quantity



6.6 Recurrent Events with a Terminal Event 223

E{Ni(t)} =
∫ t

0

ρ∗i (u)Si(u)du , (6.41)

where Si(u) = 1 − Fi(u), is always interpretable, however; it is the marginal
expected number of recurrent events up to time t per subject, incorporating
the fact that subjects who fail cannot experience any further events.

In the absence of covariates, if there are data on m independent individuals
we can estimate (6.41) as follows, assuming that the censoring time Ci is inde-
pendent of the recurrent event process and Ti. The rate function increments
ρ∗(u)du = ρ∗i (u)du are estimated by the increments of the Nelson–Aalen es-
timate (3.17), given here by

ρ̂∗(u)du =
∑m

i=1 I(Ci ≥ u)dNi(u)
∑m

i=1 I(Ci ≥ u, Ti ≥ u)
, (6.42)

assuming the denominator is positive. The common survivor function Si(u) =
S(u) can be estimated with an ordinary Kaplan–Meier estimate, and then the
two estimates can be plugged into (6.41). The resulting estimate µ̂(t) takes
the form of a sum for any t > 0, because ρ̂∗(u)du equals zero except at times
u at which an event is observed. Variance estimates or pointwise confidence
intervals for µ̂(t) are most simply obtained using the nonparametric bootstrap.
An alternative is to use a variance estimate given by Ghosh and Lin (2000).

A concern with marginal estimates of this type is that they become invalid
if censoring times are not independent of the event processes. For example,
if the censoring process were dependent on the event history, or if there were
unmeasured covariates that affected censoring as well as the recurrent events
or termination time, then (6.42) should not be used. In Section 7.2, we discuss
how to use weights based on a model for the censoring process, in order to
obtain usable estimates. We also discuss, in the following Section 6.6.4, an
approach that provides estimates of marginal features when censoring may
depend on past event history in a specific way.

Regression models for the marginal distribution of Ti and for conditional
rate functions can also be formulated. For example, if we consider the model

ρ∗i (t) = ρ∗0(t) exp(x′
iβ) (6.43)

then the estimating functions from a Markov intensity-based model in which
(6.30) is given by (6.43) are still unbiased and valid for estimation, provided
that given xi, Ci is independent of Ti and the recurrent event process. The
estimating functions in question are equivalent to (3.4) and (3.5) in Section
3.2. If ρ∗0(t) is specified in terms of a parameter α, then they are

Uβ(β, α) =
m∑

i=1

xi

∫ ∞

0

Ȳi(t) {dNi(t) − ρ∗i (t;α)dt} (6.44)

Uα(β, α) =
m∑

i=1

∫ ∞

0

Ȳi(t)
∂ log ρ∗0(t;α)

∂α
{dNi(t) − ρ∗i (t;α)dt} , (6.45)
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where Ȳi(t) = I(t ≤ Ti, t ≤ Ci). Setting Uβ(β, α) and Uα(β, α) equal to
zero and solving provides consistent estimates of β and α. The semiparamet-
ric model in which ρ∗0(t) is an arbitrary positive-valued function can also be
handled, as described in Section 3.6.3. In particular, as shown there, the esti-
mates β̂ and the estimate of R∗

0(t) =
∫ t

0
ρ∗0(s)ds are those from the standard

Andersen–Gill model, as given by the function coxph in S-PLUS or R, for
example. The robust variance estimates described in Section 3.6.3 are also
given by the software when the cluster option is used.

In the present setting, the generalized Nelson–Aalen estimate R̂∗
0(t), given

by (3.24), is not meaningful. As described above, a meaningful quantity is
the expected number of events experienced up to time t, allowing that an
individual has no more events once they experience the terminating event.
This is given by

µ̂(t;x) = Ê {Ni(t)|xi = x} =
∫ t

0

Ŝ(u|x)dR̂∗(u|x) , (6.46)

where dR̂∗(u|x) = exp(x′β̂)dR̂∗
0(u) and where Ŝ(u|x) is the estimated survivor

function in a model for the termination time Ti, given covariates x. A variety
of models, including proportional hazards, can be handled with standard sur-
vival analysis software. We note that external time-varying covariates x(t) can
also be accommodated with the approach just described. Bootstrap variance
estimates or confidence limits can be obtained for µ(t;x).

Regression models for the conditional rate and mean functions (6.38) and
(6.39) could also be considered, as could models for rate functions that con-
dition on the value Ti = t. Models for µi(s; t) = E{Ni(s)|Ti = t, xi} for
0 ≤ s ≤ t can be valuable, and offer a representation of the dependence of
the recurrent event process on the termination time. However, these require
assumptions that are not easily checked, and are harder to fit; Cook and
Lawless (1997) provide some discussion. Moreover, most models do not give
easily interpreted covariate effects, as illustrated by (6.35). Ghosh and Lin
(2002) consider models with E{N(t)|x} = µ0(t) exp(x′β). These require the
use of weighted estimating functions, which are considered in Section 7.2 for
dealing with dependent censoring or loss to followup. Such models on the sur-
face provide a more easily interpreted estimate of the effects of covariates on
µ(t;x) = E{N(t)|x} than (6.46). However, the models are purely descriptive;
if a covariate value is associated with a large value of µ(t;x); for example, it
will not be clear whether this is due to increased survival time, an increased
event rate when alive, or some combination of the two. The models that lead
to (6.46) provide insight into both of these factors.

6.6.4 Partially Conditional Methods

Another approach to the joint analysis of recurrent and terminal events is
based on the multistate formulation of Section 5.3. Figure 6.2 displays a mul-
tistate diagram in which the states indicate the status of an individual at any
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Fig. 6.2. A multistate diagram for a Markov model for recurrent events and a
terminal event.

time and the arrows indicate the possible directions of transitions. Specifi-
cally, an individual is in state Ek if she is alive and has experienced k events,
whereas an individual enters a “D” state when she dies. The subscript on the
“D” indicates the cumulative number of events that individual experiences
before she dies and so a subject absorbed into state Dk would have had k
events prior to death. Although in principle there may not be a maximum
number of events, in any specific application it is convenient to assume there
is a maximum, denoted K, so that the process generates no further events
after the Kth. For a given dataset we can without loss of generality set K
equal to the maximum number of events observed for any single individual,
because estimated transition intensities beyond this are all zero.

We assume that all individuals begin in state E0 at t = 0, that states
E0, . . . , EK are transient, and that states Dk, k = 0, 1, . . . ,K are absorbing.
At times it will be convenient to number E0, . . . , EK as states 0, . . . , K and
states D0, . . . , DK as states K + 1, . . . , 2K + 1. An individual’s life history
tracks movement through these states.

Let Z(t) represent the state occupied by an individual at time t and H(t) =
{Z(s) : 0 ≤ s < t} denote the process history over [0, t). The transition
intensity functions for events are defined as

λE
k (t|H(t)) = lim

∆t↓0

P(Z((t + ∆t)−) = Ek+1|Z(t−) = Ek,H(t))
∆t

,

k = 0, . . . , K − 1, and for death as

λD
k (t|H(t)) = lim

∆t↓0

P(Z((t + ∆t)−) = Dk|Z(t−) = Ek,H(t))
∆t

,

k = 0, . . . , K. A model must be specified to characterize the way information
in H(t) influences the instantaneous probability of transition at time t > 0.
Markov models provide a natural framework for many settings. As discussed
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in Section 5.3, for Markov models the transition intensities depend only on
the current state occupied and the time since the origin of the process and
may therefore be viewed as transition rates. Under a Markov model we have

λE
k (t|H(t)) = λE

k (t) k = 0, . . . , K − 1 (6.47)

and
λD

k (t|H(t)) = λD
k (t) k = 0, . . . ,K (6.48)

as shown in Figure 6.2.
When we wish to consider general transition intensities we use qk�(t)

to denote the transition rate from state k to state �, � �= k, and let
Qk�(t) =

∫ t

0
qk�(u)du denote the corresponding cumulative transition rate.

The transition probability functions are, for s ≥ t,

pk�(s, t) = Pr(Z(t) = �|Z(s) = k) , (6.49)

which we write in matrix form as P(s, t) = [pk�(s, t)]. The transition prob-
ability functions and transition intensities are again linked via the product
integral, as given earlier in (5.17),

P(s, t) =
∏

(s,t]

(I + Q(u)du) , (6.50)

where here I is a (2K + 2)× (2K + 2) identity matrix and Q(t) is the (2K +
2)× (2K +2) matrix of transition rates with entries qkk(t) = −λE

k (t)−λD
k (t),

k = 0, 1, . . . ,K − 1; qKK(t) = −λD
k (t); qk,k+1(t) = λE

k (t), k = 0, 1, . . . ,K − 1;
qk,(K+1)+k(t) = λD

k (t), k = 0, 1, . . . ,K and zero elsewhere. Assuming subjects
are under observation at the start of the process (i.e. at t = 0), the state
occupancy probabilities p0k(t) at time t are given by the top row of P(0, t).
Note that they give the probabilities Pr(N(t) = k, T > t) = Pr(Z(t) = Ek)
and Pr(T ≤ t,N(t) = k) = Pr(Z(t) = Dk) for k = 0, 1, . . . ,K.

Multistate models of this sort can be used to address many questions. For
example, in some applications it is common to focus on “event-free survival”
time, in which case interest lies in Pr(Z(t) = 0|Z(0) = 0) = p00(0, t). Another
feature of interest is the cumulative mean function (6.41). In the present
framework, under the assumption that the probability of more than K events
is zero, µ(t) = E{Ni(t)} is given by

µ(t) =
K∑

k=1

k [Pr(Z(t) = Ek|Z(0) = 0) + Pr(Z(t) = Dk|Z(0) = 0)] . (6.51)

One may also consider features such as the expected number of events over
an individual’s lifetime. The cumulative lifetime mean E{N(T )} is

µ(∞) = lim
t→∞

µ(t) =
K∑

k=1

k · Pr (Z(∞) = Dk|Z(0) = 0) . (6.52)
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As described in Section 5.3.2, nonparametric estimation is straightforward
when there are no covariates and the transition rates in (6.47) and (6.48) are
unrelated. Estimates of (6.51), for example, may be obtained by replacing state
occupancy probabilities p0k(t) in the right-hand side with their corresponding
estimates, as given by (5.19) and (5.20) of Section 5.3.2. This is adapted to
the present setting as follows.

Consider a dataset of m independent subjects in which subject i is followed
over [0, Ci] where Ci is a censoring time independent of {Zi(t), 0 ≤ t}. Let
Yik(t) = I(Zi(t−) = k), k = 0, 1, . . . ,K − 1 indicate whether subject i is at
risk of a transition out of transient state k at time u, and Yi(t) = I(t ≤ Ci)
indicate whether subject i is under observation at time u. Let dNik�(t) = 1
if subject i makes a transition from state k to � at time t, and dNik�(t) = 0
otherwise. Finally, let Nik�(t) =

∫ t

0
dNik�(u) indicate whether a transition

from k to � occurred for subject i over [0, t]. For the corresponding observable
quantities we let Ȳik(t) = Yi(t)Yik(t), dN̄ik�(t) = Ȳik(t)dNik�(t), and N̄ik�(t) =∫ t

0
Ȳik(u)dNik�(u).
The Nelson–Aalen estimate of the k → � cumulative rate function is

Q̂k�(t) =
∫ t

0

I(Ȳ·k(u) > 0)dN̄·k�(u)
Ȳ·k(u)

, (6.53)

where dN̄·k�(u) =
∑m

i=1 dN̄ik�(u), Ȳ·k(u) =
∑m

i=1 Ȳik(u), and 0/0 is defined
to be 0. The Aalen–Johansen estimate of the transition probability matrix is
then

P̂(s, t) =
∏

(s,t]

(I + dQ̂(u)) , (6.54)

where dQ(u) = Q(u)du in (6.50) and dQ̂k�(u) = I(Ȳ·k(u) > 0)dN̄·k�(u)/Ȳ·k(u).
The functions p0k(t) are then estimated by the first row of P̂(0, t). These es-
timates are, of course, valid when the present Markov model is suitable, but
they are also valid more generally if censoring is independent of the event
process, as described in Section 5.3. It should be noted that caveats stated
in Section 5.3, regarding the inestimability of dQk�(u) over intervals where
Ȳ·k(u) = 0, also apply here.

6.7 Applications and Illustrations

6.7.1 Cerebrospinal Fluid Shunt Failures

In Section 5.4.1 we considered data on recurrent failures of shunts that drain
excess cerebrospinal fluid for 839 children with hydrocephalus. Failures were
classified by cause into three types: Obstruction, Infection, and Other, which
account for about 70%, 15%, and 15% of failures, respectively. Table 5.4
showed the distribution of number of failures per child, but we must bear
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in mind that followup in these observational data ranges from about one to
eleven years across individuals.

The analysis in Section 5.4.1 considered all causes of failures combined,
and showed the importance of covariates associated with etiology, shunt type,
other surgery, and age at surgery in an examination of successive gap times
between failures. It is natural to focus on the gap times, because failure of
a shunt results in its full or partial replacement. We consider in this section
the analysis of the three types of failure, along with death as a terminating
event. For shunt failures, semi-Markov models of the form Di(t) times (6.9)
are used, where Di(t) = I(Ti ≥ t) indicates that individual i is alive at
time t−, Bij(t) = Bi(t) is the time since the last previous failure of any
type, and j = 1, 2, 3 denotes the Obstruction, Infection, and Other types of
failure, respectively. If Wik denotes the kth gap time and Cik denotes the
corresponding cause of failure for individual i, then the models considered
can equivalently be expressed in terms of the cause-specific intensity functions
λijk(w) given by

lim
∆w↓0

{
Pr (Wik < w + ∆w,Cik = j|Wik ≥ w, zik, Ti > ti,k−1 + w)

∆w

}

, (6.55)

where ti0 = 0, tik = wi1 + · · · + wik is the time of the kth failure, and zik

is a covariate vector that may contain information on previous failure times
and causes. Note that (6.55) is conditional on the individual being alive at
the time in question. In addition, we consider models for the death intensity
function of the form

λiD(t) = lim
∆t↓0

{
Pr (Ti < t + ∆t|Ti ≥ t, zi(t))

∆t

}

, (6.56)

where zi(t) is a covariate vector that may include information on previous
shunt failures.

We first show the results for the risk of death. Multiplicative Cox regression
models for (6.56) that included baseline covariates for etiology, age at first
surgery, and other factors were considered, along with time-varying covariates
that indicated whether there had been prior shunt failures. The survival time
Ti is defined here as the time from insertion of the first shunt (i.e. first surgery)
to death, because it seems most natural to assess mortality in terms of the
(approximate) time since the condition necessitating the shunts arose. Table
6.1 shows results for the model deemed most satisfactory; it includes a binary
covariate z(t) (“Prior failure”) that indicates whether (yes = 1, no = 0) a
shunt failure has occurred by time t.

Table 6.1 indicates a much higher risk of death for persons in the Tu-
mor etiology group, and a significantly lower risk of death for persons in the
IVH and MMC groups. Of the 121 deaths, 62 were in the Tumor group; this
group comprises 23% of the 839 individuals. The existence of a prior failure
is strongly associated with an increased risk of death. The elevation in risk
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Table 6.1. Multiplicative intensity model for death in persons with shunts.

Covariate EST. S.E. RR p−value†

Age at 1st surgery (years)
< 0 0.540 0.407 1.716 0.180
0–1 0.206 0.269 1.229 0.440
> 1 – – – –

Etiology
Adsten -0.550 0.528 0.577 0.300
IVH -1.747 0.595 0.174 0.003
Men -1.163 0.761 0.312 0.130
MMC -0.840 0.384 0.432 0.029
Trauma 0.122 0.655 1.129 0.850
Tumor 1.111 0.363 3.037 0.002
Other -0.130 0.371 0.878 0.730
Con – – – –

Prior failure 0.697 0.197 2.007 0.0004

† p−value is based on 2Pr(Z > |β̂|/s.e.(β̂)), where Z is standard normal.

is, from other models fitted, similar for persons in the Tumor and non-Tumor
etiology groups. There is also mild but not highly significant evidence that
obstruction failures elevate the risk of death more than infection or other
failures. Baseline age is not significant in Table 6.1, but it should be noted
that it is strongly associated with shunt failure, and hence with the covariate
Prior failure. Finally, an examination of the times of death and the baseline
cumulative intensity function for the fitted model indicates that the risk of
death is highest soon after first surgery but does persist later on, especially
for persons in the Tumor etiology group.

For shunt failures, we consider models (6.55) of the multiplicative form

λijk(w) = λ0jk(w) exp (z′ikβjk) , (6.57)

where j = 1, 2, 3 denotes the type of failure, k = 1, 2, . . . denotes the gap,
and zik is a vector of covariates which for k ≥ 2 may include information
on previous failure times. The stratified form of (6.57) is consistent with our
all-causes analysis in Section 5.4.1, and it is sensible to continue to allow the
effects of covariates to change with successive shunts, as done previously.

After exploration of a variety of factors, we settled on the models shown
in Tables 6.2 to 6.4, which give results for Obstruction, Infection, and Other
Failures, respectively. Models for first, second, and third shunt failures are
shown. The covariates include age at current surgery (i.e. at the time of shunt
insertion), etiology, shunt type, concurrent other surgery and, for second and
third shunts, the time they started to operate (i.e. the start time of gaps
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2 and 3, respectively). Very few factors are significant for second and third
shunts, but we retain all covariates for comparison across all three shunts.
For Obstruction, comprising approximately 70% of the failures, there was an
indication that effects of age at current surgery and shunt type might be
time-varying, and we allow for this in the first two shunts. There was also an
indication that second Obstruction failures might be related to the cause of
the first shunt failure, and we incorporate this as well.

Table 6.2. Estimates from regression models for obstruction shunt failures.

SHUNT 1 SHUNT 2 SHUNT 3
Covariate EST. S.E. EST. S.E. EST. S.E.

Age at current surgery
< 0 (year 1) 1.08 0.26 0.67 0.44 0.43 0.79
< 0 (year 2) 1.57 0.43 1.22 1.07 0.43 0.79
< 0 (> year 2) -0.13 0.56 1.43 1.07 0.43 0.79
0–1 0.74 0.20 0.12 0.25 0.38 0.29
> 1 – – – – – –

Etiology
Adsten 0.55 0.30 -0.07 0.44 0.06 0.63
IVH 0.68 0.25 0.49 0.36 0.58 0.50
Men 0.40 0.34 0.56 0.42 0.34 0.55
MMC 0.59 0.23 0.23 0.33 0.19 0.50
Trauma 0.93 0.44 0.61 0.54 -0.64 1.10
Tumor 0.65 0.28 0.05 0.39 0.05 0.53
Other 0.39 0.25 0.25 0.35 -0.11 0.54
Con – – – – – –

VP shunt type
Year 1 -0.79 0.21 - 0.13 0.30 0.19 0.39
Year 2 -0.50 0.62 0.03 0.43 0.19 0.39
> Year 2 0.39 0.60 - 0.38 0.49 0.19 0.39

Concurrent surgery 0.28 0.20 0.64 0.31 0.33 0.44
Time of shunt surgery (÷ 100) – – 0.06 0.03 -0.005 0.02

Cause of first failure
Infection – – 0.48 0.21 – –
Obstruction – – 0.86 0.28 – –
Other – – – – – –

Table 6.2 shows results for Obstruction failures; we simply comment on
a few points. First, age at current surgery is important for first shunts, with
excess risks both for infants born prematurely and for those under one year
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of age. The high excess risk for premature infants persists only for about two
years; this may also be true for infants under one year of age, but a test for a
time-varying covariate effect does not give significant evidence. Shunt type has
a similar time-dependent effect for first shunts. For second and third shunts,
there is no strong indication of association with the time of previous failure,
although we should note that this is ambiguous because of the relationship
between time of first failure and baseline covariates. Interestingly, the risk of
an obstruction failure following a first failure due to obstruction is significantly
lower than if the first failure were due to infection or other causes.

Table 6.3. Estimates from regression models for infection shunt failures.

SHUNT 1 SHUNT 2 SHUNT 3
Covariate EST. S.E. EST. S.E. EST. S.E.

Age at current surgery
< 0 1.22 0.48 -0.29 0.96 2.19 1.51
0–1 0.70 0.42 0.15 0.56 0.49 0.84
> 1 – – – – – –

Etiology
Adsten 1.7 0.61 -0.24 0.92 -1.41 1.37
IVH 1.03 0.57 0.60 0.69 -1.76 1.01
Men 0.94 0.71 -0.03 0.92 -8.21 31.6
MMC 1.09 0.54 -0.65 0.71 -1.61 1.00
Trauma 2.10 0.81 -5.02 14.0 1.18 1.00
Tumor 1.27 0.61 0.70 0.77 -0.69 0.92
Other 0.88 0.58 -0.50 0.82 -1.68 1.21
Con – – – – – –

VP shunt type (year 1) 0.66 0.60 0.72 0.75 6.85 20.8
Concurrent surgery 0.57 0.33 -0.33 0.76 1.37 0.77
Time of shunt surgery (÷ 100) – – -0.14 0.08 -0.03 0.07

Tables 6.3 and 6.4 show analogous results for Infection and Other failures.
There are significant effects due to age at current surgery and etiology for
first shunt failures due to infection, and a few other miscellaneous significant
effects for failures due to other causes, and for second and third failures due
to infection. These effects are not consistent across first, second, and third
shunts, although an effect due to shunt type appears for second and third
failures for the Other cause category.

Note that each shunt (first, second, third, etc.) is at risk for the three causes
of failure, and an alternative way to present the regression results would be to
show the three causes together for each shunt (first, second, third). It should
also be noted that Infection failures virtually all occur within a year of shunt
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Table 6.4. Estimates from regression models for other shunt failures.

SHUNT 1 SHUNT 2 SHUNT 3
Covariate EST. S.E. EST. S.E. EST. S.E.

Age at current surgery
< 0 0.75 0.54 1.07 0.89 2.91 1.18
0–1 0.18 0.38 0.30 0.57 0.33 0.77
> 1 – – – – – –

Etiology
Adsten 0.04 0.71 -5.50 18.3 -0.39 1.52
IVH - 0.35 0.64 1.72 1.09 0.07 1.21
Men 1.50 0.53 2.22 1.14 -5.60 17.1
MMC -0.60 0.57 -0.42 1.24 0.02 1.12
Trauma 0.18 1.11 -5.56 32.0 -5.90 28.7
Tumor 1.01 0.54 1.73 1.11 0.63 1.10
Other 0.02 0.55 0.71 1.16 -0.96 1.44
Con – – – – – –

Shunt type (year 1) -0.12 0.39 -1.20 0.52 -1.44 0.61
Concurrent surgery 0.88 0.37 -0.36 0.79 0.78 0.79
Time of shunt surgery (÷ 100) – – -0.003 0.05 0.04 0.04

insertion, whereas the risk for the other two causes of failure is highest in the
first year after insertion, but persists over time. There is also a suggestion,
as in the earlier all-causes analysis of Section 5.4.1, that the baseline risk for
failure of second and subsequent shunts for each of the three causes may be
higher than for first shunts. This may reflect heterogeneity of risk across the
individuals, although the time of prior failures is not significant in Tables 6.3
and 6.4.

6.7.2 Exacerbations in Patients with Chronic Bronchitis

We consider the analysis of data from a multicenter randomized trial involving
patients with chronic bronchitis, where the disease process consists of the de-
velopment and resolution of acute exacerbations of chronic bronchitis (AECB)
over time (see Section 1.5.3). To have been eligible for the study, patients
must have been 18 years or older, diagnosed with chronic bronchitis, able to
maintain a daily diary, able to understand and complete detailed health status
questionnaires, and currently experiencing an acute exacerbation. Upon study
entry patients were randomized to receive either Ciprofloxacin or standard
care for the treatment of exacerbations for a period of one year of followup.
Kaplan–Meier estimates for the time from study entry to resolution of the ini-
tial exacerbation are given for the Ciprofloxacin and control groups in Figure
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6.3; a log-rank test gives p = 0.062, indicating some evidence of more rapid
symptom resolution in the Ciprofloxacin arm. This is a simple marginal com-
parison of treatment groups on which one can base causal inferences about
treatment effects. Interpretation of the treatment effect is somewhat ambigu-
ous, however, because there was considerable variation in the lengths of time
from the start of the initial exacerbation to randomization.

Figure 1.10, which portrays the event histories for a number of subjects
from this study, shows that analysis based on the first exacerbation ignores
a considerable amount of the information collected. Because of the relapsing
and remitting nature of chronic bronchitis, it provides an example of the two-
state process considered in Section 6.5, and here we consider analysis of the
full data with a view to identifying and characterizing the effect of important
prognostic variables. We define an individual to be in state 1 when she is
experiencing an exacerbation, and in state 2 when she is not.

Patients were required to visit the participating clinic when they perceived
that a new exacerbation was beginning, or when they determined that an
exacerbation was resolved. Patient followup was to continue for 365 days, but
early termination could occur if a subject refused to complete her symptom
diary or to return for further followup visits, or if she died. There were 115
eligible patients randomized to take Ciprofloxacin and 107 randomized to
standard care. Patients were accrued from November 1993 to June 1994 and
the average duration of followup was 357 and 350 days in the Ciprofloxacin
and standard care groups, respectively. Days are used as the time scale in the
following discussion.

Episodic conditions of this sort often exhibit both semi-Markov and
Markov behavior. For example, the distribution of sojourns in the exacer-
bation state is often primarily governed by the time since the exacerbation
began. Markov or calendar time trends may be present if the sojourn distribu-
tions depend on the history of the underlying chronic condition; for example,
patients who have had the disease longer may tend to have longer exacer-
bations when they occur. For the onset of new exacerbations, the time since
disease onset may be the most natural time scale because the exacerbations
often arise as a consequence of a deterioration in lung function due to the
underlying disease. In addition, many chronic respiratory disease processes
also exhibit seasonal trends. Gap time analyses remain attractive, however,
inasmuch as an aim of treatment is to delay the onset of exacerbations and
hence extend the interexacerbation periods.

We let t denote the calendar time scale for a subject, originating at her
time of recruitment into the study. We refer to this as the study time. Let
di(0) denote the duration of the underlying disease (time since diagnosis with
chronic bronchitis) for subject i upon entry, and di(t) the duration of dis-
ease at study time t. In this dataset the time from the diagnosis of chronic
bronchitis to study entry ranged from 1 to 54 years, and here we partition
the time-scale into five-year intervals and construct time-varying covariates
indicating in which interval the duration of a patient’s chronic bronchitis
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Fig. 6.3. Kaplan–Meier plots of the distribution of the time from study entry to
resolution of the first exacerbation.

is. So if bk = 5k, k = 0, . . . , 11, we define vik(t) = I(bk−1 < di(t) ≤ bk),
k = 1, 2, . . . , 11, and vi(t) = (vi2(t), . . . , vi11(t))′. Seasonal effects are modeled
by partitioning the calendar year into four quarters: January to March, April
to June, July to September, and October to December. We define sik(t) = 1
if study time t is in the kth quarter of the calendar year, k = 2, 3, 4. Then
we let si(t) = (si2(t), si3(t), si4(t))′, and zij(t) = (s′i(t), v

′
i(t), x

′
ij(t))

′, where
xij(t) could contain time-dependent covariates, but here contains only fixed
covariates including treatment (Ciprofloxacin versus standard care), a variable
(symptoms) recording the number of days that symptoms had been present
at the time of entry into the study, sex (female versus male), and clinical des-
ignation of the severity of the chronic bronchitis (severe versus not severe).

To be eligible for inclusion in the study, subjects were required to be
experiencing an exacerbation at the time of entry (i.e. they were required to
be in state 1 at t = 0). Thus the time of randomization did not coincide
with a transition time and patients are picked up in the middle of a sojourn
in state 1. Recalling the discussion in Section 4.5.2, we note that in this
study the time ti0 < 0 of the start of the initial exacerbation (represented
by the variable “symptoms”) is known for each subject. However, treatment
assignment was made at the time of randomization (t = 0). We partially
address this by modeling separately the distribution of the time from study
entry to resolution of the first exacerbation at randomization. No stratification
is made for subsequent sojourns in states 1 or 2. We assume that seasonal
effects are the same for the first and subsequent exacerbations but estimate
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separate effects of all other covariates. The duration that symptoms were
present for the exacerbation experienced at the time of study entry is included
as a covariate to address the selection effects arising from the inclusion criteria.
We comment more on this in Section 7.3.1.

Table 6.5. Estimates from semiparametric random effect models with independent
gamma frailties, for the bronchitis data.

AECB to AECB-Free AECB-Free to AECB
Covariate EST. S.E. p−value EST. S.E. p−value

First Observed Duration
Treatment 0.513 0.159 0.001 – – –
Sex -0.199 0.160 0.212 – – –
Severity -0.282 0.248 0.256 – – –
Symptons -0.109 0.016 < 0.001 – – –

Second and Subsequent Durations
Treatment 0.060 0.131 0.644 -0.037 0.124 0.766
Sex -0.089 0.135 0.508 0.236 0.127 0.063
Severity 0.006 0.179 0.974 0.562 0.172 0.001
Symptons -0.011 0.010 0.261 – – –
Season

Jan–March – – – – – –
April–Jun 0.291 0.120 0.016 -0.100 0.161 0.536
July–Sept 0.180 0.147 0.221 0.382 0.148 0.010
Oct–Dec 0.204 0.124 0.101 0.022 0.150 0.886

Disease duration – – 0.160 – – 0.015

Variance (φj) φ̂1 = 0.1639 φ̂2 = 0.1977
Log-likelihood -2845.418 -2151.162

Table 6.5 contains the estimates obtained by fitting a semiparametric
model with random effects as in (6.28) but with h01(t) and β1 differing ac-
cording to whether Ni1(t) > 0. The random effect ui1 and the effects of season
and disease duration are assumed to be common for the cases Ni1(t−) = 0
and Ni(t−) > 0, but the other covariate effects are allowed to differ. Previous
analyses (Ng and Cook, 1999b) suggest there is no need to model the associ-
ation between the random effects and so we use independent gamma random
effects in this model. This allows the models to be fitted using the function
coxph in S-PLUS or R. The code for fitting this model is given in Appen-
dix C. When controlling for sex, severity of chronic bronchitis, the duration of
symptoms at randomization, and disease duration (i.e. vi(t)), the treatment is
associated with a substantial increase in the rate of resolution (RR = 2.72, p <
0.001) for the exacerbation experienced at randomization. Moreover, there is
evidence that, when controlling for other factors, those subjects with a longer
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duration of symptoms upon recruitment had a significantly longer time to
resolution (p < 0.001) of the first exacerbation. There is no evidence that
sex or severity of symptoms affect the intensity for symptom resolution for
the first or subsequent exacerbations, and the treatment and symptom du-
ration at randomization are not associated with the duration of second and
subsequent exacerbations either. There is some evidence of seasonal variation
in the recovery rates; when controlling for other covariates, it appears that
exacerbations in the spring have somewhat shorter durations than those orig-
inating in the winter months. The p−value in Table 6.5 for disease duration
is based on a test that the regression coefficients for vi2(t), . . . , vi11(t) are all
zero; no significant effect of disease duration on the time to resolution of the
exacerbations is indicated.

In terms of the prognostic variables for the onset of exacerbations, patients
with a diagnosis of severe chronic bronchitis have much higher risk of new ex-
acerbations (p < 0.001), but treatment, sex, and the duration of symptoms
at randomization do not appear to be related to the onset of new exacerba-
tions. We remark that randomization and treatment initiation took place in
the middle of the initial exacerbation; in contrast, therapeutic treatment was
initiated near the onset of subsequent exacerbations, when patients presented
themselves to the clinic. Only a subset of patients was observed to experience
a second exacerbation, however, so treatment comparisons on second and sub-
sequent exacerbations are subgroup analyses in which causal inferences about
treatment effects are difficult.

There is evidence that exacerbations occur more frequently in the summer
months than the winter months (p = 0.010), and the disease duration also
appears to be a significant factor (p = 0.015); the longer the history of chronic
bronchitis the greater the risk of developing a new exacerbation. There is
significant evidence of heterogeneity in both the duration of exacerbations
and the times between exacerbations. Likelihood ratio tests of H0 : φj = 0
give p < 0.0001 and p < 0.0001 for j = 1 and j = 2, respectively.

The difficulties of dealing with the first exacerbation can be avoided if
one only uses data following the resolution of the exacerbation at study entry
because this resolution time is a stopping time. There is an obvious loss of
information incurred by doing this but we considered this approach here as
a type of sensitivity analysis. The results concerning the effects of covariates
on onset and resolution of subsequent durations are broadly similar to those
given in Table 6.5.

6.7.3 Skeletal Complications in Metastatic Cancer

Cancer patients with skeletal metastases are at risk of complications such as
fractures or bone pain relating to decreased integrity of the bone. Bisphos-
phonate therapy is designed to strengthen bone and reduce the occurrence of
complications arising from bone lesions. Mortality is quite high in these pop-
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Table 6.6. Frequency distribution for total number of complications on study.

Number of Placebo Pamidronate
Skeletal Events No. Percent No. Percent

0 69 35.4 99 53.5
1 41 21.0 39 21.1
2 34 17.4 17 9.2
3 18 9.2 13 7.0
4 12 6.2 10 5.4
5 7 3.6 3 1.6
6 5 2.6 1 0.5
7 4 2.1 1 0.5
≥8 5 2.6 2 1.1

Total 195 185

ulations, however, and the occurrence of skeletal complications is of course
terminated by death.
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Fig. 6.4. Generalized Nelson–Aalen estimates of the cumulative intensity functions
for first, second, and third skeletal events.
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Fig. 6.5. Generalized Nelson–Aalen estimates of the cumulative intensity functions
for death with no, one, or two skeletal events.

Here we consider the analysis of data arising from a randomized trial
reported in Hortobagyi et al. (1996). Patients were accrued between Janu-
ary 1991 and March 1994 from 97 study sites in the United States, Canada,
Australia, and New Zealand. Patients with stage IV breast cancer receiv-
ing cytotoxic chemotherapy with at least one predominantly lytic bone le-
sion greater than or equal to one centimeter in diameter were randomized to
treatment groups. A total of 382 women were enrolled in the study with 185
and 197 randomized to receive an experimental treatment and the placebo
control, respectively; two patients in the placebo arm were found to be in-
eligible and are excluded from the analyses that follow. Patients assigned to
the experimental arm received 90 mg of a bisphosphonate, pamidronate dis-
odium, via a two-hour infusion every four weeks, whereas patients randomized
to the placebo control received dextrose infusions. Patients on a three-week
chemotherapy regimen were permitted to receive the study drug every three
weeks. At monthly visits patients were assessed and the occurrence of skele-
tal complications was recorded. The skeletal complications of interest include
pathologic fractures, spinal cord compression with vertebral fracture, the need
for surgery to treat or prevent fractures, and the need for radiation for the
treatment of bone pain. After the planned followup of one year, the obser-
vation period was extended for an additional year; the results are published
in Hortobagyi et al. (1998). Table 6.6 gives the frequency distribution of the
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total number of skeletal complications from randomization to last contact,
by treatment group. Tabulations of this sort are difficult to interpret when
there may be differences in survival distributions, so this is only a crude data
summary.

In this section we consider simple marginal analysis of the occurrence of
skeletal complications, with death as a terminating event, performed sepa-
rately for the two treatment groups. The purpose is to gain insight into the
frequency of events through the multistate model depicted in Figure 6.2. We
consider estimation based on Markov assumptions. Nelson–Aalen estimates
(6.53) of the cumulative transition are given in Figure 6.4 for the occurrence
of skeletal events in Figure 6.5 for death. These reveal increasing risk of new
skeletal complications with the occurrence of each skeletal event, and a gener-
ally higher risk of death with additional skeletal-related events, although this
pattern does not hold as clearly for treated patients; there are fewer patients
at risk of death from the states representing two or three events.
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Fig. 6.6. Estimated mean functions for skeletal events based on Aalen–Johansen
estimates (6.54) and “crude” marginal estimates (6.46).

As mentioned in Section 5.3, Aalen–Johansen estimates of the prevalence
functions may also be obtained. We let p0k(0, t) = Pr(Z(t) = Ek|Z(0) = E0)
and p′0k(0, t) = Pr(Z(t) = Dk|Z(0) = E0) and estimate these using (6.54). The
estimated marginal mean function µ(t) can then be estimated using (6.51) and
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this is plotted for placebo and treated patients in Figure 6.6. Also plotted in
Figure 6.6 is an estimate of µ(t) based on the estimated conditional rate (6.42)
and the Kaplan–Meier estimate of the survival function for each group (see
(6.46) of Section 6.6.3 with no covariates). Finally, the usual marginal Kaplan–
Meier and the Aalen–Johansen estimates of the survivor function (where the
latter is given by

∑∞
k=0 p̂0k(0, t)) are displayed in Figure 6.7. The marginal

and multistate estimates in both Figures 6.6 and 6.7 exhibit some differences.
Such differences, and in particular the drop in the Aalen–Johansen estimate
in the left panel of Figure 6.8, are influenced by there being few individuals
at risk at later time points, and even fewer at risk from each transient state,
but one would not expect these differences to be too large under completely
independent censoring.
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Fig. 6.7. Kaplan–Meier and Aalen–Johansen estimates of the survivor distribution
for placebo and pamidronate groups.

To investigate this further, we plot the estimated cumulative intensities
for censoring from each state (Figure 6.8). These plots show that subjects
with a higher number of skeletal complications are at increased risk of with-
drawal from the study. This is an example of state-dependent censoring which
means that the rate of withdrawal or censoring from the study depends on
the state occupied. Under these circumstances, the crude marginal estimates
as in Figure 6.6 and the marginal Kaplan–Meier estimates as in Figure 6.7 are
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inconsistent. Estimates of the survival distribution and mean function based
on the multistate analysis are therefore preferable; they are consistent if the
Markov model is appropriate.
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Fig. 6.8. Cumulative intensity functions for censoring with no, one, or two skeletal
events.

An alternative approach to estimation in this context is to model marginal
features of interest directly, but to introduce weights into the associated esti-
mating functions which correct for effects of dependent censoring; see Section
4.4. We discuss the use of “inverse probability of censoring” weights in more
detail in Section 7.2.

6.7.4 Relationships Between Skeletal Complications

In studies like the one in the preceding section, we may also be interested in
characterizing the risk for different types of skeletal events in patients with
bone metastases. The skeletal complications patients may experience are of
several types, but the most common are pathological fracture and severe bone
pain requiring radiotherapy. Here we consider analyses of the data on control
patients from Hortobagyi et al. (1998) to study the occurrence of these com-
plications. We define type 1 events as fractures and type 2 events as bone
pain requiring radiotherapy. Figure 6.9 shows a multistate diagram which can
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be used to characterize possible paths for event occurrence based on these
outcomes. In addition to the two skeletal complications, patients on study are
at risk of death, but we suppress this state in Figure 6.9 for convenience.

R R R

F F F

First
Event

Second
Event

Third
Event

Fig. 6.9. Multistate diagram for a bivariate recurrent event process involving frac-
tures (F) and radiotherapy (R).

We consider several different forms for the intensity functions. If events
are independent one could consider Markov models with

λij (t|Hi(t)) = Di(t)αj(t) exp(x′
ijβj) , (6.58)

where Ti is the time of death, Di(t) = I(t ≤ Ti) as before, and αj(t) is a
baseline rate function for events of type j = 1, 2. Dependence on the history
of the same type of event can be incorporated by considering, for example,

λij (t|Hi(t)) = Di(t)αj(t) exp(x′
ijβj + γ1jNij(t−)) , (6.59)

or dependence on the history of both types of events by

λij (t|Hi(t)) = Di(t)αj(t) exp(x′
ijβj + γ1jNij(t−) + γ2jNi,3−j(t−)) . (6.60)

As stressed previously, it is important to recognize that the interpretation of
the regression coefficient βj is different in (6.58) and models such as (6.59) or
(6.60) which involve additional conditioning. If xij is a scalar, for example,
then exp(βj) represents the multiplicative effect of a one-unit increase in xij

on the rate of type j events in (6.58); in (6.60) exp(βj) represents the effect
of a one-unit increase in xij on the rate of type j events among subjects with
the same cumulative number of fractures and rounds of radiotherapy for bone
pain. There may be considerable differences in the estimates of regression
coefficients obtained in these models when the additional terms in (6.59) and
(6.60) indicate a significant dependence on prior event history.

More general models are possible within this Markov framework by intro-
ducing some form of stratification. One can, for example, let
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λij (t|Hi(t)) = Di(t)αjkj
(t) exp(x′

iβj) , (6.61)

where Nij(t−) = kj , j = 1, 2, which is analogous to (6.59) but where the effect
of the previous type j events is dealt with through stratification; that is, a
separate baseline intensity is introduced for each cumulative number of type j
events. The impact of past events of type 3− j can be assessed parametrically
through models such as

λij (t|Hi(t)) = Di(t)αjkj
(t) exp(x′

iβj + γ2jNi,3−j(t−)) , (6.62)

where the two processes are independent if the γ2j = 0. More highly stratified
Markov models such as

λij (t|Hi(t)) = Di(t)αjk1k2(t) exp(x′
iβj) , (6.63)

where Ni1(t−) = k1 and Ni2(t−) = k2, feature separate baseline transition
intensities for different combinations of the cumulative event counts. These
models lend themselves to informative graphical summaries if the number of
event-dependent strata is not too large, as we illustrate below.

Table 6.7. Estimates obtained for regression analyses of fractures and rounds of
radiotherapy in unstratified and stratified models.

Unstratified Models Stratified Model

Model 1 Model 2 Model 3†

EST. S.E. p EST. S.E. p EST. S.E. p

Fractures (Type 1 Events)
Positive PR status -0.921 0.178 < 0.0001 -0.581 0.190 0.002 -0.599 0.233 0.010
Unknown PR status 0.108 0.151 0.477 0.204 0.162 0.208 0.132 0.219 0.545
Prior fracture (Y/N) 0.857 0.135 < 0.0001 0.498 0.148 0.001 0.270 0.193 0.163
Cumulative No.

Fractures – – – 0.167 0.017 < 0.0001 – – –
Radiotherapies – – – 0.124 0.055 0.024 – – –

Radiotherapy Events (Type 2 Events)
Prior radiation 0.422 0.175 0.016 0.332 0.177 0.062 0.308 0.181 0.088
Cumulative No.

Radiotherapies – – – 0.384 0.066 < 0.0001 – – –
Fractures – – – 0.010 0.032 0.769 0.058 0.036 0.113

†Model 3 for pathological fractures is stratified by cumulative number of fractures
and rounds of radiotherapy and Model 3 for rounds of radiotherapy is stratified on
cumulative rounds of radiotherapy.

Table 6.7 contains the results of fitting several models for the occurrence
of fractures (top half) and the need for radiotherapy for bone pain (bottom
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half). The covariates considered included age (1 if at least 50 yrs ; 0 other-
wise), prior fracture status (1 if they had at least one fracture prior to study
entry; 0 otherwise), prior radiation (1 if they had at least one round of radio-
therapy prior to study entry; 0 otherwise), prior chemotherapy (1 if they had
prior chemotherapy experience; 0 otherwise), prior hormone (1 if they had
prior hormonal treatment; 0 otherwise), estrogen receptor (ER) status (0 if
negative; 1 if positive; 2 if unknown), and progesterone receptor (PR) status
(0 if negative; 1 if positive; 2 if unknown).

We first discuss the results from fitting models for the occurrence of frac-
tures. Model 1 was obtained by selecting those covariates that were significant
in a multivariate analysis based on (6.58), which were PR status and prior
fracture. In Model 2 we add the cumulative number of fractures and rounds
of radiotherapy as in (6.60) and find both significantly increase the risk of
subsequent fractures. A test of the assumption of multiplicative effects for
these variables via cox.zph gives p < 0.001 and p = 0.030 for the cumulative
number of fractures and radiotherapies, respectively, indicating some model
generalization is warranted. The multiplicative assumption can be relaxed
with models where these covariate effects are allowed to be time-dependent
by considering interactions with defined time-dependent covariates. Here we
base Model 3 on (6.63) and rely on simple graphical summaries for interpreta-
tion instead. The tests of multiplicative effects of PR status and prior fracture
do not suggest problems with Model 3, where PR status remains a significant
prognostic variable indicating that among patients with the same number of
fractures and rounds of radiotherapy, a postive PR status confers a protective
effect; those with a positive PR status have lower risk of fractures than those
with negative PR status (RR = 0.549; 95% CI (0.348, 0.867); p = 0.010).
Among patients with the same cumulative number of fractures and rounds of
radiotherapy, the prior fracture status at study entry no longer conveys useful
prognostic information and could be dropped from the model. The addition
of other baseline variables to Model 3 does not produce anything significant.

Figure 6.10 displays a variety of integrated baseline intensities for Model
3 where the baseline intensity corresponds to a patient with a negative PR
status and no prior fracture. The top left plot gives the estimated cumulative
transition intensities for the first three successive fractures among patients
who have not had any radiation therapy for bone pain. The increasing trend
is consistent with the regression findings for Models 1 and 2 in Table 6.7 in
that the risk of a new fracture increases with each occurrence of each fracture.
We see in Figure 6.10 that this is mainly a factor over the first few months on
study, the intensities being roughly the same after four months. The top right
plot in Figure 6.10 reveals that among patients with no on-study fractures,
the risk of first on-study fracture does not change much following the first two
bouts of radiation for bone pain. Comparison of the top left and bottom left
plots of Figure 6.10 suggests that patients with a single round of radiotherapy
have a reduced risk of a second fracture, and a smaller reduction in risk of the
third fracture. There are, however, rather few individuals in the “2 fractures,
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Fig. 6.10. Generalized Nelson–Aalen estimates of the cumulative baseline transition
intensities based on a stratified Markov model for pathological fractures (Model 3).

1 radiation” risk sets and the estimate has a large standard error. Caution
is warranted when interpreting such plots without confidence intervals, and
awareness of the size of risk sets is important.

The bottom portion of Table 6.7 contains the results of corresponding
analyses for the radiotherapy event. The estimates for Model 1 reveal that
only prior radiotherapy was significant following backwards elimination based
on (6.58). When controlling for the cumulative number of fractures and rounds
of radiotherapy in Model 2 based on (6.60), this prior radiation effect was
somewhat attenuated as one might expect. Tests based on cox.zph for Model
2 reveal evidence against the multiplicative effect of the cumulative number of
rounds of radiotherapy (p = 0.036) but no such evidence for prior radiotherapy
or the cumulative number of fractures. We therefore consider Model 3 based on
(6.62) and find that prior radiotherapy and the cumulative number of fractures
are not significant. Figure 6.11 gives plots for the Nelson–Aalen estimates of
the integrated intensities for the first four radiotherapy events corresponding
to patients with no prior radiotherapy and no on-study fractures. They reveal
a greater risk of new radiotherapy among subjects with one previous event,
but the risk following second and third rounds of radiotherapy appears about
the same.
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It should be noted that death is a competing risk for the recurrent skeletal
events here, and the recurrent event intensities at time t are here, as in (6.30)
and (6.58)–(6.60), conditional on Ti ≥ t.
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Fig. 6.11. Generalized Nelson–Aalen estimates of the cumulative baseline transition
intensities based on a stratified Markov model for radiotherapy (Model 3).

6.8 Bibliographic Notes

Intensity-based models for multitype recurrent event data are considered in
the multivariate counting process literature. Andersen et al. (1993) provide
comprehensive coverage of this area, with an emphasis on Markov models.
Other references on intensity models are given in the Bibliographic Notes for
Chapters 3–5, and many of the models discussed can be adapted for multiple
events.

Abu-Libdeh et al. (1990) consider multivariate mixed Poisson models with
parametric conditional event rates and multivariate random effect distribu-
tions. Chen et al. (2005) describe Gibbs sampling algorithms for fitting mixed
Poisson models with multivariate log-normal random effects; the problem mo-
tivating this work involved interval-censored data which we consider in Chap-
ter 7. Ng and Cook (1999b) follow the approach of Lawless and Nadeau (1995)
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and Nadeau and Lawless (1998) and derive estimating functions and optimal-
ity criteria for semiparametric rate and mean functions for multitype recurrent
events. In their framework working covariance models are considered. Cai and
Schaubel (2004b) formulate estimating functions for marginal analysis but do
not incorporate a model for the association structure.

The two-state setting of Section 6.5 has been considered both in the liter-
atures on multistate processes and alternating renewal processes. References
germane to the treatment here include Xue and Brookmeyer (1996), Cook
et al. (1999), and Lawless and Fong (1999).

The analysis of recurrent events in the presence of a terminal event is
considered in Cook and Lawless (1997). There are connections with analysis
of quality-adjusted lifetime data (e.g. Zhao and Tsiatis, 1997), health cost
analyses (e.g. Lin et al., 1997), and any other settings where interest lies in
accumulating processes with termination. This topic is discussed in Chapter
8. Strawderman (2000) discusses the connections between these problems and
approaches. Ghosh and Lin (2000) develop robust tests for treatment effects
based on rate functions for recurrent events with dependent termination, and
Chen and Cook (2004) extend these tests to accommodate multitype recurrent
events. Ghosh and Lin (2002) give marginal regression models for the number
of recurrent events. Shared random effects models for recurrent events and
a terminating event are considered by Wang et al. (2001), Huang and Wang
(2004), Liu et al. (2004), Ye et al. (2007), and others. Approaches based on
accelerated time models are considered by Ghosh and Lin (2003) and Huang
and Wang (2003). Lawless et al. (2001) contains a detailed analysis of the
shunt data discussed in Section 6.7.1 as well as further remarks on gap-time
analyses with multitype events.

In some cases with multitype event data the type of event is not always
available. The related problem of competing risk data with missing cause of
failure has received considerable attention in the literature. See Craiu and
Reiser (2006), Craiu and Duchesne (2004), and Dewanji and Sengupta (2003)
for recent work and references. For the recurrent event context, Schaubel and
Cai (2006a) describe an estimation procedure under the assumption that the
mean functions for the different types of events are proportional; generaliza-
tions are also described to relax this assumption. An alternative approach
based on multiple imputation is described in Schaubel and Cai (2006b).

6.9 Problems and Supplements

6.1. Section 3.5.2 discussed the use of mixture models to account for an excess
of zeros relative to what one would expect from a given Poisson model. Con-
sider a bivariate point process in which, for k = 1, 2, {Nk(t), 0 ≤ t}|Zk = 1
follows a Poisson process with rate ρk(t) and Nk(t) = 0 if Zk = 0, where
Z1 and Z2 are unobserved random variables with joint probability function
πk� = Pr(Z1 = k, Z2 = �), k, � = 0, 1.
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a. Give the likelihood function based on a random sample of m individuals,
where the data from individual i consist of {Ni1(s), Ni2(s), 0 ≤ s ≤ τi}.

b. Develop an EM algorithm to obtain maximum likelihood estimates of the
rate functions ρk(s), k = 1, 2, and π = (π00, π01, π10, π11) by treating
(Z1, Z2)′ as missing data.

c. Consider extensions where the ρk(t) and πk� may depend on covariates.

[Section 6.1]

6.2. Consider a bivariate two-point mixture model such that given Zk = �,
{Nk(t), 0 ≤ t} is a Poisson process with rate ρk�, k = 1, 2, � = 1, 2. Let
J(s) = 1 if dN1(s) = 1 and J(s) = 2 if dN2(s) = 1 with J(s) = 0 otherwise.
If Si =

{
ti1, . . . , tiNi(τ)

}
denote the times of events for subject i, and Ji(s) is

missing for some s ∈ Si, discuss strategies for maximum likelihood estimation.

[Section 6.1]

6.3. Suppose that {Nik(t), 0 ≤ t} |Zk = 1 follows a renewal process with gap
time hazard functions hk(w), for k = 1, 2. Reconsider Problem 6.1 in this
context.

[Section 6.1]

6.4. Consider the random effects model at the end of Section 6.3, where events
of types j = 1, . . . , J for individual i follow independent Poisson processes with
rates uijρij(t), given the vector ui = (ui1, . . . , uiJ )′ of random effects. Suppose
uij = vi+wij , where the vi and wij are mutually independent gamma random
variables with means equal to 1 and variances φv and φw, respectively. Derive
the likelihood function for φv, φw and the parameters θ that specify the ρij(t).

[Section 6.3]

6.5. Consider a pseudo-score statistic, denoted here Uj(0), for testing H0 :
βj = 0, based on (6.16). Derive an estimate of a robust covariance matrix for
(U1(0), . . . , UJ (0)) using (6.21) and discuss how to construct a global test of
H0 : β1 = · · · = βJ = 0.

[Section 6.4]

6.6. Suppose that, conditional on a random effect ui, a recurrent event process
and a terminating event process are independent, where (i) the recurrent
events follow a Poisson process with rate function ui ρ(t) and (ii) the time Ti

to the terminating event has hazard function ui h(t). Suppose that ui has a
gamma distribution with mean 1 and variance φ.

a. Given the recurrent event history {Ni(s) : 0 ≤ s < t} and that Ti ≥ t,
determine the probability that Ti > t′ where t′ > t.
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b. For the case of a homogeneous Poisson process, with ρ(t) = ρ, determine
the two mean functions E{Ni(t)} and E{Ni(t)|Ti ≥ t}. Plot the two
functions for the case where ρ = 1, h(t) = 1, and φ = 1. Repeat this for
the case where ρ = 1, h(t) = 1, and φ = 0.04. What happens when φ = 0?

This process is not conceptually appealing because it assumes the event
process continues after termination. Compare it with the model in (6.33) and
(6.34), when ui1 = ui2.

[Section 6.6; Huang and Wang, 2004; Ye et al., 2007]

6.7. Motivate the estimates (6.26) and (6.27) by using the fact that if τi

(i = 1, . . . ,m) are fixed values independent of the event processes, and if the
processes are of mixed Poisson type, then if nij = Nij(τi) and µij = µij(τi),

var(nij) = µij + φjµ
2
ij , and cov(ni1, ni2) = φ12µi1µi2 .

[Sections 6.3, 6.4]

6.8. Data on pulmonary exacerbations in persons with cystic fibrosis were
considered in Sections 1.2.3, 4.3.2, and 5.5.1; see Appendix D.3. Individuals
are not at risk of a new exacerbation while they are being treated with antibi-
otics for an existing one, so the process is actually as in Figure 6.1. Previous
discussion focused on the occurrence of new exacerbations (transitions into
state 2).

Use the methods of this chapter to examine both types of transitions,
including the possibility that the durations of sojourns in the two states may
be related.

[Section 6.5]

6.9. Suppose that a terminating event for a recurrent event process can occur
only at the time of each recurrent event. In particular, given that the termi-
nating event has not occurred previously, the probability that it occurs at the
time of the jth recurrent event is πj .

a. For the case in which {N(t), 0 ≤ t} is a Poisson process with rate function
ρ(t;α), give the maximum likelihood estimating equations for α and πj ,
j = 1, 2, . . . , based on complete data for independent individuals i =
1, 2, . . . ,m, with individual i observed over [0, τi].

b. Determine the marginal survivor function S(t) for the time T of the ter-
minating event, and the marginal mean function E{N(t)} for the case
where πj = π, j = 1, 2, . . .. Give an expression for E{N(t)|T = t}.

c. Generalize parts (a) and (b) for the case where πj may depend on the
time of the event, so that

Pr(termination at time t|jth event at t) = πj(t) .
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[Section 6.6]

6.10. Model checking is often carried out in more complex multivariate
processes by fitting expanded models. Describe how intensity-based residu-
als and methods discussed in Section 5.2.3 can be used for the settings in this
chapter.



7

Observation Schemes Giving Incomplete
or Selective Data

Thus far we have assumed that the event history process can be observed
continuously over some followup period for each individual, and it has been
assumed that the selection of individuals and their followup periods are inde-
pendent in the sense described in Sections 1.4 and 2.6, and thus ignorable. In
some settings these conditions are violated; for example, an individual may
be observed only intermittently, or loss-to-followup may not be independent
in the sense needed for ordinary analysis. In addition, individuals may be se-
lected for a study because their event history satisfies some condition. In the
following sections we discuss how to deal with these issues.

7.1 Intermittent Observation During Followup

In Section 1.4.4 we discussed how in some studies it is only possible to inspect
or observe individuals intermittently. If the followup period for individual i is
[τi0, τi1], then suppose the individual is seen at the times τi0 = bi0 < bi1 <
· · · < biki

= τi1. We assume for now that any covariates xi are fixed; time-
varying covariates are considered in subsequent sections. The bij can be fixed
or random, but they have to satisfy conditions discussed below in order to
make standard methods valid.

Let Hi0 denote any event or covariate history at time b+
i0 that is needed

for the models considered, and let 
Hij denote the event history data over
the interval Bij = (bi,j−1, bij ], which is not observed until time bij . Let H̃ij =
{bi0,Hi0, bi1,
Hi1, . . . , bij ,
Hij} denote the observed history up to time bij .
We note that given H+

i0,

Pr(H̃iki
) =

ki∏

j=1

Pr(
Hij |H̃i,j−1, bij)
ki∏

j=1

Pr(bij |H̃i,j−1) . (7.1)

We assume that the following two conditions hold in conjunction with the
methods below.



252 7 Observation Schemes Giving Incomplete Data

(i) Pr(bij |H̃i,j−1) does not contain any parameters that appear in the model
for the event process.

(ii) Pr(
Hij |H̃i,j−1, bij) = Pr(
Hij |
Hi1, . . . ,
Hi,j−1), which stands for
the probability that applies when the times bi1, . . . , bij are fixed, and so
completely independent of the event process.

Condition (i) means that the inspection process is noninformative and so there
is no loss of information regarding the event process if we ignore the second
term in (7.1). Condition (ii) states that although bij may depend on the prior
history H̃i,j−1 of event or inspection times up to time bi,j−1, it cannot depend
on events after bi,j−1 and the conditional probability distribution of the event
history in Bij must be the same as if bij were a function of prior inspection
times alone.

Based on assumptions (i) and (ii), and given data on m independent indi-
viduals, we implicitly condition on the bij values and consider the likelihood
function for the parameters θ in the event history process as

L(θ) =
m∏

i=1

ki∏

j=1

Pr(
Hij |
Hi1, . . . ,
Hi,j−1) . (7.2)

If only condition (ii) is satisfied this is a partial likelihood, and if both (i) and
(ii) hold it is an ordinary likelihood. Either way, it can be used for maximum
likelihood inference through the usual procedures.

Sometimes the entire event process over the period (bi,j−1, bij ] can be de-
termined retrospectively at time bij . This is the case in studies where individ-
uals keep daily diaries on event occurrence, but the diaries are only available
at periodic clinic visits. In such settings the likelihood (7.2) is the same as if
we observed the event process continuously, and the methods of earlier chap-
ters apply. For the remainder of this section, we deal with the case where
event times cannot be determined retrospectively, but instead only the total
number nij of events in Bij can be determined. This kind of data arises in
many medical settings where the event of interest is not symptomatic, but
is detectable by radiographic examination, MRI or PET scans, for example,
and is often referred to as interval-count data. As discussed in Chapter 2,
the joint distribution of interval counts is intractable for most models. This
is particularly true for renewal processes, where missing information about
event times makes calculation even more difficult than usual; Problem 7.1
provides an illustration. For Poisson and mixed Poisson processes, however,
interval counts are readily handled, and robust methods for rate and mean
functions are also straightforward. We describe the appropriate methodology
in the following sections.

7.1.1 Methods Based on Poisson Processes

We assume in this section that {Ni(t), 0 ≤ t} are independent Poisson
processes, conditional on unobserved random effects ui and covariate vectors xi,
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with multiplicative conditional intensity functions

λ(t|ui, xi) = uiρ0(t) exp(x′
iβ) . (7.3)

The ui are independent and identically distributed, with E(ui) = 1 and
var(ui) = φ. An ordinary Poisson process without random effects is given
by the limiting case φ = 0, in which case each ui in (7.3) equals one. This is
the model of Section 3.5, and when event times are observed both parametric
and nonparametric specifications for ρ0(t) are readily handled as described
there. With only interval counts available, semiparametric maximum likeli-
hood is considerably more challenging, however, and so we assume here that
ρ0(t) is specified parametrically as ρ0(t;α). Flexibility can be achieved, if de-
sired, by taking ρ0(t) as piecewise-constant (e.g. Lawless and Zhan, 1998) or
modeling it with splines or other flexible parametric forms.

We assume that the ui have distribution function G(u;φ) and let θ =
(α′, β′, φ)′ denote the vector of unknown parameters. We also define

µij(α, β) = E{Ni(bi,j−1, bij)}
= {µ0(bij ;α) − µ0(bi,j−1;α)} exp(x′

iβ) , (7.4)

where µ0(t;α) =
∫ t

0
ρ0(s;α)ds. For simplicity we continue to assume that the

covariate vector xi is fixed, but straightforward modifications of the expres-
sions that follow allow xi in (7.4) to be replaced with xij , so that time-varying
covariates which change values at observation times can be accommodated.
Finally, it is assumed that conditions (i) and (ii) following (7.1) hold; this
requires that bij be independent of ui, given H̃i,j−1.

The likelihood function under these conditions is given by the joint distri-
butions of (ni1, . . . , niki

) given xi, where nij = Ni(bi,j−1, bij). This is propor-
tional to

L(θ) =
m∏

i=1

∫ ∞

0

ki∏

j=1

(uiµij)nij exp(−uiµij)dG(ui;φ) , (7.5)

where we write µij for µij(α, β) and omit terms (nij !)−1 in this likelihood. The
log-likelihood �(θ) = log L(θ) can be maximized and an asymptotic covariance
matrix for θ̂ obtained, by using general optimization software described in
Appendix B. As in Section 3.5.3, we note that when the ui have a gamma
distribution (2.28) with mean 1 and variance φ, the integrals in (7.5) have
closed-form expressions, giving

L(θ) =
m∏

i=1

⎛

⎝
ki∏

j=1

µ
nij

ij

⎞

⎠ Γ (ni. + φ−1)φni.

Γ (φ−1)(1 + φµi.)ni.+φ−1 , (7.6)

where µi. =
∑ki

j=1 µij , ni. =
∑ki

j=1 nij , and Γ (·) is the gamma function.
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The likelihood score functions for α, β, and φ based on (7.4) and (7.6)
can, after some algebra, be written as

∂�

∂α
=

m∑

i=1

ki∑

j=1

(nij − µij)
µij

(
∂µij

∂α

)

−
m∑

i=1

(ni. − µi.)φ
1 + φµi.

(
∂µi.

∂α

)

(7.7)

∂�

∂β
=

m∑

i=1

(ni. − µi.)
1 + φµi.

xi (7.8)

∂�

∂φ
=

m∑

i=1

{
ni. − µi.

φ(1 + φµi.)
+

log(1 + φµi.)
φ2

−
∑ni.

j=1[1 + φ(j − 1)]−1

φ

}

. (7.9)

They can be utilized in a maximizer for �(θ) if desired or, alternatively, soft-
ware that solves the equations ∂�/∂α = 0, ∂�/∂β = 0, ∂�/∂φ = 0 can be used
to obtain α̂, β̂, and φ̂. A test of the need for random effects is conveniently
carried out using the likelihood ratio statistic for the hypothesis H0 : φ = 0.
This is given by W = 2�(α̂, β̂, φ̂) − 2�(α̂0, β̂0, 0), where α̂0 and β̂0 are the
maximum likelihood estimates under the Poisson model. Under H0, W as-
ymptotically has distribution .5I(W = 0)+ .5χ2

1. An illustration involving the
negative binomial model just described is given in Section 7.1.3. In the next
section we consider robust methods of estimating the parameters α, β in the
marginal rate function ρ0(t;α) exp(x′β) and mean function µ0(t;α) exp(x′β).
As in Section 3.6, these methods provide estimates that are applicable to other
processes besides Poisson or mixed Poisson, provided the inspection times are
determined independently of the event processes, given the xi.

7.1.2 Robust Estimation of Rate and Mean Functions

As in Section 3.6, we assume that the process mean function takes the form

E{Ni(t)|xi} = µ0(t;α) exp(x′
iβ) (7.10)

and the corresponding rate function is ρ0(t;α) exp(x′
iβ). Provided the bij are

determined independently of the event process, it follows that, conditional
on the bij , E(nij) = µij , using the notation of the preceding section. The
expectations of (7.7) and (7.8) are then equal to zero under the model (7.10),
so that solving ∂�/∂α = 0, ∂�/∂β = 0 gives consistent estimators α̃ and β̃
for any specified value of φ. The simplest procedure is to use φ = 0, which
corresponds to Poisson maximum likelihood, and we use this here. We must,
however, consider variance estimation for α̃ and β̃ on the assumption that the
negative binomial process giving (7.7) and (7.8) may not hold.

Let us rewrite the estimating functions (7.7) and (7.8) with φ = 0 as
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U(α, β) =

⎛

⎜
⎜
⎝

m∑

i=1

U1i(α, β)
m∑

i=1

U2i(α, β)

⎞

⎟
⎟
⎠ =

(
U1(α, β)
U2(α, β)

)

,

where

U1i(α, β) =
ki∑

j=1

nij − µij

µij

(
∂µij

∂α

)

U2i(α, β) = (ni. − µi.)xi .

It follows from large sample results for estimating equations (see Appendix A)
that under mild conditions, as m → ∞ the distribution of

√
m(α̃′−α′, β̃′−β′)′

approaches a multivariate normal distribution with mean 0 and covariance
matrix that is estimated consistently by

v̂ar
(

α̃

β̃

)

= Ã−1B̃Ã−1 , (7.11)

where

A =
1
m

(
−∂U1/∂α′ − ∂U1/∂β′

−∂U2/∂α′ and − ∂U2/∂β′

)

, B =
1
m

m∑

i=1

UiU
′
i ,

and Ã, B̃ are obtained by replacing parameters α, β with α̃, β̃. Because
U(α, β) is the likelihood score function for a Poisson process, the matrix Ã is
simply the observed information matrix from the Poisson model with mean
function (7.10) and θ = (α′, β′)′.

The model (7.10) and estimating functions U(α, β) = 0 can thus be han-
dled by standard optimization software, as follows. Let

�p(θ) =
m∑

i=1

ki∑

j=1

(nij log µij − µij) , (7.12)

where µij = [µ0(bij ;α) − µ0(bi,j−1;α)] exp(x′
iβ), denote the Poisson process

log-likelihood. Using an optimization routine, maximize �p(θ) to obtain θ̃ =
(α̃′, β̃′)′, the solution to U(α, β) = 0. Good software also gives the information
matrix A(θ) = (−∂2�/∂θ∂θ′) evaluated at θ̃, which is Ã needed for (7.11).
Finally, obtain B̃ by direct calculation, and then get the covariance matrix
estimate (7.11).

An alternative to the preceding approach would be to use generalized linear
model software for count data. The model (7.10) is not of a form that allows
log-linear model software for counts to be used on the nij , however, because
the form of µij = E(nij) is not in general linear in the parameters for any
link function. An exception is when µ0(t) is linear and the rate function is
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constant; then, with µ0(t) = αt we have µij = (bij − bi,j−1) exp(x′
iβ + log α).

To use generalized linear model software in other cases, we could approximate
µij by a generalized linear form, by replacing µ0(bij) − µ0(bi,j−1) in µij with
a function evaluated at some point in Bij . In particular, by the Mean Value
Theorem we can write (7.4) as

µij = µ(bij) − µ(bi,j−1) = {(bij − bi,j−1)µ′
0(b

∗
ij)} exp(x′

iβ) ,

where b∗ij is a value in (bi,j−1, bij ]. For certain forms of µ0(t) this can be
expressed in log-linear form. Because robust variance estimates still have to
be computed, software that does this is preferred.

We remark as well that estimating functions which use a parametric work-
ing covariance matrix for (ni1, . . . , niki

)′ can also be considered (e.g. Lawless
and Zhan, 1998). Section 7.1.4 outlines this approach for the more general
setting of multiple event types; in favorable circumstances this can provide
more efficient estimates of α and β plus estimates of association. Problem 7.3
gives results for the present context of a single event type. Finally, although
the methods given here are robust to departures from a Poisson process they
do, unlike the methods of Section 3.6, rely on a parametric model for ρ0(t).
It is possible, but complicated, to develop nonparametric and semiparamet-
ric methods; see Sun (2006, Ch. 8) and other references in the Bibliographic
Notes for this chapter. Parametric models are much easier to handle and, if
desired, flexible specifications using piecewise-constant, spline-based, or other
weakly parametric baseline rate functions can be used, as indicated before
(7.4). Model checks involving model expansion and comparison of the nij and
estimates µ̂ij from parametric models should of course be made. The next
section illustrates the methodology.

7.1.3 Illustration: Superficial Tumors of the Bladder

Lawless and Zhan (1998) discuss data given by Byar (1980), which arose in
a clinical trial for patients with bladder cancer. All subjects had superficial
bladder tumors at the time they entered the trial; these tumors were removed
and they were then assigned randomly to receive one of three treatments:
Pyridoxine, Thiotepa, or a placebo. At subsequent followup visits any new
tumors were removed and treatment continued. The data (see Appendix D)
consist of the months from the beginning of the study to each followup inspec-
tion and the number of tumors found at each inspection. The number of initial
tumors at the beginning of the study, and the diameter of the largest such
tumor, were also recorded as covariates. In the discussion here we treat the
development of a tumor as an event; because of the intermittent inspection of
subjects, only interval counts are available. Details about how the inspection
times bij (j = 1, . . . , ki) were determined for each subject are not given; we
assume the conditions (i) and (ii) following (7.1) are satisfied. We consider
here only the Thiotepa and placebo groups for simplicity; there are 38 and
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47 subjects, respectively, in the two groups. The time in study ranged from 1
to 53 months, and the number of inspections ki ranged from 1 to 38. Figure
7.1 shows a plot of the total number of tumors ni versus time in study τi for
each subject. There are many subjects who experienced no tumors: 20 in the
Thiotepa group and 18 in the placebo group.
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Fig. 7.1. Total number of tumors versus time in study for each subject.

A primary objective is to compare the two treatment arms with respect to
the frequency tumors are present at followup visits (Byar, 1980), and several
authors (e.g. Wei et al., 1989; Therneau and Grambsch, 2000, Section 8.5.4;
Kalbfleisch and Prentice, 2002, Section 9.4.3; Nelson, 2003, Section 1.2) have
simply treated followup times at which one or more tumors were present as
exact event times. In that case, methods in the preceding chapters can be
applied. Such analysis is problematic, however, because the followup times
are apparently scheduled. We consider here analyses where the number of
tumors nij observed at inspection time bij is treated as an event count for
the interval (bi,j−1, bij ]. Some of these tumors may be recurrences of previous
tumors which were removed and some may be new tumors, but in any case we
can, if desired, estimate the probability of one or more tumors being present
at given times.

We consider analyses based on models for the interval counts nij . Three
covariates are considered: xi1 =I(subject i received Thiotepa), xi2 =number
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of initial tumors present at randomization, and xi3 =diameter (cm) of largest
initial tumor. We consider models for which

E (nij |xi) = µij = α1

(
bα2
ij − bα2

i,j−1

)
exp (x′

iβ) (7.13)

for i = 1, . . . ,m and j = 1, . . . , ki, where α1 > 0 and α2 > 0; this model arises
from a continuous time model with mean function µ(t|x) = α1t

α2 exp(x′β). We
also consider, following Section 3.3 and Lawless and Zhan (1998), a model in
which µ(t|x) is a piecewise-linear function. Two approaches to estimation are
considered: (i) a negative binomial model, with likelihood function (7.6) used
to estimate parameters θ in the mean function and the variance parameter
φ, and (ii) robust estimation of θ based on Poisson estimating functions, as
described in Section 7.1.2.

Table 7.1 shows results from four approaches, as follows.

(a) The negative binomial model (7.6) with µij given by (7.13), fitted by
maximum likelihood.

(b) The negative binomial model (7.6) with µ0(t) in (7.10) piecewise-linear, as
discussed in Lawless and Zhan (1998, Section 5); there are 8 pieces, with
changes of slope at t = 5.5, 10.5, 15.5, 20.5, 25.5, 30.5, and 40.5 months.
The final piece terminates at t = 53, which is the largest followup time.

(c) The mean function model (7.13), fitted by using the robust Poisson esti-
mating equations; this involves obtaining θ by maximizing (7.12) and then
obtaining a robust covariance matrix estimate (7.11).

(d) The piecewise-linear mean function of (b), combined with a mixed Poisson
covariance structure for ni = (ni1, . . . , niki

)′ discussed in Problem 7.3. This
assumes that var(nij) = µij + φµ2

ij and that cov(nij , ni�) = φµijµi� for
j �= �.

The estimates of the regression coefficients and their standard errors, as
well as the variance parameter φ, are almost the same under the two-parameter
model (a) for the baseline mean functions in (7.13) and the eight-parameter
piecewise-linear model (b). The robust Poisson estimating equations (c) give
slightly different estimates of covariate effects, especially for β1 (treatment)
and β2 (number of initial tumors), although the differences are not practically
important. The robust estimating function approach (d) gives regression coef-
ficient estimates that are in very close agreement with the negative binomial
models. The estimate of the variance parameter φ, which is obtained from a
robust estimating equation in this case, is a little smaller than the negative
binomial maximum likelihood estimates.

Model checks can be based on an examination of models (7.10) with addi-
tional covariate structure, and by comparisons of the nij and corresponding
fitted values µ̂ij . The sparseness of the counts makes formal testing difficult,
but there do not appear to be any major problems with the models considered.

The analyses all indicate that subjects in the Thiotepa treatment group
have a lower rate of tumor occurrence than subjects in the placebo group,
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Table 7.1. Maximum likelihood estimates from negative binomial models and ro-
bust estimates from mean function models for bladder tumor appearance.

(a) Neg. Bin. (b) Neg. Bin. (c) Robust (d) Robust with

and (7.13) P.W. Linear† with (7.13) P.W. linear†

Parameter EST. S.E. EST. S.E. EST. S.E. EST. S.E.

β1 (trt) -1.22 0.40 -1.22 0.38 -0.79 0.32 -1.21 0.32
β2 (number) 0.38 0.11 0.38 0.10 0.26 0.07 0.38 0.09
β3 (size) -0.02 0.14 -0.01 0.13 -0.03 0.10 -0.01 0.11
α1 0.17 0.08 – – 0.22 0.04 – –
α2 0.83 0.05 – – 0.82 0.04 – –
φ 2.34 0.49 2.37 0.50 – – 1.85 0.40

† From Lawless and Zhan (1998, Table 7), which also gives an estimate for the
baseline mean function.

and that subjects with a large number of initial tumors have a higher rate
of occurrence. The maximum size of the initial tumors is not significant. It is
also noted that there is strong evidence of extra-Poisson variation. Standard
errors for the regression coefficient estimates under the Poisson model are
much smaller than the robust standard errors, and lead to confidence intervals
that are too narrow and p−values that are too small.

The baseline mean function µ0(t) can also be estimated under the models
above. For the models (a) and (c) this is µ0(t) = α1t

α2 and for the piecewise-
constant rate function models (b) and (d) it is

µ0(t) =
R∑

r=1

αr∆r(t) ,

where ρ0(t) = αr for ar−1 < t ≤ ar (r = 1, . . . , R) and ∆r(t) = min(ar, t) −
min(ar−1, t) is the overlap between (ar−1, ar] and [0, t]. The models (b) and
(d) in Table 7.1 used R = 8, with (a0, a1, . . . , a8) equal to (0, 5.5, 10.5, 15.5,
20.5, 25.5, 30.5, 40.5, 53.0). The estimates of µ0(t) under the two models are
very similar. For example, at t = 15.5, 30.5, and 53.0 the estimates are (1.71,
3.00, 4.74) for models (a) and (c), and (1.55, 2.98, 4.70) for models (b) and
(d). Both models suggest that the baseline rate function decreases slightly
with time on study.

The robust mean function analyses considered here require that the inspec-
tion and loss-to-followup processes are independent of the tumor occurrence
process, given the covariates. A look at the raw data reveals that individuals
in the Thiotepa treatment group are inspected more frequently than those in
the placebo group; this is related to the way the treatment is administered
(Byar et al., 1986) and does not on its own bias the analyses. We should
consider, however, whether there is any evidence of a relationship between
inspection or drop-out times and prior event history, because that could bias
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the robust analysis. For example, if subjects with many prior tumors were
more likely to drop out of the study, then the robust marginal estimates of
the mean and rate functions would tend to be biased downwards. This might,
for example, explain the smaller covariate effects in Table 7.1 under model
(c), whose estimation did not account for association among the event counts
for an individual. We discuss this issue further and consider ways to deal with
it in Section 7.2.3. For the present study, there were a few withdrawals for
patients who experienced bladder cancer disease progression, but there is no
strong indication of event-dependent censoring.

If the negative binomial process is a satisfactory model for tumor occur-
rence, then event-dependent inspection or loss-to-followup does not create
bias, provided condition (ii) in Section 7.1 holds. An assessment of the neg-
ative binomial model’s adequacy shows no major problems. We observe that
the robust and negative binomial estimates of covariate effects in Table 7.1
are very similar for the piecewise-linear mean models, and are also close to
the negative binomial estimates with model (7.13).

7.1.4 Interval-Count Data for Multiple Events

The methods of Sections 7.1.1 and 7.1.2 can be extended to the case of J
different types of recurrent events, as in Section 6.4. Let ui = (ui1, . . . , uiJ )′

be a vector of random effects and assume that conditional on ui and covariate
vector xi the events occur according to J independent Poisson processes, with
intensity functions

λj(t|ui, xi) = uijρ0j(t) exp(x′
iβj) , j = 1, . . . , J . (7.14)

The ui are assumed to be i.i.d. with multivariate distribution function G(u;φ).
In some cases ui1, . . . , uiJ may not be functionally independent, and we can
rewrite ui in terms of fewer than J random variables (see Section 6.3). The
likelihood function based on the counts of type j events (j = 1, . . . , J) over
intervals Bij1, . . . , Bijkij

, where Bij� = (bij,�−1, bij�], is by direct extension of
(7.5),

L(θ) =
m∏

i=1

∫ ∞

0

J∏

j=1

kij∏

�=1

(uijµij�)nij� exp(−uijµij�)dG(ui;φ) , (7.15)

where nij� = Nij(bij,�−1, bij�) is the number of type j events in time interval
Bij�,

µij� = E(nij�) = [µ0(bij�) − µ0(bij,�−1)] exp(x′
iβj) ,

and the dimension of the integral equals the number of functionally indepen-
dent random variables in ui. In some settings the Bij� are the same for each
j = 1, . . . , J but we use the general notation to reflect that certain events may
not be counted at every inspection time.
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The likelihood (7.15) in general requires numerical integration. Chen et al.
(2005) consider a model in which ui has a multivariate log-normal distribu-
tion. The integrals in (7.15) can be calculated using Gauss–Hermite quadra-
ture (e.g. Naylor and Smith, 1982), and parametric models are readily fitted
with general optimization software. Semiparametric models are not easily fit-
ted in this setting but weakly parametric forms for ρ0j(t;α) may be used. In
some cases a possible alternative approach is to fit separate mixed Poisson
models for each event type j = 1, . . . , J , thus obtaining estimates of βj and
µ0j(t) =

∫ t

0
ρ0j(s)ds, and also of any parameters in the marginal distribution

of uij . Then, these estimates can be plugged into (7.15), and the likelihood
maximized for the remaining parameters in the distribution G(ui;φ). For ex-
ample, if log ui were multivariate normal with mean 0 and covariance matrix
V = [φjj′], the variances φjj = φj could be estimated from separate analy-
ses of each event of type, and then the correlations or the covariances φjj′
(j �= j′) could be estimated at the second stage. Such a procedure would need
modification when the uij were not functionally independent; in that case one
might estimate all of the parameters in G(u;φ) at the second stage.

We can also extend the methods in Section 7.1.2 for robust estimation
of rate and mean functions. The rate functions for the J types of event are
assumed to be of the form

ρij(t) = ρ0j(t;α) exp(x′
iβj) j = 1, . . . , J , (7.16)

and the corresponding mean functions are denoted µij(t) = µ0j(t) exp(x′
iβj),

where µ0j(t) =
∫ t

0
ρ0j(s)ds. In Section 7.1.2 we considered simple estimating

functions for θ = (α′, β′)′ based on Poisson models. Here, we extend the
approach by allowing a model for the variances and covariances of the interval
counts nij� that is based on the random effects formulation of this section,
but without any need for a specific distribution for the uij .

We consider the case where ui = (ui1, . . . , uiJ )′ has J × J nonsingular
covariance matrix Φ = [φjj′ ]. In that case, it follows from (7.14) and the
conditional variance formula that the means of the nij� are µij� = µij(bij�)−
µij(bij,�−1) and that

var(nij�) = µij� + φjjµ
2
ij� (7.17)

cov(nij�, nij′�′) = φjj′µij�µij′�′ , (j, �) �= (j′, �′) , (7.18)

where � = 1, . . . , kij and j, j′ = 1, . . . , J . Let θ = (α′, β′)′ denote the parame-
ter vector, let ni denote the counts nij� across j = 1, . . . , J and � = 1, . . . , kij

listed in vector form, and let µi = E(ni) and Vi = cov(ni) denote the cor-
responding mean vector and covariance matrix for ni. The entries of Vi are
given by (7.17) and (7.18). Unbiased generalized estimating equations (GEE)
for θ are then given by

U1(θ) =
m∑

i=1

D′
iV

−1
i (ni − µi) = 0 , (7.19)
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where Di = ∂µi/∂θ′ (Chen et al., 2005). If values φjj′ are given, these equa-
tions can be solved to obtain an estimate θ̂. Because E{U1(θ)} = 0 as long
as the specified mean functions and rate functions (7.16) are correct, we can
just specify fixed values for φjj′ . A common procedure is to take φjj′ = 0 for
j �= j′, corresponding to a “working independence” assumption which simpli-
fies the calculation of V −1

i . If we take φjj′ = 0 for all j, j′ = 1, 2, . . . , J , then
Vi is simply a diagonal matrix with entries µij� on the diagonal. When J = 1
(7.19) reduces to the Poisson estimating equations used in Section 7.1.2.

If all φjj′ are allowed to be nonzero and treated as separate unknown pa-
rameters, then we can also estimate them using generalized estimating equa-
tions. The simplest approach is to use the moment equations

m∑

i=1

kij∑

�=1

{(nij� − µij�)2 − (µij� + φjjµ
2
ij�)} = 0 (7.20)

m∑

i=1

kij∑

�=1

kij′∑

�′=1

{(nij� − µij�)(nij′�′ − µij′�′) − φjj′µij�µij′�′} = 0 , (7.21)

for j �= j′, j, j′ = 1, . . . , J . These give closed-form estimates of the φjj and
φjj′ . Alternatives that may give more efficient estimates in some settings are
to use estimating equations analogous to the one following (3.40); see Lawless
and Zhan (1998).

The equations (7.19), (7.20), and (7.21) involve both θ and the parameter
vector φ containing the φjj′ . As discussed in Section 7.1.2 for the univariate
case, an effective procedure is to adopt initial values φjj′ = 0 for all j, j′ and
to solve (7.19) for θ̂. Then, estimates of the φjj′ can be obtained by (7.20) and
(7.21) with θ replaced by θ̂. The procedure may now be repeated, with (7.19)
used with Vi based on φ̂, to yield an updated θ̂. This process, when iterated,
normally converges to give estimates of θ and φ. One advantage of this pro-
cedure is that an estimate of the covariance matrix of ui is obtained, which
allows an assessment of association among the different event types, as well
as extra-Poisson variation in the nij�. This is achieved without compromising
the robustness of the rate function parameter estimates θ̂. Estimating func-
tion theory establishes that under mild conditions, the asymptotic covariance
matrix of

√
m(θ̂ − θ) is estimated consistently by Â−1B̂Â−1, where

Â =
1
m

m∑

i=1

D̂′
iV̂

−1
i D̂i and B̂ =

1
m

m∑

i=1

D̂′
iV̂

−1
i (ni − µ̂i)(ni − µ̂i)′V̂ −1

i D̂i ,

with the hats indicating that parameters in Di, Vi, and µi are replaced by
their estimates. This is true whether or not the variance specifications (7.17)
and (7.18) are correct. A final point is that if these variance specifications are
satisfactory, the equations (7.19) will produce more efficient estimates asymp-
totically than simpler equations, say with φjj′ set equal to zero. However, it
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is often difficult to assess the adequacy of these or other variance specifica-
tions very precisely, and experience suggests that substantial efficiency gains
through the use of detailed modeling of Vi in (7.19) are difficult to realize.

7.1.5 Illustration: Joint Damage in Psoriatic Arthritis

Patients with arthritic conditions are at risk of developing debilitating joint
damage and it is common to use the total joint count as a global summary of
damage. We consider data from the University of Toronto Psoriatic Arthritis
(PsA) Clinic which is comprised of several hundred patients enrolled since
1978. In this clinic damage is assessed through clinical examinations sched-
uled semiannually, or radiographic examination scheduled biannually. The two
methods of damage assessment are directed at different features of damage.
Joints are classified as damaged based on clinical examination if there is ev-
idence of deformity or a tendency to flail, whereas radiographic or x-ray ex-
amination detects erosions of the bone surfaces forming the joints, joint-space
narrowing, or total joint destruction. Here we restrict attention to data as
of March 2001, for 250 patients with complete covariate information and at
least two assessments. We focus on 64 peripheral joints of the hands, wrists,
feet, ankles, knees, elbows, shoulders, as well as temporomandibular joints.
The average duration of followup (from clinic entry to last assessment) was
8.2 years.

We consider a bivariate marginal regression model for rate functions of the
form (7.16), where events for processes 1 and 2 are joints classified as dam-
aged, based on clinical and radiological assessment, respectively. The time
origin in this analysis is the time of clinic entry. Covariates of interest include
sex, age of onset of psoriasis (≥ 40 versus < 40 years), age of onset of psori-
atic arthritis (≥ 60 versus < 60 years), arthritis pattern (spinal involvement
versus peripheral disease alone), and sedimentation rate (ESR; abnormal ver-
sus normal). Baseline rates with three constant pieces were specified, where
the cutpoints were determined based on the tertiles of the respective assess-
ment times. It should be noted that the total number of possible events of
either type is 64 (the number of joints considered) and, strictly speaking,
the piecewise-constant rate function model does not reflect this. However, we
consider a maximum of 24 years of followup after clinic entry and over this
period the model is satisfactory. In the following analysis, the variance and
association parameters in (7.17) and (7.18) are also obtained, by solving (7.20)
and (7.21) iteratively with (7.19). Starting values are obtained by maximizing
(7.5) separately for each event type.

The first few columns of Table 7.2 give the results of fitting models involv-
ing all covariates. The estimated regression coefficients and standard errors
give a similar picture for the events based on clinical and radiological damage,
with the exception that spinal involvement appears to be a significant risk fac-
tor for the development of damage by the clinical criteria (p = 0.009) but not
by radiological criteria (p = 0.411). Having an abnormal sedimentation rate
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significantly increases the rate of both clinical (p < 0.001) and radiological
(p < 0.001) damage. Both processes exhibit substantial overdispersion relative
to a Poisson process, and the two types of event counts show strong positive
association. The reduced model in Table 7.2, with three covariates dropped,
gives similar estimates for spinal involvement and abnormal sedimentation
rate. Figure 7.2 displays the estimated mean functions based on (7.16) for
clinical and radiological damage joint counts, for the four groups of patients
defined by the covariates in the reduced model.

Table 7.2. Results from fitting rate function and association models to data from
the Toronto Psoriatic Arthritis Clinic.

Full Model Reduced Model
Clinical Radiological Clinical Radiological

Covariate EST. S.E. EST. S.E. EST. S.E. EST. S.E.

Sex
Male vs. female 0.042 0.199 0.109 0.156 – – – –

Onset of psoriasis
≥ 40 vs. < 40 yrs 0.179 0.209 -0.038 0.173 – – – –

Onset of PsA
≥ 60 vs. < 60 yrs 0.548 0.442 0.576 0.317 – – – –

Spinal disease 0.523 0.201 0.127 0.154 0.527 0.194 0.160 0.157
Abnormal ESR 0.636 0.198 0.591 0.160 0.655 0.196 0.581 0.161
Association

φj j = 1, 2 2.237 0.468 1.673 0.265 2.359 0.460 1.734 0.274
φ3 1.259 0.220 – – 1.299 0.210 – –

7.2 Dependent Censoring or Inspections

7.2.1 Dependent Censoring and Weighted Estimating Functions

We now return to the setting where events are observed in continuous time,
subject to right censoring. The methods presented to this point have all re-
quired that censoring, meaning the end of followup for an individual, be inde-
pendent of their event process in the sense discussed in Section 2.6. In some
settings there is good reason to question the assumption of independent cen-
soring. In this section we explore the independence concept in more detail and
consider methods for dealing with dependent censoring by the introduction
of weights into estimating functions. A clear distinction should be noted here
between censoring and dependent termination, which was discussed in Section
6.6. In particular, following a censoring time the event process is assumed to
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Fig. 7.2. Cumulative mean functions for the number of damaged joints by clinical
and radiological assessment based on the reduced model of Table 7.2.
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continue. In contrast, at a termination time the event process is known to
terminate.

As usual, let {Ni(t), 0 ≤ t} denote the counting process of events for
individual i, and let Ci denote their notional censoring time. To consider
different types of models for intensity or rate functions, and the effects of
censoring or estimation, we proceed as follows. Let xi(t) represent external
covariates for individual i, and define x

(t)
i = {xi(s) : 0 ≤ s ≤ t}. Let Hi(t) =

{Ni(s) : 0 ≤ s < t;x(t)
i } denote the event and covariate history up to time t.

It is assumed that

E{dNi(t)|Hi(t), Ci ≥ t} = E{dNi(t)|Hi(t)} , (7.22)

where we use notation discussed in Problem 2.15. This is a definition of inde-
pendent censoring; see (2.54).

Issues concerning dependent censoring arise when we consider intensity or
rate function models that do not involve the full event and covariate history
Hi(t). Suppose that zi(t) is a time-varying covariate that may include infor-
mation from x

(t)
i as well as event history up to t, and that our objective is to

consider the model

E{dNi(t)|zi(t)} = λ(t|zi(t); θ)dt . (7.23)

This covers many of the settings considered in previous chapters. For example,
if zi(t) contains sufficient information that E{dNi(t)|zi(t)} = E{dNi(t)|Hi(t)}
then we are in the realm of intensity-based models. If, on the other hand, zi(t)
contains no event history, we are in the realm of the rate function models of
Sections 3.6 and 6.4.

The methods in this book are based on maximum likelihood for fully spec-
ified models, or on estimating functions that are usually maximum likelihood
score equations under some model. When exact event times are available over
the period of followup and we do not want to rely on the correctness of a
full process model, but merely wish to consider the model (7.23), we base
estimation of θ in (7.23) on estimating functions of the form

Ui(θ) =
∫ ∞

0

Yi(t)ai(t; θ){dNi(t) − λ(t|zi(t); θ)dt} , (7.24)

where Yi(t) = I(Ci ≥ t) and ai(t; θ) is a function that may depend on zi(t).
For example, compare the estimating functions (3.4) and (3.5) and the general
form of the likelihood (5.4). In order for (7.24) to have expectation zero and
thus for U(θ) = 0 to provide a consistent estimator θ̂, we require that the
integrand have expectation zero at each time t. A sufficient condition is that

E{dNi(t)|zi(t), Ci ≥ t} = E{dNi(t)|zi(t)} = λ(t|zi(t); θ)dt . (7.25)

This is equivalent to saying that Yi(t) is conditionally independent of dNi(t),
given zi(t).
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When zi(t) contains sufficient information from Hi(t) and (7.22) holds,
(7.25) is plausible. However, when we consider rate function models for which
zi(t) does not contain any previous event history, (7.25) may well be violated;
it would be, for example, if censoring at t is not independent of previous
event history, given zi(t). An extreme case occurs when zi(t) is empty, and we
consider the marginal rate functions λ(t; θ)dt = ρ(t)dt = E{dNi(t)} discussed
in Section 3.6.1. In that case censoring has to be completely independent of
event history. This would be violated if, for example, censoring were related to
an omitted covariate that also affected the event process. It is straightforward
to assess whether censoring is related to prior event history by modeling the
censoring times in terms of event and covariate history.

If the independent censoring assumption does not seem plausible for (7.24),
we can use the idea of inverse probability of censoring (IPC) weights discussed
in Section 4.4 to adjust the estimating function. This requires the following
modeling assumptions concerning censoring. Assume that given Ci ≥ t and
Hi(t), the event Ci < t + ∆t is independent of Hi(s) for s > t. We further
assume that the hazard function for Ci is given by

λc(t|Hi(t)) = lim
	t↓0

Pr(Ci < t + 
t|Ci ≥ t,Hi(t))

t

= λc(t|vi(t)) , (7.26)

where vi(t) is a specified time-varying covariate vector containing information
from Hi(t). Define the product integral

Gi(t) =
∏

[0,t)

{1 − dΛc(s|vi(s))} , (7.27)

where dΛc(s|vi(s)) = λc(s|vi(s))ds when λc(s|vi(s)) is continuous. The ex-
pression (7.27) also allows discrete models in which there is a positive proba-
bility of censoring occurring at certain times s, and then dΛc(s|vi(s)) equals
Pr(Ci = s|Ci ≥ s,Hi(s)) at such time points.

We now amend the estimating function (7.24) to

UW
i (θ) =

∫ ∞

0

Yi(t)ai(t; θ)
Gi(t)

{dNi(t) − λ(t|zi(t); θ)dt} . (7.28)

Note first that by (7.26) and the independent censoring assumption (7.22),
we have Gi(t) = Pr(Ci ≥ t|Hi(t)). Then, by evaluating the expectation of
the integrand in (7.28) at t, conditional on zi(t), as the iterated expecta-
tion EHi(t)[EYi(t)|Hi(t)(·)], we find the expectation to be E[ai(t; θ)E{dNi(t)−
λ(t|zi(t); θ)dt|zi(t)}] = 0 and so (7.28) is unbiased.

The unbiasedness of (7.28) depends on the validity of the censoring model
expressed in (7.26) and (7.27). In practice, we have to estimate λc(t|vi(t)) and
Gi(t), and replace Gi(t) with its estimate Ĝi(t). We can, for example, use a
semiparametric proportional hazards model, although other models are also
useful. The following section illustrates the procedure.
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7.2.2 Rate or Mean Function Estimation with Event-Dependent
Censoring

Suppose we aim to estimate a marginal mean function µ(t) independent of any
covariates. Thus, µ(t) = E{Ni(t)} for each i = 1, . . . ,m, as in Section 3.6.1,
and the Nelson–Aalen estimate (3.17) given there is valid provided censoring
times Ci are completely independent of the event processes. Suppose, however,
that Ci was thought to be related to the number of events, and that this can
be expressed in a model (7.26) for which vi(t) = Ni(t−). The estimate (3.17)
can be viewed as arising from estimating functions of the form (7.24), where in
heuristic terms, θ is associated with increments dµ(t) across different values of
t, λ(t; θ)dt = dµ(t), and ai(s; θ) = I(t = s)/dµ(s) gives the estimating function
for dµ(s). Amending this to (7.28), we consider the estimating equations

m∑

i=1

Yi(s)

Ĝi(s)
{dNi(s) − dµ(s)} = 0 s > 0 ,

which yield the estimates

dµ̂(s) =
m∑

i=1

Yi(s)dNi(s)

Ĝi(s)

/ m∑

i=1

Yi(s)

Ĝi(s)
(7.29)

and the corresponding estimate

µ̂(t) =
∫ t

0

dµ̂(s) . (7.30)

In (7.29) and (7.30) it is assumed that Yi(s) > 0 for at least one individual
at each s ≤ t, in which case all Ĝi(s) > 0. When censoring is completely
independent of the event process, it is preferable to use the Nelson–Aalen
estimate (7.17) over (7.30), because it is usually more efficient. When this is
not the case, (7.30) with a plausible model for Gi(s) is preferred because the
Nelson–Aalen estimate may be biased.

Asymptotic properties for µ̂(t) may be developed under assumptions that
ensure the number of individuals under observation at each time s ≤ t becomes
arbitrarily large in probability. Variance estimates and confidence intervals or
bands for µ(t) are most simply obtained using the nonparametric bootstrap.

In the absence of any covariates, we can estimate the censoring process
nonparametrically. Let

λcj(t) = lim
	t↓0

Pr{Ci < t + 
t|Ci ≥ t,Ni(t−) = j}

t

and Λcj(t) =
∫ t

0
λcj(s)ds. Then Λcj(t) is estimated nonparametrically as for

the cumulative event intensity (5.19) in Section 5.3.2, with
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dΛ̂cj(t) =
∑m

i=1 I(Ci = t,Ni(t−) = j)
∑m

i=1 I(Ci ≥ t,Ni(t−) = j)
. (7.31)

This is effective if the censoring hazard function depends only on the number
of prior events. If it were thought to depend on other features of the event
process, such as the time since the latest event, other models (7.26) could be
formulated.

An alternative approach to estimation of µ(t) when censoring is event-
dependent is to use the multistate modeling methodology of Section 5.3. When
the event process is Markov as described there, and the censoring hazard
depends only on the number of previous events, the Markov estimates for
Pr{N(t) = r} given by (5.20) can be used, and the corresponding estimate
for µ(t) is obtained from (5.18).

The two estimates based on (7.30) and (5.18) epitomize the two main
approaches to estimation of a marginal process feature ψ(t) when censoring
may be dependent on event or covariate history. One is to adopt a simple
model for ψ(t) and to adjust estimating functions for ψ(t) by the inclusion
of inverse probability of censoring weights designed to make the estimating
functions unbiased. The other approach is to model the event process inten-
sity in sufficient detail that censoring is conditionally independent, and then
to estimate ψ(t) as a (perhaps complicated) function of the estimated inten-
sity. The estimate based on expression (5.18) for µ(t) exemplifies the latter
approach. Either approach can be complicated, depending on the amount of
detail about the process history that needs to be considered in modeling the
intensity or the censoring hazard function. The IPCW methods are generally
simpler, and a model for censoring is usually easier to check than a model for
the event process. They may, however, be less efficient than methods based
on an appropriate model. Guidelines on which framework gives more efficient
estimators are currently not available.

Other marginal features that have been discussed in previous chapters
include Pr{Ni(t) = r} and the distribution Pr{Wij ≥ w} of the jth gap time.
For the latter, IPC weights were introduced in Section 4.4.1 to deal with
the dependent censoring created for second and subsequent gap times when
gap times are correlated. The method of estimating p0k(t) = Pr{Ni(t) =
k|Ni(0) = 0} based on Markov models in Section 5.3.2 is valid if both the
event and censoring processes are Markov, as described there and illustrated
in Figure 5.7. Other estimates may be devised with IPC weights, such as the
weighted prevalence estimate

p̂0k(t) =
m∑

i=1

Yi(t)I(Ni(t) = k)

Ĝi(t)

/ m∑

i=1

Yi(t)

Ĝi(t)
, (7.32)

where it is assumed that at least one Ĝi(t) is > 0. Datta and Satten (2002) and
Cook et al. (2003) discuss various estimators and provide references. Problem
7.6 gives one such method.
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7.2.3 Intermittent Observation

When individuals are observed intermittently as in Section 7.1, the conditions
(i) and (ii) that follow (7.1) are generally assumed in order to draw inferences
on the event process. Condition (ii) is more crucial and also might be vio-
lated in some settings, for example, if the time bij an individual is inspected
is related to the number or pattern of events after bi,j−1. Another concern
in observational studies is that an individual who is following a schedule of
periodic inspections or followup visits may fail to appear for an inspection
and then not be seen for a considerable length of time. Sometimes individuals
may be truly lost to followup, but sometimes they may have simply chosen
to skip inspections because they were not experiencing any events. When an
individual has not been seen for a long time before an administrative end-
of-followup time, a decision has to be made about the definition of Ci, the
duration of followup.

An example of this occurs in the study of cerebrospinal fluid shunt failures
for pediatric patients, discussed in Section 6.7.1. In this case patients were
to return to a hospital clinic for observation roughly every six months or
year. The first shunts were received between January, 1987 and December,
1996, and the administrative endpoint for the database was the end of 1997.
Therefore, the potential durations of followup range from one to eleven years,
although some patients died before the administrative end of followup. Figure
7.3 is a plot of the final inspection times for each patient, against the date of
receipt of their first shunt. The final inspection times are shown as time (in
days) from receipt of the first shunt, or time in study. The final inspection
time may correspond to an inspection, a shunt replacement, or death; dots
indicate a live inspection and the plus symbols denote a time of death. If
patients were really returning to the clinic for annual inspections, then the
dots in Figure 7.3 should all lie within a band of width roughly one year along
the line denoting potential duration of followup. This is not so, and we see
that many individuals were last seen a considerable length of time before the
administrative end-of-followup. The question then arises as to how to define
the duration of followup Ci. In the analyses of Section 6.7.1 and previously,
we used Ci = D − τi0 where D is December 31, 1997 and τi0 is the date of
receipt of the first shunt for individual i. This was done on the assumption that
persons who did not return for regular inspections had not experienced any
shunt failures. It is possible that some patients may have moved far enough
away that a shunt failure would have been dealt with at another hospital,
but this was judged to be a rare occurrence. Another possibility would have
been to define Ci as τi − τi0, where τi is the date of the last inspection for
individual i. This was not chosen because τi was not judged to be the true end
of followup for the individual. In fact, it would be a dependent censoring time
(i.e. not a stopping time) and introduce bias, if it was determined because no
future events occurred.
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Fig. 7.3. Final inspection times versus date of first shunt, for pediatric patients
with cerebrospinal fluid shunts.

If there are no losses to followup prior to an administrative censoring
time, and it is possible to ascertain retrospectively the event history ∆Hij

over (bi,j−1, bij ] at the time bij , then no problems arise if an intensity-based
model is used, because event-dependent choice of bij is ignorable. The case
where only the number of events nij is observed is, however, problematic.
There is then no way to assess the validity of condition (ii) following (7.1),
without further assumptions that are essentially uncheckable, or data where
some individuals’ inspection times are prespecified. In particular, even though
we can model Pr(bij , nij |H̃i,j−1) or Pr(nij |bij , H̃i,j−1), where here H̃i,j−1 con-
tains the history of events, covariates, and inspection times up to bi,j−1, there
is no way to assess whether Pr(nij |bij , H̃i,j−1) satisfies condition (ii).

Models in which the censoring or inspection process shares a common
random effect with the event process have been suggested for settings involving
event-dependent censoring or inspection. For example, we might assume that
conditional on an unobservable random effect ui, the recurrent event process
{Ni(t), 0 ≤ t} is Poisson with rate function uiρi(t), that the inspection times
follow a renewal process with hazard function uα

i hi(w) for the gaps between
inspections, and that the inspection and event processes are conditionally
independent. The joint density function of the bij and nij is then
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∫ ∞

0

⎧
⎨

⎩

ki∏

j=1

e−uiµij
(uiµij)nij

nij!

⎫
⎬

⎭

⎧
⎨

⎩

kij∏

j=1

uα
i hi(wij)e−uα

i Hi(wij)

⎫
⎬

⎭
dG(ui) , (7.33)

where µij =
∫ bij

bi,j−1
ρi(t)dt, wij = bij −bi,j−1, G(u) is the distribution function

of ui, and it is assumed that followup finishes at biki
, which is a stopping

time. Independence of the event and inspection process, conditional only on
covariates, could be assessed by considering whether α is zero. It is, however,
impossible to assess the model giving (7.33) without further assumptions that
are uncheckable with the data given.

Shared random effects models such as (7.33) are often unappealing because
of one key feature: the intensity function for the inspection process at time t
depends on event history after t. In particular, consider the inspection time
process for individual i as a point process with intensity function λI(t|Hc

i (t)),
where Hc

i (t) is the complete history of previous inspection times and recurrent
events. Integration with respect to the random effect ui in models such as
(7.33) produces a result where Pr{inspection in (t, t+∆t)|H̃i(t), Ni(s), s ≥ t}
depends on Ni(s), s ≥ t and so is not of the form λI(t|H̃i(t)). In many settings
this goes against our understanding of the inspection process. This type of
situation is specifically excluded in the method of dealing with dependent
censoring based on inverse probability of censoring weights; see (7.26) and the
preceding remarks.

In practice, we usually try to render the inspection and event processes
conditionally independent by building sufficient event history and covariate
effects into our models for nij (j = 1, 2, . . .), given bij and H̃i,j−1. Sometimes,
however, it seems plausible that in spite of this, inspection times may be event-
dependent. Without obtaining full event history data on some individuals, or
having some individuals with prespecified inspection times, it is difficult to
confirm this or assess potential effects. In such cases we should be cautious
in inferring properties of the pure event process, based on our models for
Pr(nij |bij , H̃i,j−1).

Loss to followup is potentially more serious than moderate event-dependent
inspection times, especially in settings described above where individuals can
become lost to followup long before an administrative end-of-followup time.
In particular, suppose that individual i has potential followup time Ci, de-
termined by an administrative end-of-study date, but that she is last seen at
inspection time biki

which is smaller than Ci. Normally we might take biki
as

the end-of-followup time, but if the inspection process is event-dependent and
Ci is much larger than biki

, this may bias an analysis. If we are able to trace
some individuals lost to followup and determine their event histories, then we
can assess whether loss to followup is event-dependent. If this cannot be done
it is prudent to run analyses with alternate choices for end of followup.

Finally, if we wish to consider parametric models for marginal features
such as µ(t) = E{Ni(t)}, we can utilize the first approach discussed in Section
7.2.2, that is, marginalization from an intensity-based model. IPCW methods
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can also be developed by treating the inspection times as a point process and
modeling the inspection intensity (Lin et al., 2004). Inverse weights are based
on the estimated intensity, so some form of smoothing is needed to provide
an estimate at all event times. Given the variability in such estimates and the
possibility of misspecification, it is not yet clear how this approach performs.

7.3 Event-Dependent Selection

In some studies the inclusion of an individual is dependent on her having
experienced some outcome. If this outcome is related to an event history
process which is a focus of the study, then this should be accounted for in
the analysis of the process. Let us phrase this more specifically, as follows.
Suppose that the population from which study individuals are drawn has M

members with event history processes N
(∞)
i = {Ni(t), 0 ≤ t}, i = 1, . . . , M .

Let S ⊂ {1, 2 . . . ,M} denote the set of individuals sampled, or selected for
the study. If S is selected independently of {N (∞)

i , i = 1, . . . ,M} then the
sampling plan is ignorable, and inferences can be based on the probability
of the observed event histories of the individuals in S. For settings where
this is not the case, and selection is event-dependent, two situations can be
distinguished. The first is where the events on which selection is based are
part of the initial conditions for the process rather than the “response”. No
problems arise if we condition on such events in our analyses. The second
situation is where S depends on {N (∞)

i , i = 1, . . . ,M} given covariates and
initial conditions. In that case also, we must consider the selection conditions
in developing an analysis. We discuss event-dependent selection via a number
of examples.

7.3.1 Some Examples

Event-dependent selection can arise in various ways, but in most cases either
(a) the individual must have experienced some event or prior events over a
time period, or (b) the individual must not have experienced a terminating
event prior to a given time. These conditions often occur in retrospective
studies where an individual is selected after at least a portion of her event
history has occurred, but they may also arise in prospective studies. The
following examples illustrate this, and indicate how the selection process may
be handled.

Example 7.3.1 Selection of patients for a psychiatric study

In a study on hospitalizations for psychiatric disorders (Kessing et al.,1999),
retrospective data were available on individuals who had experienced an ini-
tial event (hospitalization and discharge with a specific diagnosis) during a
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previous time period. If we consider the first hospital discharge to be an initi-
ating event that defines a time origin following which later events may occur,
then the study population consists of persons who experience a first psychi-
atric admission and subsequent discharge, and there is no selection effect if
we include time and details of the admission and discharge as covariates. If,
however, we wish to assess the rate of psychiatric admissions in the general
population, then there is a selection effect. To simplify the discussion, con-
sider just the admission events and not the discharges from hospital. In the
former case, the likelihood function for an individual with n ≥ 0 subsequent
admissions at ages t1 < · · · < tn following a first admission at age τ0, would
be

n∏

j=1

λ (tj |H(tj)) exp
{

−
∫ τ1

τ0

λ (t|H(t)) dt

}

, (7.34)

where the individual is followed to age τ1, and where λ(t|H(t)) is the intensity
function for an admission at age t. The history H(t) includes information on
time in hospital and discharges; λ(t|H(t)) equals zero while an individual is
in hospital. In the latter case, the likelihood function has to be conditional on
the individual having a first admission by age τ1. This gives

λ0(τ0) exp {−Λ0(τ0)}
1 − exp {−Λ0(τ1)}

n∏

j=1

λ (tj |H(tj)) exp
{

−
∫ τ1

τ0

λ (t|H(t)) dt

}

, (7.35)

where we assume that first admissions follow a Poisson process, and use λ0(t)
to denote the intensity for a first admission at age t. The second term in (7.35)
is as in (7.34), but the term involving λ0(t) is the conditional probability of a
first admission at age τ0, given that it must have occurred before age τ1.

Other selection conditions may also apply in studies of this type. For ex-
ample, an individual may need to be alive at some point in time in order to
be included in the sample; if death is not independent of a person’s psychi-
atric history, there is a selection effect. This is considered below in Example
7.3.4. In another study (Kessing et al., 2004), individuals had to experience
a discharge from hospital during a specific time period; retrospective data on
hospitalization were then collected for these individuals. This is a rather com-
plicated type of selection, and it is difficult to specify models for which the
likelihood function is easy to handle. In particular, let Y (t) denote the process
of admissions and discharges for an individual and note that the conditional
density

Pr(Y (t), τ0 < t < τ1|A) ,

where A = {discharge during (τ1 − ∆, τ1), initial discharge at τ0}, gives the
likelihood function. This is very complicated for processes such as the two-
state processes of Section 6.5, which describe repeated hospitalizations and
discharges.
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Example 7.3.2 Entry conditions in clinical trials

Clinical trials frequently feature selection criteria which are designed to op-
timize information regarding treatment effects. This is often achieved by re-
stricting attention to patients with features putting them at higher than av-
erage risk of events. It is increasingly common, for example, for entry criteria
to stipulate that subjects must have experienced some minimum number of
events in a period of time prior to study entry.

The Asymptomatic Cardiac Ischemia Pilot study (ACIP Investigators,
1992) is an example of such a trial. The purpose of the study was to eval-
uate a treatment effect on the number of episodes of transient myocardial
ischemia (TMI) detected over a 48-hour heart monitoring period by ambu-
latory electrocardiogram (ECG). Patients were first monitored for 48 hours
during a baseline period of assessment and in order to avoid recruiting patients
with particularly low rates of TMI, the investigators explored the impact of
introducing a selection threshold C, such that only subjects with a baseline
count above C would be eligible for the study.

Let Ni1 denote the baseline count for subjects screened for selection, la-
beled i = 1, 2, . . . ,m + m2, and Ni2 denote the count following the random-
ization to treatment among eligible subjects. Without loss of generality we
label the randomized subjects i = 1, 2, . . . ,m and let xi denote the treatment
received.

Mixed Poisson models with patient-specific random effects provide a con-
venient framework for analysis. They give a joint distribution of Ni1 and Ni2

for study subjects, and within this framework there are several likelihoods
that one could construct. If the baseline counts from subjects not satisfying
the screening requirements are not available, then a likelihood can be based
on the joint distribution of the available (truncated) data,

L(θ) ∝
m∏

i=1

Pr (Ni1 = ni1, Ni2 = ni2|Ni1 ≥ C, xi; θ) .

If the underlying assumption is that Nij |ui ∼ Poisson(uiµj exp(I(j = 2)xiβ)),
where ui is gamma distributed with mean one and variance φ, then L(θ)
has a closed form and can be maximized using general-purpose software for
optimization. If the data from all screened subjects are available, a likelihood
based on all patients would be

m+m2∏

i=1

Pr(Ni1 = ni1)
m∏

i=1

Pr(Ni2 = ni2|Ni1 = ni1, xi) .

In terms of estimating the treatment coefficient β, one could just maximize the
second term in this expression, but the first term does contain information on
φ and the baseline means. Similar considerations apply when the event times,
rather than just the counts, are available in the followup periods.
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In some cases, selection criteria based on prior event counts are more
complex. In an epilepsy study reported in Fuchs et al. (1994), patients were
screened for two successive one-month periods and deemed eligible for recruit-
ment if they had at least four seizures in one period and at least one seizure in
the other period. If Ni1A and Ni1B denote the counts for the first and second
screening periods and Ni1 = (Ni1A, Ni1B)′, then the likelihood based on the
full data is proportional to

m∏

i=1

Pr (Ni1A = ni1A, Ni1B = ni1B , Ni2 = ni2|Ni1 ∈ C, xi; θ) ,

where C = {(ni1A, ni1B)|ni1A ≥ 4, ni1B ≥ 1 or ni1A ≥ 1, ni1B ≥ 4}. For
the purposes of estimating covariate effects on the mean of Ni2, the model
for Pr(Ni2 = ni2|Ni1 = ni1) can also be used, but the likelihood based on all
screened subjects is simpler to work with if the data are available.

Model and likelihood formulation for more general processes with selection
criteria can be challenging when random effects are used to address hetero-
geneity and to induce association in the event data for the screening and
followup periods. This was discussed in Section 4.5.2 in the context of gap
time analyses. Let (ti1, . . . , tini

, ni) represent the data (total event count and
event times) observed over [0, τi], the treatment period for subject i, and
Hi(−τ0, 0) the data during a common screening period [−τ0, 0). If conditions
are imposed on Hi(−τ0, 0) for entry to the study then the distribution for the
prospective data is

∫
Pr(ti1, . . . , tini

, ni|ui,Hi(−τ0, 0))dG(ui|Hi(−τ0, 0)) ,

where G(ui|Hi(−τ0, 0)) is the distribution function for the random effect given
the prior history. For the mixed Poisson models discussed earlier the required
conditional distribution dG(ui|Hi(−τ0, 0)) is easy to obtain, but this is not
the case for other types of models. Intensity-based models without random
effects are preferable when Poisson models are not appropriate; information
in [−τ0, 0) is then included in the initial conditions Hi(0) for each individual,
which we condition on in forming likelihoods.

Example 7.3.3 Failure information from product warranty claims

Warranty claims databases provide information about the occurrence of cer-
tain types of failures or problems for manufactured products. Once a product
unit is sold, we let t denote the “age” of the unit (time since it was sold) and let
Ni(t) denote the number of warranty claims (perhaps of a particular type) up
to age t. Products are usually covered by a warranty for some fixed period af-
ter the date of sale. For some products there are also other conditions, such as
distance limits in the case of motor vehicles. When a warranty claim is made,
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the date of sale is determined and other information is collected. However,
for most types of products, the data on sale and other information is missing
for units that have not experienced a claim. This generates event-dependent
selection effects in terms of the data available for analysis.

Suppose that a database contains information on all claims up to calendar
time X. If unit i was sold at time xi ≤ X, then there is a censoring time
τi = min(X − xi, wi) on the age scale, where wi is the age limit on warranty
coverage for that unit. With products such as appliances, wi is usually fixed,
for example, one or two years, but for some products, it may vary across
units. A car may have warranty coverage for either three years or 60,000 km,
for example, so that some cars are covered for less than three years. It is very
common that either wi or the date of sale xi is unknown for most product
units until a warranty claim is made. For example, manufacturers generally
do not know the date of sale of most product units, unless notified at the time
of a warranty claim. This means that at calendar time X, the followup time
τi for many units is unknown.

To illustrate the effect of this, suppose that claims for unit i follow a
Poisson process with intensity λi(t); let [0, τi] be the followup period for the
unit and let zi represent fixed covariates. If τi and zi are unknown until the first
claim occurs, at which time xi, wi (and τi), and zi are determined, then the
observed data are event-dependent in the sense that they depend on whether
Ni(τi) ≥ 1. Thus, if units i = 1, . . . , m had ni ≥ 1 claims, at times tij
(j = 1, . . . , ni), the likelihood function for the parameters θ specifying the
λi(t) is

L(θ) =
m∏

i=1

⎧
⎨

⎩

ni∏

j=1

λi(tij)

⎫
⎬

⎭

{
e−Λi(τi)

1 − e−Λi(τi)

}

. (7.36)

This is similar to (7.35), and is sometimes called a zero-truncated distribution
or likelihood.

If the manufacturer knew that an additional m1 units i = m+1, . . . , m+m1

had been sold, and if their dates of sale and covariates were known, then
L(θ) could be supplemented by the information that these units had not
experienced a claim. This would give the likelihood

L1(θ) =
m∏

i=1

⎧
⎨

⎩

ni∏

j=1

λi(tij)

⎫
⎬

⎭
e−Λi(τi) ·

m+m1∏

i=m+1

e−Λi(τi)

= L(θ)

{
m∏

i=1

(
1 − e−Λi(τi)

)
}{

m+m1∏

i=m+1

e−Λi(τi)

}

. (7.37)

However, if τi (i = m+1, . . . ,m+m1) and any necessary covariates are missing,
then (7.37) is not available. This may be viewed as an event-dependent missing
data problem; we return to it in Section 7.3.2.
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If a full probability model for the process under study is specified, then
when selection or observation is event-dependent, we simply have to incorpo-
rate the selection condition in the probability calculation giving the likelihood
function, as in (7.35) and (7.36). It is difficult to avoid probability models for
the event process here. For example, if we wished only to estimate a com-
mon mean function µ(t) = E{Ni(t)}, we might seek an unbiased estimating
function with weights based on inverse probability of selection, analogous to
those in Section 7.2. This does not work in the setting described above, how-
ever: given N

(∞)
i , the probability the unit is selected is either 0 or 1. Section

7.3.2 considers settings where some auxiliary information may be obtained, in
which case more options are available.

Example 7.3.4 Studies with selection dependent on survival

Retrospective studies, in which past data are collected at some point in time,
often have selection conditions that are in some way event-dependent; Ex-
ample 7.3.1 is one such situation. A condition that is often involved is that
an individual must be alive and at risk of events at the time of selection. In
particular, suppose that an individual is selected at calendar time R and past
information is collected on an event history process {N(t), t ≤ R} for that in-
dividual, only if the individual has not experienced a terminating event prior
to R. In the case of psychiatric admissions to hospital discussed in Exam-
ple 7.3.1, this would mean that the individual had to be alive at the time of
selection.

Such a condition is a potential source of bias, and must not be ignored if
the terminating event is associated with the recurrent events under study, as
in Section 6.6. Probability models such as those considered in Sections 6.6.1,
6.6.2, and 6.6.4 can be used in such settings, but the likelihood functions tend
to be complicated. In the terminology of Section 6.6, with T representing
the time of the terminating event, an individual selected at time R has the
conditional probability density Pr(N (R)|T ≥ R) as the basis for the likelihood
function, where N (R) = {N(t), t ≤ R}. This is difficult to calculate for models
with general intensities, such as those in Section 6.6.1, but can be obtained for
Markov models using the multistate model formulation of Section 6.6.4. As
in the setting of Example 7.3.3, it is difficult to avoid full probability models
here, even when features such as E{dNi(t)|Ti ≥ t} or E{Ni(t)} might be the
main interest.

In order to be recruited into prospective clinical trials, subjects must nat-
urally survive to the time of accrual. Depending on the scientific question
at hand, it may be important to incorporate this selection criterion into the
analysis. In Sections 6.7.3 and 6.7.4 we discussed issues in the analysis of data
from a trial of patients with bone metastases. Figure 6.2 contains a multistate
model which reflects the possible course of skeletal complications and death
following the development of bone metastases. The process begins with the
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occurrence of bone metastases whereupon subjects begin in state 0, represent-
ing no skeletal complications. Progressions to more advanced states happen
with the occurrence of each skeletal event or death.
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Fig. 7.4. Lexis diagram of event occurrence and death for a hypothetical subject.

Consider the Lexis diagram in Figure 7.4 for a hypothetical subject. The
horizontal axis represents calendar time and the vertical axis indicates the time
measured from the origin of the event process (B). For this subject, the bone
metastases occurred at calendar time B and skeletal events were experienced
at calendar times E1, E2, and E3 respectively, followed by death at calendar
time D. Here tk = Ek −B is the time of the kth event and T = D −B is the
time of death measured from the development of bone metastases.

Complications arising from selection criteria are often ignored when clinical
trial data are analyzed, and simple treatment comparisons are of primary
interest. This may be permissible under random treatment allocation, where
the initial conditions may be considered balanced across treatment groups. If
the aim, however, is to use data from patients in a placebo control arm of a
clinical trial to make statements about, say, the patterns or expected number
of lifetime skeletal complications in patients with bone metastases, effects due
to selection criteria must be taken into account.

The accrual of patients in prospective studies typically takes place over
a period of time, but for simplicity here we consider a study with a single
accrual date which we denote R in calendar time. Figure 7.5 is a Lexis dia-
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Fig. 7.5. Lexis diagram of initiating event, recurrent events, and death for a hypo-
thetical sample of subjects.

gram for a hypothetical population of nine subjects, where we indicate the
date of the first bone metastasis for subject i by Bi and we omit the times
of the recurrent events (Ei1, Ei2, . . .) and death (Di) on the horizontal axis.
We consider the ith individual’s event process to start at the time Bi of her
metastases and denote the times of the recurrent events with dots on the
45-degree lines, which terminate upon death. For illustration, we suppose in
Figure 7.5 that subjects with more skeletal events tend to die sooner. Only
the subjects whose timelines cross the vertical line at R are alive at this re-
cruitment time and eligible for prospective followup, so subjects 2, 3, and 5
would be excluded from the study. Furthermore, suppose the study was com-
pleted at calendar time C so that event and survival times are administratively
censored for an arbitrary subject at τ = C − B. In the absence of covari-
ates, we then prospectively observe for an arbitrary eligible subject the data
({N(s), R − B ≤ s ≤ X},X = min(C,D) − B = min(τ, T ), δ = I(T ≤ τ)).
The probability model for the prospective data observed from the subjects
satisfying the selection conditions is then

Pr({Ni(s), R − Bi ≤ s ≤ Xi},Xi, δi|Di > R − Bi) .

Sometimes information may be retrospectively collected on {Ni(s), 0 ≤ s <
R − Bi} but this may be less reliable than the prospectively collected data.
Some studies may further restrict attention to patients with documented skele-
tal events because these patients are often at greater risk of future skeletal
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events. In this case there is the added condition that Ni(R − Bi) ≥ 1 for
patients to be included.

7.3.2 Supplementary Information on Selection

Sometimes there is supplementary information on individuals in the popula-
tion who are not selected for full followup. When this occurs, the additional
data can often be used to enhance inference about the event process, and
it may allow simpler procedures than those based on the complicated likeli-
hood from the selected sample alone. We consider two ways in which this may
be done, in settings where it is possible to collect information on the event
histories of some individuals who do not satisfy the selection criterion.

Suppose as in the preceding section that there are M independent individ-
uals i = 1, . . . , M from which the study sample is selected. Suppose that at the
time the sample is selected, individuals have followup times τi (i = 1, . . . ,M),
which are assumed independent of the event processes. Suppose also that indi-
viduals whose event histories N

(τi)
i satisfy a condition C are always selected,

but that a random fraction p > 0 of those who do not satisfy C are also
selected. Let Ri1 = I(N (τi)

i satisfies C) and Ri = I (unit i is selected); the
foregoing indicates that Pr(Ri = 1|Ri1 = 1) = 1 and Pr(Ri = 1|Ri1 = 0) = p.
This gives what is often termed a response-selective sample (e.g. Kalbfleisch
and Lawless, 1988; Lawless et al., 1999), and we indicate two ways that infer-
ence about the event process may be approached:

(i) Conditional likelihood. If each individual i = 1, . . . , M is selected indepen-
dently of the others, so that the Ri are mutually independent, then we can
consider

LC(θ) =
M∏

i=1

Pr(N (τi)
i |Ri = 1)Ri . (7.38)

This is a proper likelihood and standard methods can be applied; the
primary difficulty is in calculating the probabilities in (7.38).

(ii)Weighted pseudo-score estimating functions. Let πi = Pr(Ri = 1|N (τi)
i )

for i = 1, . . . ,M , and consider the estimating function

UW (θ) =
M∑

i=1

Ri

πi

∂ log Pr(N (τi)
i )

∂θ
. (7.39)

This estimating function is unbiased with respect to expectation over Ri and
N

(τi)
i , i = 1, . . . , M : to see this take the expectation of the ith term in the

order E
N

(τi)
i

[E
Ri|N(τi)

i

(·)].
The estimating function involves only the selected individuals, and by

solving UW (θ) = 0 we obtain what is under mild conditions a consistent
estimator θ̂. An asymptotic variance estimate for θ̂ can be obtained from the
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large sample theory for estimating functions (Appendix A). An advantage
of this approach is that it uses weighted versions of the usual prospective
log-likelihood for the process in question.

To illustrate the two approaches, we consider the warranty data setting of
Example 7.3.3.

Example 7.3.5

Suppose that a manufacturer randomly selects a small fraction p of product
units that have not experienced a warranty claim; assuming this can be done
and the customers contacted, they can obtain the date of sale, the followup
time τi, and any covariates that are relevant. Suppose also as in Example
7.3.3 that claims for unit i occur according to a Poisson process with intensity
function λi(t; θ), and that τi is independent of the claim process for unit i.
The conditional likelihood (7.38) in this case is

LC(θ) ∝
M∏

i=1

{
ni∏

j=1

λi (tij ; θ) e−Λi(τi;θ)

}Ri1
{
pe−Λi(τi;θ)

}Ri2

{
1 − e−Λi(τi;θ) + pe−Λi(τi;θ)

}Ri
, (7.40)

where Ri1 = I(Ni(τi) ≥ 1), Ri2 = (1 − Ri1)Ri = I(Ni(τi) = 0, Ri = 1), and
Ri = Ri1 +Ri2. It is actually preferable (e.g. Lawless et al., 1999) to replace p

in (7.40) with p̂ = ms/(M −m), where m =
∑M

i=1 Ri1 is the number of units
with at least one claim, and ms =

∑M
i=1 Ri2 is the number of units chosen

for the supplementary sample. It turns out that (7.40) with p = p̂ can be
used for inference about θ either when the Ri2 are independent, or when a
supplementary sample of fixed size ms is chosen, in which case the Ri2 are
mildly dependent.

The pseudo-score estimating function UW (θ) of (7.39) in this setting is

M∑

i=1

⎡

⎣Ri1
∂ log
∂θ

⎧
⎨

⎩

ni∏

j=1

λi (tij ; θ) e−Λi(τi;θ)

⎫
⎬

⎭
+

Ri2

p

∂ log
∂θ

{
e−Λi(τi;θ)

}
⎤

⎦ . (7.41)

It has the advantage that it is simply the likelihood estimating function for
data observed on independent Poisson processes, with the addition of case
weights p−1 for units for which Ni(τi) = 0. Therefore, if software for handling
the Poisson process allows case weights, it can be used to obtain θ̂. Variance
estimates should, however, be obtained by estimating function theory. As
with the conditional likelihood approach, it is preferable to replace p with
p̂ = ms/(M − m) in (7.41).

The addition of a supplementary sample can greatly increase efficiency of
estimation of θ. In settings where the fraction of units with Ni(τi) > 0 tends to
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be small, estimation based on (7.36) is imprecise relative to estimation based
on (7.40) or (7.41), with even a value of p as small as .01 or .05.

The relative efficiencies of estimation based on (7.40) and (7.41) depend
on the setting. The weighted estimating function is typically less efficient, but
easier to implement. This approach can also be used in conjunction with esti-
mating functions in the absence of a full probability model. In particular, sup-
pose that Ui(N

(τi)
i ; θ) is an unbiased estimating function: E{Ui(N

(τi)
i ; θ)} = 0.

Then the weighted estimating function

UW (θ) =
M∑

i=1

Ri

πi
· Ui(N

(τi)
i ; θ) (7.42)

is also unbiased and can be used to estimate θ.
Suppose, for example, we wish simply to estimate the rate and mean func-

tions for the warranty claims process. Letting µ(t) = E{Ni(t)} and writing
dµ(t) = ρ(t)dt, we could use the estimating functions

U(t) =
M∑

i=1

Ui (dNi(t); dµ(t)) =
M∑

i=1

I (τi ≥ t) (dNi(t) − dµ(t)) ,

in the case where all units i = 1, . . . , M are observed, so that their followup
times τi are known. This gives the Nelson–Aalen estimate (3.17) for µ(t). In
the present setting, we can replace the estimating functions U(t) with the
functions

UW (t) =
M∑

i=1

Ri

πi
I (τi ≥ t) (dNi(t) − dµ(t)) . (7.43)

The equations UW (t) = 0 give

dµ̂(t) =

M∑

i=1

Ri

πi
I (τi ≥ t) dNi(t)

M∑

i=1

Ri

πi
I (τi ≥ t)

. (7.44)

As earlier, it is preferable to replace πi with π̂i = p̂ for units for which Ri1 = 0.
Note that because dNi(t) = 0 for units for which Ri2 = 0, (7.44) reduces to

dµ̂(t) =

M∑

i=1

Ri1I (τi ≥ t) dNi(t)

M∑

i=1

{
Ri1 + Ri2

p

}
I (τi ≥ t)

, (7.45)

where Ri2 = Ri(1−Ri1). An approach that is sometimes useful in practice is
to consider the τi as random variables, independent of the event processes, and
to replace the denominator of (7.45) with its expectation. Simple calculation



284 7 Observation Schemes Giving Incomplete Data

shows this to be M · G(t) = M · Pr{τi ≥ t}, so that if an estimate Ĝ(t) is
available from auxiliary data, the estimate

dµ̂(t) =

M∑

i=1

Ri1I (τi ≥ t) dNi(t)

M · Ĝ(t)
(7.46)

can be used. Hu and Lawless (1996a) consider this in connection with warranty
data; see also Hu and Lawless (1996b) concerning supplementary sampling.

Finally, we note that the supplementary sampling scheme discussed here
can be viewed as analogous to case-control sampling in epidemiological con-
texts. In the present setting, individuals with at least one event over given
followup periods [0, τi] are the cases and individuals with no events are the
controls. Clearly, other similar study designs are possible, depending on the
setting; for example, one might select as “cases” all individuals who expe-
rience at least one event over a specified calendar time period. A condition
that should be kept in mind, however, is that we assume the population from
which individuals are selected is of a known size (at least approximately), so
that the sampling probabilities πi for “controls” (individuals with (Ri1 = 0))
are known.
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7.5 Problems and Supplements

7.1. Renewal processes are difficult to fit when only interval-count data are
available, and alternatives to maximum likelihood may be sought.

a. Write down the likelihood for a renewal process (2.37) where the gap
times have distribution function F (w), in the case of the following data:
one event in [0, b1], zero events in (b1, b2], and two events in (b2, b3], where
b1, b2, b3 are prespecified inspection times. Consider the generalization to
an arbitrary set of interval counts, as in Section 7.1.

b. Problem 2.7 gives an integral equation involving the mean function µ(t)
and F (w), for a renewal process. Show that the equation

F (t) = µ(t) −
∫ t

0

F (t − x)dµ(x) (7.47)

also holds for t > 0. If you have a smooth parametric estimate of µ̂(t),
consider how you might obtain an estimate of F (t) from (7.47). What
concerns would you have about this method?

[Section 7.1; Erto, 1989; Baxter, 1994; Nelson, 2003, Section 8.4]

7.2. Consider the following artificial extreme case where inspection process
conditions (i) and (ii) in Section 7.1 are violated: when an event occurs, an
individual arrives for an inspection soon after. Suppose that an individual is
inspected at times b1 < · · · < bk but that the analyst is unaware that events
have occurred just prior to each of these times. Under a Poisson process with
rate function ρ(t), the analyst might then assume conditions (i) and (ii) hold,
and take the likelihood contribution for the individual to be

k∏

j=1

(∫ bj

bj−1

ρ(t)dt

)

exp

(

−
∫ bj

bj−1

ρ(t)dt

)

(7.48)

whereas it should be approximately

k∏

j=1

ρ(bj) exp

(

−
∫ bj

bj−1

ρ(t)dt

)

. (7.49)

Show that no bias in estimation is incurred in using (7.48) when ρ(t) = ρ is
constant. Investigate the bias in a case where ρ(t) is not constant.

[Section 7.1]

7.3. Consider the covariance structure for interval counts nij (i = 1, . . . ,m; j =
1, . . . , ki) under the mixed Poisson process framework (7.3). This is (see also
(7.17) and (7.18) in the case where J = 1)

var(nij) = µij + φµ2
ij , and cov(nij , ni�) = φµijµi� (j �= �) .



7.5 Problems and Supplements 287

Let ni = (ni1, . . . , niki
)′, µi = (µi1, . . . , µiki

)′, Di = ∂µi/∂θ′, and Vi =
cov(ni), with entries given above. Consider the estimating equations

U1(θ, φ) =
m∑

i=1

D′
iV

−1
i (ni − µi) = 0 (7.50)

which, given a value for φ, can be solved to provide an estimate θ̂. As a
supplementary estimating equation for φ, consider

U2(θ, φ) =
m∑

i=1

µ2
i·

σ4
i·

{
(ni· − µi·)2 − σ2

i·
}

= 0 , (7.51)

where ni· =
∑ki

j=1 nij , µi· =
∑ki

j=1 µij and σ2
i· = var(ni·) = µi· + φµ2

i·. To
estimate θ and φ we may proceed iteratively by (i) choosing an initial value
φ̂0 for φ (φ0 = 0 is suitable) and solving (7.50) to get a value θ̂1 for θ; (ii)
solving (7.51) with θ = θ̂1 fixed, to get a value φ̂; and (iii) repeating steps (i)
and (ii) with φ̂� replacing φ̂�−1 at stages � = 2, 3, . . .. Under suitable conditions
this iteration scheme will converge to give the estimate (θ̂, φ̂). The estimating
equation (7.51) is an alternative to (7.20) in the case where J = 1.

a. Show that (7.50) is an unbiased estimating equation, assuming the spec-
ification for E(nij) is correct, and that (7.51) is an unbiased estimating
equation if the specification for Vi = cov(ni) is correct.

b. Use asymptotic results for estimating functions (Appendix A) to obtain
an estimated asymptotic covariance matrix for

√
m(θ̂′ − θ′, φ̂ − φ)′.

c. Show that if the specification for Vi is incorrect but that for E(nij) is
correct, then θ̂ is still estimated consistently by the approach above. Show
that an estimated asymptotic covariance matrix for

√
m(θ̂ − θ) is given

by Â−1B̂Â−1, where

Â =
1
m

m∑

i=1

D̂′
iV̂

−1
i D̂i

B̂ =
1
m

m∑

i=1

D̂′
iV̂

−1
i (ni − µ̂i)(ni − µ̂i)′V̂ −1

i D̂i

and D̂i, V̂i are Di, Vi with θ̂, φ̂ replacing θ, φ.
d. Apply the approach here to estimate the parameters α1, α2, β1, β2, β3, and

φ for the model with µ0(t) = α1t
α2 , applied to the bladder cancer data of

Section 7.1.3.

[Section 7.1; Lawless and Zhan, 1998]

7.4. Consider the case of J = 2 types of events in the framework of Section
7.1.4.
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a. Examine the covariance structure for the nij� when ui1 = v1 + v3, ui2 =
v2 + v3, where v1, v2, v3 are independent gamma random variables with
means 1 and variances φ1, φ12, φ3. Consider the likelihood function based
on the interval counts nij� (� = 1, . . . , kij ; j = 1, . . . , J ; i = 1, . . . ,m).

b. Also consider the covariance structure and the likelihood function based
on the nij� when (log ui1, log ui2) have a bivariate normal distribution with
mean (0, 0), variances σ2

1 , σ2
2 , and correlation ρ.

[Section 7.1.4; Chen et al., 2005]

7.5. The data in Section 1.2.1 on the occurrence of tumors in rats exposed
to a carcinogen were analyzed in Section 3.8.1 by treating the event times
as exact. In fact, the rats were examined at intervals of two to six days,
and the number of new tumors since the last examination was recorded. The
examinations were on days 3, 5, 8, 11, 14, 17, 21, 24, 28, 31, 35, 38, 42, 45,
48, 52, 56, 59, 61, 63, 66, 70, 74, 77, 80, 85, 88, 90, 92, 97, 101, 107, 112,
114, 119, 122. Fit the parametric models (3.54) considered in Section 3.8.1
to the treatment and control groups by treating the data as interval counts.
Consider both the Poisson process model and the negative binomial process
model in each case.

[Section 7.1.2]

7.6. When there are no covariates as in Section 7.2.2, the probabilities pr(t) =
Pr {Ni(t) = r} can be estimated by noting that

pr(t) = Pr {Tr ≤ t} − Pr {Tr+1 ≤ t} r = 1, 2, . . . , (7.52)

where Tr is the time of the rth event (r = 1, 2, . . .) and T0 = 0. Estimates of
the Fr(t) = Pr(Tr ≤ t) thus provide estimates of the pr(t).

a. If censoring times Ci are completely independent of the recurrent event
process, then Fr(t) can be estimated using the Kaplan–Meier estimate
based on the data ti = min(Tir, Ci), δi = I(Tir ≤ Ci). Show that if there is
no censoring at all, then (7.52) produces the same estimate as the Markov
(Aalen–Johansen) estimate in Section 5.3.2.

b. Note that if Hr(t) is the cumulative hazard function for Tr, then the
Kaplan–Meier estimate of Tir is based on the estimates

dĤr(s) =

m∑

i=1

I (Tir = s, Ci ≥ s)

m∑

i=1

I (Tir ≥ s, Ci ≥ s)
. (7.53)

Show how (7.53) can be inconsistent for dHr(s) when Tir and Ci are
not independent. Consider the case where the recurrent event process is
Markov as in Section 5.3.2, and censoring is event-dependent as in (7.31).
What happens when the recurrent event process is a Poisson process?
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[Sections 5.3.2, 7.2.2]

7.7. Show that (7.32) is consistent for pr(t) provided Ĝi(t) is based on (7.27)
and (7.26) holds.

[Sections 7.2.1, 7.2.2]

7.8. Consider the model in (7.33) for the case of a single observation period
(bi0, bi1], with wi1 = bi1 − bi0. Suppose that the event process is Poisson, with
µi1 = ρwi1 and that hi(wi1) = λ, so Hi(wi1) = λwi1. Obtain Pr(ni1|wi1)
under the model (7.33) when α = 1 and zi has a gamma distribution with
density (2.28). Compare this with Pr(ni1|wi1) obtained under the assumption
that α = 0, that is, that wi1 is independent of zi. What does the estimate
ρ̂ = n·1/w·1, based on observation periods for m independent individuals,
converge to in probability?

[Section 7.2.3]

7.9. Use the multistate framework of Sections 5.3 and 6.6.4 to deal with
estimation of marginal features when there is a terminating event present,
and event-dependent censoring. In particular, consider the model in Fig-
ure 6.2 with states added to represent censoring. Consider ways to estimate
ρ(t)dt = E{dNi(t)|Ti ≥ t} and E{Ni(t)} as in Section 6.6.3, either through
the multistate framework or otherwise.

[Section 7.2.2]

7.10. For the bladder tumor data discussed in Section 7.1.3 (see also Appendix
D.1), check to see whether there is any evidence that the censoring time
τi = biki

is related to previous event history by considering binary response
models for

Pr {bij is the last inspection time for individual i|Hij} j = 1, 2 . . . ,

where Hij is the event, inspection time, and covariate history up to time bij .
Consider in particular whether the number of events in (bi,j−1, bij ] is related
to the probability of dropout at bij .

[Sections 7.1, 7.2]

7.11. Researchers in certain disciplines frequently try to use retrospective data
on the time Ui since the last event in a process, obtained from a cross-sectional
survey of individuals at some calendar time. This is difficult to do in many
situations but for certain processes, such data can be used for estimation.

a. Suppose the event process for individual i is Poisson with rate function
ρi(t) and that the cross-sectional survey occurs at t = ai for individual i.
Show that in this case
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Pr (Ui > u) = exp
{

−
∫ ai

ai−u

ρi(t)dt

}

and thus obtain the density function for Ui. If ρi(t) = ρ0(t) exp(x′
iβ),

where xi is a vector of covariates, consider maximum likelihood estimation
based on the Ui. Note that an individual with no events by ai contributes
a term Pr(Ui > ai) to the likelihood.

b. Consider the corresponding situation when events follow a renewal process,
as described in Section 4.5. What additional information is needed here
that is not needed in the case of a Poisson process?

c. In the renewal process case, the distribution of the backward recurrence
time Ui = −ti0 is given in Problem 4.10. If the event rate before time ai

is constant, show that Ui has the equilibrium backward recurrence time
distribution

f∗
0 (ui) =

1
µ

S0(ui) ,

where µ is the mean gap time (between events) and S0(w) is the sur-
vivor function for the gap time. Investigate maximum likelihood estima-
tion when S0(w) = (1+λw)−α, and compare the information in Ui versus
that in a prospectively observed gap time Wi.

[Section 7.3; Allison, 1985; Keiding, 2006]

7.12. Consider the case of equipment, such as a motor vehicle, in which usage
(e.g. distance driven) accumulates linearly with rate zi > 0 for the ith unit.
Let Ni(t) denote the number of “failures” experienced by the equipment up
to time t after the unit is placed in service. Suppose that, given zi, the process
{Ni(t), 0 ≤ t} is Poisson with mean function of the form

µi(t) = µ0(tz
β
i ) ,

where µ0(t) = µ0(t;α) is a baseline rate function and α, β are unknown para-
meters. Note that the accumulated usage to time t is wi = zit and thus that
if β = 0 the event process is independent of the usage rate, and if β = 1 the
mean function depends only on the accumulated usage.

a. Consider data where τi is a fixed time, and the failure times and zi are ob-
served if and only if Ni(τi) > 0. If Ni(τi) = 0 the value of zi is unobserved.
For convenience, label the units for which Ni(τi) > 0 as i = 1, . . . ,m and
those for which Ni(τi) = 0 as i = m + 1, . . . ,M . Write down a likelihood
function based on the data.

b. Suppose the distribution of zi in the population is known or estimated
from external sources to have density function g(z), z > 0. Use this ad-
ditional information to give a likelihood function that incorporates the
knowledge that Ni(τi) = 0 for i = m + 1, . . . ,M .

[Section 7.3; Lawless et al., 1995]
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7.13. Assessment of the effect of external factors from case-only data.
Suppose that, subject to an external time-varying covariate proces {xi(t), 0 ≤
t}, an individual experiences events according to a Poisson process with in-
tensity function

λi(t) = λ0(t) exp{αi + x′
i(t)β} ,

where αi represents individual-specific factors, which may be unobservable.
Assume that data are available from m individuals who experienced at least
one event over some calendar time period that corresponds to the time inter-
vals [ai, bi] for individuals i = 1, . . . , m.

a. Base a conditional likelihood on the distribution of the event times tij
(j = 1, . . . , ni) for individual i, given that Ni(ai, bi) = ni. Show that this
involves λ0(t) and β, but not αi.

b. Consider estimation of the parameters γ and β, assuming a parametric
model λ0(t; γ). Examine the special case where λ0(t; γ) = γ is constant.

c. Derive a score test of the hypothesis H0 : β = 0.

[Section 7.3, Farrington and Whitaker, 2006]



8

Other Topics

8.1 Event Processes with Marks

In many settings there are auxiliary data associated with an event that reflect
the severity, importance, or implications of its occurrence. The associated
random variable is called the mark of the event and the process as a whole is
called a marked point process. Settings in which marked point processes arise
include casualty insurance, where claims have an associated size; warranty
claims, where interest lies both in the occurrence of claims and the cost of
repairs; and medicine, where one may be interested in the costs of treatment
associated with specific medical events.

Let {Ni(t), 0 ≤ t} denote a counting process with Ni(τi) = ni events
occurring over [0, τi] at times ti1, . . . , tini

for individual i. In some settings,
it may be desirable to allow various forms of dependence between event oc-
currence and the associated marks (e.g. Cox and Isham, 1980, Section 5.5),
but we mostly assume here that the marks at different event times are inde-
pendent and identically distributed. The extension to allow marks and event
occurrence to depend on covariates, but remain conditionally independent, is
straightforward. Let Cij be a possibly vector-valued random variable that de-
notes the mark associated with the event at tij , with cumulative distribution
function Gi(c). If Cij is a vector, its components needn’t be independent. The
history of the full process is then Hi(t) = {Ni(s), C̃i(s), 0 ≤ s < t}, where
C̃i(s) = {Ci1, . . . , CiNi(s)}.

The cumulative sum

Ci(t) =
Ni(t)∑

j=1

Cij (8.1)

is often of central importance, especially when the marks represent costs of
some type; then Ci(t) is the cumulative cost up to time t. We focus on the case
where the Cij (j = 1, 2, . . .) are scalar, in addition to being independent and
identically distributed with mean µc and variance σ2

c . It then follows easily
from (8.1) that



294 8 Other Topics

E {Ci(t)} = µcE {Ni(t)} , var {Ci(t)} = σ2
c E {Ni(t)} + µ2

cvar {Ni(t)} . (8.2)

It can also be seen that if MY (s) = E{exp(Y s)} denotes the moment gener-
ating function of the random variable Y , then

MCi(t)(s) = MNi(t)

(
log MCij

(s)
)

,

provided the generating functions exist.
A very important special case is when the event process is Poisson, in

which case the process {Ci(t), 0 ≤ t} is called a compound Poisson process; see
Problem 2.5. Under the assumption that the mark values Cij (j = 1, 2, . . .)
are independent, it is easily seen that the process {Ci(t), 0 ≤ t} then has
independent increments. That is, for 0 ≤ s1 < t1 < s2 < t2, the increments
C(s1, t1) = C(t1) − C(s1) and C(s2, t2) = C(t2) − C(s2) are independent.

We remark that multitype recurrent event data discussed in Chapter 6 may
be viewed as a marked point process in which the mark indicates the type of
the event. In that case the random variable Jik associated with a kth event
at tik takes values on the set {1, . . . , J}. The Jik in Chapter 6 may depend
on H(tik) and the marked point process models here can also be extended to
allow this. We do not pursue this specifically, but allow for the possibility in
writing down a likelihood function for observed data.

Define the history Hi(t) = {Ni(s), Ci(s), 0 ≤ s < t} and let ∆Ni(ur)
and ∆Ci(ur) contain the information on events and marks in a short interval
[ur, ur+1). Then if we consider events over [0, τ ] and the partition 0 = u0 <
u1 < · · · < uR = τ , the probability of the data for individual i is

R∏

r=0

Pr(∆Ci(ur),∆Ni(ur)|Hi(ur)) =

R∏

r=0

Pr(∆Ni(ur)|Hi(ur))Pr(∆Ci(ur)|∆Ni(ur),Hi(ur)) .

As R → ∞ and the ∆ur = ur+1 − ur → 0, the likelihood contribution from
individual i becomes, by the line of argument leading to (2.7),

⎧
⎨

⎩

ni∏

j=1

λi (tij |Hi(tij)) Pr (Cij |Hi(tij), dNi(tij) = 1)

⎫
⎬

⎭

× exp
{

−
∫ τ

0

λi(u|Hi(u))du

}

. (8.3)

This factors into a component for the event generating process and a com-
ponent for the conditional distribution of the marks given the history of the
process at each tij . In analyzing data on a marked point process, we typically
consider the event process and then the distribution of marks, which as shown
here, can be allowed to depend on time and on previous event or cost history.
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This is conveniently done using regression models and standard exploratory
techniques.

When the two factors in (8.3) involve separate parameters, estimation may
be carried out separately for the two aspects of the process. Often processes
are modeled in such a way that this is the case. For the compound Poisson
processes described above, for example, the parameters in G(c) are usually dis-
tinct from those in the event process intensity. However, for multitype events
we often adopt models where a different type of factorization applies; see
Problem 8.4. We next consider cumulative processes such as (8.1), and extend
the framework to allow for terminating events and more general accumulation
processes.

8.2 Models for Cumulative Costs

8.2.1 Introduction

Costs or benefits that accumulate over time for individuals are of interest in
many life history processes. Familiar examples include the cost of health care
for persons with chronic medical conditions, the payments to insured persons
during periods of disability, the payments associated with property insurance
claims, and cumulative quality of life measures which are sometimes used in
the evaluation of treatments for terminally ill patients. Costs or benefits may
be multivariate and may accrue for a variety of reasons. For example, in studies
of persons with chronic obstructive pulmonary disease, costs were incurred by
prescription of prophylactic or therapeutic medications, by hospitalizations,
by time off work, and so on. Note that this setting is more general than that
for marked point processes discussed in Section 8.1, where costs only accrue
at the occurrence of events.

For convenience we often use the term costs to refer to cost or other cu-
mulative measures such as utility, profit, or quality of life, and let C(t) denote
a cumulative (univariate) cost for an individual over the time period [0, t].
There is often also a random variable T that represents the duration of the
cumulative process, so the objects of interest are T and {C(t), 0 ≤ t ≤ T}. In
some contexts it is sufficient to base analyses directly on the cost data accumu-
lating over time, but it is usually more informative to consider models for the
underlying processes that generate costs as well. Advantages of analyzing and
modeling the processes generating the costs include increased understanding;
the ability to deal with observation schemes involving censoring, intermit-
tent observation, or truncation; better methods for predicting costs; and a
convenient separation of the underlying processes from costs, which may be
subjective or vary across locations.

There are thus two main approaches for the analysis of accumulating cost
data. The first is to directly model, for each individual, the cumulative cost
process {Ci(t), 0 ≤ t}, and time Ti at which the process terminates. The
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time Ti may, for example, represent the time of death in a study of health
services utilization among patients with terminal medical conditions, or the
time treatment for a transient condition ends. In many settings Ti is subject
to right censoring at some time τi, in which case the cost process is unobserved
for t > τi. Interest may lie in estimation of the distribution of “total lifetime
cost” Ci = Ci(Ti), or just the expected lifetime cost E{Ci}. More generally,
we may wish to model the accumulation of cost right up to Ti. In most realistic
situations Ti is not independent of the cost process; more specifically, if C

(t)
i =

{Ci(u), 0 ≤ u < t} is the cost history to time t, then the termination time
hazard function,

lim
∆t→0

Pr(Ti < t + ∆t|Ti ≥ t, C
(t)
i )

∆t
, (8.4)

depends on C
(t)
i . This implies that, even if the censoring time τi and (Ti, Ci(Ti))

are independent, the censoring value C∗
i = Ci(τi) and the total lifetime cost

Ci = Ci(Ti) are not in general independent.
The second approach involves modeling the underlying process that gen-

erates the cost, as well as the distribution of costs. We need to distinguish
between situations where costs are incurred only in connection with events
that occur at points in time and situations where costs may accrue on a con-
tinuous basis, according to which of various states an individual occupies over
time. For the former, marked point processes provide a convenient framework,
with the cumulative cost process given by (8.1); we discuss statistical meth-
ods associated with this approach in the next section. For the second type of
situation, the multistate model formulation below is useful. More generally,
we may formulate models that combine both continuously accruing costs and
costs associated with specific events.

The following framework is useful for costs that accrue continuously. Sup-
pose that at time t an individual occupies one of K life states 1, . . . , K, where
all individuals begin in state 1 at t = 0, states 1, . . . ,K − 1 are transient, and
state K is an absorbing state in which there is no further accumulation of
cost. Any type of multistate model may be used to characterize the under-
lying process; some have been discussed in Chapters 5 and 7. The states, in
particular, may indicate numbers of events that have occurred, as well as an
individual’s “condition”. If Z(t) represents the state occupied by an individual
at time t, assume that the incremental cost over the short interval [t, t+dt) is
V {Z(t), t}dt, which could be deterministic or stochastic. The total cumulative
cost up to time t is then

C(t) =
∫ t

0

V {Z(u), u}du . (8.5)

The process terminates upon entry to state K at time T , and V {K,u} = 0
for all u > 0.

We restrict consideration here to cases where
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V {Z(u), u} = vj(u) if Z(u) = j , (8.6)

where vj(u) is a known (deterministic) function, j = 1, 2, . . . ,K − 1. In this
case (8.5) gives

C(t) =
K−1∑

j=1

∫ t

0

vj(u) · I[Z(u) = j]du (8.7)

and

E{C(t)} =
K−1∑

j=1

∫ t

0

vj(u) · pj(u)du , (8.8)

where
pj(u) = Pr[Z(u) = j|Z(0) = 1] j = 1, . . . ,K , (8.9)

are state occupancy probability functions. Note that in this framework C(T ) =
C(∞).

Assumptions regarding the process {Z(t), 0 ≤ t} may be made to estimate
pj(t). In a completely general setting, transition intensities might depend on
prior cost history, but in the case of deterministic cost rates (8.6) we have

Pr
{

Z(t + ∆t) = j|H(t), C(t)
}

= Pr {Z(t + ∆t) = j|H(t)} ,

where H(t) = {Z(u), 0 ≤ u < t} and C(t) = {C(u), 0 ≤ u < t}, so we merely
need to model the multistate process.

8.2.2 Estimation for Cost Processes

We focus on the case of cost processes generated by point events as in Section
8.1, and only discuss briefly the case of continuously accruing costs. In the case
of cost processes of the type (8.1), we typically model the event process which
generates the costs, along with the distributions Gi(c) for the costs Cij (j =
1, 2, . . .). Models for the recurrent events may involve covariates, individual
level random effects, or stratification, as discussed in earlier chapters. If there
is a terminating event at time Ti, this may be incorporated as described in
Section 6.6. The cost distributions Gi(c) are modeled and fitted separately,
and may also involve covariates, random effects, or stratification. The mean
and variance functions for the cost process, or the moment generating function
(8.2), are then readily estimated. For example, when costs are independent
of the event times, E{Ci(t)} is estimated by µ̂c µ̂(t), where µc = E(Cij) and
µ(t) = E{Ni(t)}. Variance estimates or confidence intervals can be obtained
by standard methods.

Many modeling strategies are possible, and we cannot give an exhaustive
discussion. Complex models in which costs may depend on previous events
and costs can be fitted using (8.3), but the cost process (8.1) is generally
complicated and may have to be examined by simulation. Often a simple
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stratified approach is useful, in which events are split into types j = 1, . . . , J ,
with events of type j generating a fixed cost Cj . If Nij(t) is the number of
type j events for individual i over [0, t], then

Ci(t) =
J∑

j=1

CjNij(t) .

Models for multitype events, discussed in Chapter 6, can be used in this setting
and the properties of the cumulative cost process are readily determined.

It should be stressed that the assumption of costs being independent of
previous event or cost history is strong, and should be checked in any specific
setting. This can be done by fitting models for Cij (j = 1, 2, . . .) in which
covariates represent aspects of previous history. Temporal trends in costs can
similarly be examined.

The multistate setting where individuals accrue cost continuously is also
straightforward to apply, provided the cost rate functions are deterministic, as
in (8.6). A discussion of this area is beyond our present scope, but an array of
methods which parallel those in this book are available for general multistate
models; Andersen et al. (1993) is a comprehensive source. The developments
in Sections 5.3 and 6.6 provide estimation methodology for the special case
of a “progressive” Markov process, in which an individual may only make
transitions from states j to j + 1. In particular, methods of estimating the
occupancy probabilities (8.9) are given, and they may be used to estimate
expected cumulative costs via (8.8).

In some situations we may be willing to settle for estimation of expected
cumulative costs,

µci(t) = E{Ci(t)} , (8.10)

where it is understood that if there is a termination time Ti, no further costs
can accrue for t > Ti. The modeling approaches discussed above may be used
to estimate the µci(t), but robust methods that do not rely too heavily on
assumptions are also attractive. An approach that can be used when there
are no termination times, and where the observation period [0, τi] for each in-
dividual is independent of the event and cost history, is to extend the rate and
mean function estimation methods of Section 3.6. In particular, let us con-
sider {Ci(t), 0 ≤ t} for independent individuals i = 1, . . . , m as non-decreasing
processes with mean function µc(t), and consider a set of estimating equations
analogous to (3.16),

m∑

i=1

Yi(s) {dCi(s) − dµc(s)} = 0 s > 0 , (8.11)

where Yi(s) = I(s ≤ τi) and dCi(s) is the increment in Ci(s) over [s, s + ds).
This unbiased estimating equation gives the estimates dµ̂c(s) = dC̄·(s)/Y·(s),
where dC̄·(s) =

∑m
i=1 Yi(s)dCi(s) and Y·(s) =

∑m
i=1 Yi(s). This gives the

estimate



8.2 Models for Cumulative Costs 299

µ̂c(t) =
∫ t

0

dC̄·(s)
Y·(s)

(8.12)

and it is readily shown by a derivation analogous to that leading to (3.34)
that

v̂ar
{√

m (µ̂c(t) − µc(t))
}

= m

m∑

i=1

{∫ t

0

Yi(s)
Y·(s)

[

dCi(s) −
dC̄·(s)
Y·(s)

]}2

(8.13)

is a consistent estimator of the asymptotic variance for
√

m(µ̂c(t)−µc(t)). In
cases where the cost processes are pure jump processes (i.e. costs only accrue
at discrete time points), then (8.13) reduces to a sum, but processes where
costs accrue continuously over time are also allowed.

The approach just described can be extended to include covariates, in a
way that parallels the methods in Section 3.6.3. It can also be extended to
deal with termination times Ti which may depend on the cost process, by
using the methods of Section 6.6.

More insight can generally be gained by modeling the cost generating
process separately from the costs themselves, as discussed previously. In this
case it is possible to apply ideas in Sections 3.6, 5.3, 6.6, and 7.1, in which we
consider robust methods of estimating the mean function µi(t) = E{Ni(t)}
for recurrent event processes or the occupancy functions (8.9) for multistate
processes. These can be combined with estimates of expected costs or cost
rates via (8.2), (8.8), and similar expressions, to yield robust estimates of
µc(t). Adjustments using inverse probability weights can be used to deal with
termination or censoring times that depend on prior event or cost history.

8.2.3 Examples

We consider below a pair of examples that illustrate how mean cost functions
can be estimated. Neither example involves a terminating event but followup
times vary across individuals.

Example 8.1: Field repair data

This dataset (see Appendix D) gives simulated data on unscheduled repairs
for a fleet of m = 134 large utility vehicles operated by a city. The data were
collected over a three-year period on new vehicles which were purchased and
placed in service over the first two years of the study. Time is measured in
years from the start of the study, and costs are in hundreds of dollars.

We consider two estimates of the mean cost function µc(t) = E{Ci(t)} per
vehicle. The first uses the marked point process approach of Section 8.1; (8.2)
suggests the estimate

µ̂c(t) = µ̂c µ̂NA(t) , (8.14)
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where µ̂c is the average cost of all the observed repairs and µ̂NA(t) is the
Nelson–Aalen estimate (3.17) for the mean function µ(t) = E{Ni(t)} for the
number of repairs. Let us also define the sample variance σ2

c for repair cost,
so that with n· =

∑m
i=1 ni, we have

µ̂c =
1
n·

m∑

i=1

ni∑

j=1

Cij σ̂2
c =

1
n· − 1

m∑

i=1

ni∑

j=1

(Cij − µ̂c)
2

.

Assuming that the repair costs do not display a time trend and are not related
to previous event history, and that censoring is not event- or cost-dependent,
(8.14) is valid, and a variance estimate for µ̂c(t) is readily obtained. In par-
ticular, we get by the delta theorem that

âsvar {µ̂c(t)} = µ̂2
c âsvar {µ̂NA(t)} + µ̂NA(t)2 âsvar(µ̂c) . (8.15)

In (8.15) we can use âsvar(µ̂c) = σ̂2
c/n· and either (3.19) or, preferably, the

robust estimate (3.34) for âsvar {µ̂NA(t)}.
A second approach is to use (8.12) for µ̂c(t), and the variance estimate

(8.13). This estimate will handle settings where the costs may depend on t or
on previous event history and so makes fewer assumptions than the estimate
(8.14). It also requires, however, that censoring times be completely indepen-
dent of the event and cost process. Note that the variance estimate (8.13) can
be written as a sum, giving

v̂ar {µ̂c(t)} =
m∑

i=1

⎧
⎨

⎩

m∑

�=1

∑

j:t�j≤t

Yi(t�j)
Y·(t�j)

[

CijI(� = i) − C�j

Y·(t�j)

]
⎫
⎬

⎭

2

.

Table 8.1 shows estimates of µc(t) and associated standard errors at the
five values t = 0.5, 1.0, 1.5, 2.0, and 2.5, for (8.14) and (8.12). For (8.15),
the robust variance estimate (3.34) for µ̂NA(t) was used. We see that the two
estimates and their standard errors are in close agreement.

Table 8.1. Estimates of the mean cost function µc(t) from a sample of 134 individ-
uals with varying followup times.

t EST. (8.14) S.E. (8.15) EST. (8.12) S.E. (8.13)

0.5 11.17 0.90 11.46 0.95
1.0 22.04 1.45 21.77 1.46
1.5 31.66 1.92 31.24 1.93
2.0 40.25 2.37 40.14 2.37
2.5 51.59 3.27 51.60 3.30

These data were in fact generated so as to have no time trend in the costs
of repairs. If there had been a time trend, then the estimate (8.12) would be
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preferred. In addition, the censoring times here were purely administrative,
that is, due to the end date of the data accumulation. Both the estimates
(8.12) and (8.14) require that censoring be independent of the event and cost
processes and so are suitable here. When there is a possibility that censoring
is event- or cost-related we can modify the estimates through the use of IPC
weights, described in Section 7.3. Finally, we note that both estimates are
robust as far as the underlying recurrent event process is concerned.

Example 8.2: Heat pump repair data

Nelson (2003, Sections 1.2 and 3.3) has presented data on fan repairs for
residential heat pumps covered by a service contract. The data contain in-
formation on m = 119 heat pumps, with varying lengths of followup; the
maximum followup time was a little over 3650 days. There were a total of
26 repairs, but the dataset does not identify the pumps which had failures.
It does, however, indicate the number of pumps at risk at the time of each
failure and so it is possible to estimate the cumulative mean functions µ(t) for
repairs and µc(t) for costs of repairs, as a function of pump age. Such “aggre-
gate” data are sometimes encountered in field reliability settings where the
number of equipment units in service is known at different times or ages, and
where the occurrence of repairs is recorded. This limits the possibilities for
analysis, though, because we are unable to study unit-to-unit variation and
thus to provide probability models for failures or robust variance estimates
for mean functions.

Table 8.2, adapted from Table 3.3 of Nelson (2003), shows the times
t1 < t2 < · · · < t26 of repairs and at each ti, the cost Ci of the repair
and the number ni of heat pumps at risk of failure. That is, ni is the number
of pumps with followup times greater than or equal to ti. As in Example 8.1,
we can give two estimates of the mean cost function µc(t), given by (8.14) and
(8.12), respectively. Figure 8.1 shows the two estimates, which are somewhat
different. A plot of the cost Ci versus the time ti of each repair clearly shows
that the repair costs are tending to increase with time. In this case we should
trust estimate (8.12), and expect that (8.14) will be biased upwards. Vari-
ance estimation is problematic because pumps experiencing failures are not
identified. For the estimate (8.12), the variance estimate (8.13) is therefore
unavailable. If failures followed identical Poisson processes, then the variance
estimate (3.18) for the Nelson–Aalen estimate µ̂NA(t) of µ(t) could be used,

âsvar {µ̂NA(t)} =
∑

i:ti≤t

1
n2

i

.

This could be combined with the variance estimate âsvar(µ̂c) = σ̂2
c/26 via

(8.15), to obtain a variance estimate for µ̂c(t) given by (8.14). Because there is
typically substantial heterogeneity across units in the type of setting discussed
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here, however, this variance estimate is likely to underestimate substantially
the variability of µ̂c(t). In any case, we prefer not to use (8.14) here.

Table 8.2. Times (in days) and costs (in dollars) of 26 fan failures, with numbers
of fans at risk at each time.

Failure Repair Number Failure Repair Number
Time (ti) Cost (Ci) at Risk (ni) Time (ti) Cost (Ci) at Risk (ni)

141 44.20 119 2593 184.00 92
843 110.20 107 2674 167.20 91
1269 130.20 100 2710 149.00 91
1381 150.40 99 2838 42.00 89
1471 113.40 99 2946 255.70 89
1567 151.90 99 2951 243.30 89
1642 191.20 99 3296 145.00 84
1646 36.00 99 3307 208.00 84
1908 158.50 96 3368 248.70 84
2261 243.80 94 3391 256.90 84
2273 189.50 94 3440 305.50 83
2363 225.40 94 3489 202.80 83
2440 197.80 93 3635 242.00 76

8.3 Prediction

8.3.1 Introduction

In some settings the prediction of time to the next event, or the prediction
of the number of events in some future time period, may be of interest. For
example, in the software testing context of Sections 1.2.2. and 3.8.3, prediction
of the number of additional faults that would be found by continuing testing
for a prescribed period can help to guide decisions about when to cease testing.
Prediction is especially of interest when there are costs associated with the
events, in which case we want to predict both numbers of events and related
costs. This is a common problem in the warranty claims context of Section
3.8.4, where we may want to predict the eventual total number and cost
of warranty claims across a group of automobiles, based on data currently
available. The prediction of events requiring medical treatment, and their
associated costs, is a similar frequently occurring problem.

Given a probability model for the recurrent event process and any asso-
ciated costs, we can generate predictions. Occasionally a point prediction of
the time or number of future events is needed, but in most cases we wish
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Fig. 8.1. Two estimates of mean cumulative cost function for heat pump fan motors:
(1) estimate (8.12) and (2) estimate (8.14).

to account for uncertainty by giving a probability-based prediction interval.
If the probability model for the process is known, we can use models discussed
throughout this book for prediction. If we are simply interested in the time to
the next event from some current time, conditional on the event history up to
that time, then (2.8) and (2.9) are relevant under conditions in Section 2.1:

Pr{N(s, s + t) = 0|H(s+)} = exp
{

−
∫ s+t

s

λ(u|H(u))du

}

, (8.16)

where λ(u|H(u)) is the process intensity, gives the probability that the next
event does not occur until after time s + t, given the history to time s. The
probability distribution of the number of events or total costs over a future
time interval is in general complicated, although it is of a simple form for Pois-
son and some related processes. Event processes are readily simulated via their
intensity functions, however, and predictive distributions can be estimated to
a desired degree of accuracy that way.

Of course, exact probability distributions for a process are never known
in practice, but rather must be estimated or specified from existing data.
There are two main sources of error or uncertainty in predictions; one is the
inherent variability in the event process, and the other is the imperfectness of
the probability model adopted. Sometimes the latter source of uncertainty is
broken into uncertainty about the family or type of process, and uncertainty
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about the values of parameters. To consider this in a little detail, suppose
that we wish to predict the residual time T to the next event, given the event
history up to the current time s. By (8.16) we have

Pr(T > t|H(s+)) = exp
{

−
∫ s+t

s

λ(u|H(u))du

}

. (8.17)

If we specify λ(u|H(u)) through some estimation and diagnostic process as
λ(u|H(u); θ), then we can use (8.17) with λ(u|H(u); θ̂) to give predictive prob-
abilities or quantiles. However, there are two additional sources of uncertainty:
(i) the fact that θ̂, and indeed the model λ(u|H(u); θ) itself, has been based on
data, so is subject to sampling variation and other sources of uncertainty in
the data, and (ii) the fact that the model family at best approximates the true
process. This may be of special concern if the prediction involves significant
extrapolation into a future time period. The procedure whereby (8.17) with
λ(u|H(u); θ̂) is used is often called “plug-in” prediction. When there is sub-
stantial uncertainty about the adequacy of the model as, for example, when
extrapolation into the future is involved, one should compare predictions from
a variety of plausible models to get a reasonable assessment of uncertainty. It
is also possible to adjust the probabilities assigned to plug-in prediction to re-
flect uncertainty due to estimation. This is called calibration, and we consider
it next, before looking at some specific examples of prediction.

Finally, we remark that if λ(t|H(t)) involves time-varying covariates, then
values at future times have to be considered. This is more difficult and requires
a model for the covariate process and some way to extrapolate forward in time.
This issue has received little discussion in the literature.

8.3.2 Predictive Probabilities and Calibration

To simplify the discussion suppose that we wish to predict a scalar random
variable Y representing a future observation, given some observed data X.
Assume that the distribution function of Y given X = x is determined up to
a parameter θ, as F (y|x; θ); in some cases θ may be high-dimensional. Assume
as well that the distribution of (Y,X) is specified by θ and that θ is estimable
from X; that is, we can determine an estimate θ̂(x) from observed data X = x.
The plug-in prediction approach simply uses F (y|x; θ̂(x)); we call this the
plug-in predictive cumulative distribution function. The predictive distribution
density f(y|x; θ̂(x)) is similarly called the plug-in predictive density. We can
then find intervals (L(x), U(x)) such that

P̂r(L(x) ≤ Y ≤ R(x)|x) = F (R(x)|x; θ̂(x)) − F (L(x)|x; θ̂(x)) (8.18)

equals a specified value such as .90 or .95.
From a frequentist viewpoint, we may wish to consider the relative fre-

quency with which intervals (L(x), R(x)) determined by (8.18) bracket Y in
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repeated realizations of the pair (X,Y ). That is, we consider instead of (8.18)
the probability

Pr (L(X) ≤ Y ≤ R(X)) = α(θ) . (8.19)

In a few special special settings it is possible to find functions L(X), R(X)
so that the probabilities (8.19) do not depend on θ. The case where Y is
independent of X, given θ, has been widely considered; in that case x merely
provides the estimate θ̂(x) upon which L(x) and R(x) are based. Here, we
are interested in settings where Y and X are usually not independent. In any
case, the process of determining, exactly or approximately, the function α(θ)
is referred to as calibration. This can be done using simulation, as discussed
by Lawless and Fredette (2005) and references therein, and one procedure is
as follows.

Suppose to start that Y is continuous, and define the random variable and
associated distribution function

U = F (Y |X; θ̂(X)) , G(u; θ) = Pr(U ≤ u; θ) . (8.20)

If θ̂(X) were replaced by the true value of θ in (8.20) then U would be a pivotal
quantity with a uniform distribution on (0,1). The plug-in approach to pre-
diction in fact assumes that U is uniform on (0,1). The process of calibration
(e.g. Beran, 1990; Lawless and Fredette, 2005) is to determine or approximate
the true distribution of U ; by doing so we hope to obtain prediction intervals
(L(X), R(X)) for which the coverage probability (8.19) is known. If α(θ) does
not depend on θ in (8.18), this is possible. However, if it does depend on θ then
the best we can do is determine the distribution of U , and similarly values
α(θ) in (8.19), for specified θ-values. In practice, the procedure that is usually
followed is to use the value θ = θ̂(x) for calibration.

We can carry out the calibration procedure as follows:

(i) Specify the approximate pivotal quantity U in (8.20), based on the esti-
mated θ̂(X) and the model F (Y |X; θ).

(ii) Simulate B realizations (Y ∗,X∗) of (Y,X) using the value θ = θ̂(x) from
the observed data; this gives θ̂(X∗) and realizations U∗

1 , . . . , U∗
B of U .

(iii) Use the empirical distribution function based on U∗
1 , . . . , U∗

B as an esti-
mate G̃(u) of the distribution function G(u; θ).

The distribution G̃(u) can now be used to give prediction intervals or proba-
bilities for Y , given X = x, as follows: associate with the prediction interval
(−∞, y) for Y the probability G̃[F (y|x; θ̂(x)]. This is equivalent to defining a
predictive distribution function for Y , given X = x, as

F̃ (y|x) = G̃[F (y|x; θ̂(x))] , (8.21)

with a corresponding predictive density function f̃(y|x) = dF̃ (y|x)/dy. The
distribution (8.21) is actually a confidence distribution; it has the mathemati-
cal properties of a probability distribution but is not the exact distribution of
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any random variable. However, it produces prediction intervals (L(X), R(X))
that are calibrated in the sense that we approximately know α(θ) in (8.19). In
addition, as the amount of information about θ in X becomes arbitrarily large,
both the predictive distribution (8.21) and the plug-in predictive distribution
F (y|x; θ̂(X)) converge in probability to the true distribution F (y|x; θ). How-
ever, the distribution (8.21) is preferred for smaller amounts of data because
it accounts for uncertainty due to the estimation of θ, whereas the plug-in
distribution does not.

Further discussion and properties of (8.21) are given by Lawless and
Fredette (2005), but it may be used quite generally for prediction; exam-
ples are provided in the next section. When the amount of data in X is large,
there is little difference between (8.21) and the plug-in distribution, so the
calibration process can be skipped and the simple plug-in distribution used.
Some calibration is often advisable, however, because it may not be intuitively
clear how much the uncertainty in a vector of parameters affects prediction.

When the variable Y to be predicted is a count of events, the proce-
dure above is only approximate, because F (y|x; θ) is not continuous in y, and
F (Y |X; θ) is not uniform on (0,1). If Y is likely to be large, then the process
above is accurate enough used as is. In settings where Y is likely to be small,
there is in general no completely satisfactory approach when there is sub-
stantial uncertainty about θ. The exception is for the very special case of a
homogeneous Poisson process, where exact discrete coverage probabilities are
available; see Problem 8.9.

Finally, we reiterate that the procedures here assume that the true dis-
tribution of Y given X is a member of a family F (y|x; θ). Models should of
course be checked for adequacy, but when a prediction involves substantial
extrapolation beyond the domain of the data X, this cannot be done satis-
factorily. In that case it is prudent to consider predictions based on a range
of plausible models.

8.3.3 Some Examples of Prediction

We consider several examples, all of which involve extended Poisson models.

Example 8.3: Prediction in homogeneous Poisson processes

To illustrate the calculation of prediction intervals and probabilities, we con-
sider the very special case of homogeneous Poisson processes. Subsequent
examples consider more complex models.

Suppose first that a single process {N(t), 0 ≤ t} is under study and that
it is assumed to be a Poisson process with constant rate function, ρ(t) = λ.
Let us consider the prediction of two random variables, based on data {n ≥
0 events, at times t1 < · · · < tn in [0, τ ]}: (i) Y = time from τ to the next
event and (ii) Y = N(τ, τ + s), the number of events over the time period
(τ, τ + s].
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For Y = time to the next event following τ , the distribution function is

F (y;λ) = Pr(Y ≤ y;λ) = 1 − exp(−λy) y > 0 .

The plug-in approach to prediction simply uses the predictive distribution
F (y; λ̂), where λ̂ is the maximum likelihood estimate of λ based on the data
H(τ). We require here that n ≥ 1, in which case we find from Problem 2.4
or a special case of (3.4) that λ̂ = n/τ . To account for the estimation of
λ, we may obtain a calibrated predictive distribution, as described in the
preceding section. To do this, we define U = 1 − exp(−λ̂Y ) as in (8.20),
with G(u;λ) = Pr(U ≤ u;λ). If G̃(u) accurately estimates G(u;λ), then
the calibrated predictive distribution is given by (8.21). In general, we can
obtain an estimate G̃(u) as described in Section 8.3.2, but in the case where
observation of N(t) was prearranged to continue to tn (so that τ = tn), the
distribution of U can be shown to have the closed form

G̃(u) = 1 −
{

1 − 1
n

log(1 − u)
}−n

0 < u < 1 . (8.22)

The derivation is sketched in Problem 8.8. Thus, U is in this case a pivotal
quantity and prediction intervals are calibrated exactly. That is, the predictive
distribution (8.21) in this case becomes

F̃p(y) = 1 −
(

1 +
λ̂y

n

)−n

, (8.23)

and prediction intervals (L(λ̂), R(λ̂)) obtained from (8.23) have exactly the
nominal coverage probability.

As n → ∞, the predictive distribution (8.23) converges to the plug-in
distribution F (y; λ̂) = 1 − exp(−λ̂y), reflecting the fact that sampling vari-
ation in λ̂ goes to zero as n → ∞, and both F (y; λ̂) and (8.23) converge in
probability to the true distribution F (y;λ) for Y . When n is small, (8.23)
is preferred over the plug-in distribution. For example, when n = 10, (8.23)
gives F̃p(5.85λ̂−1) = 0.99, so that a one-sided 0.99 prediction interval for
Y is (0, 5.85λ̂−1). The plug-in distribution F (y; λ̂), on the other hand, gives
F (4.61λ̂−1; λ̂) = 0.99, and the 0.99 prediction interval is (0, 4.61λ̂−1). The
difference between this and the well-calibrated interval is quite substantial,
and the actual coverage of the prediction intervals (0 ≤ Y ≤ 4.61λ̂−1) is less
than 0.99. If n = 30, the 0.99 prediction limit obtained from (8.23) is 4.98,
in closer agreement with the plug-in limit. Of course, these limits rely on the
assumption that a homogeneous Poisson process is the true process.

Turning to the prediction of Y = N(τ, τ + s), we know that N(τ, τ + s)
has a Poisson distribution with mean λs, so that

F (y;λ) =
y∑

r=0

e−λs (λs)r

r!
y = 0, 1, 2, . . . .
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In this case F (Y ;λ) is not uniform on (0,1) because Y is discrete, and plug-in
prediction limits based on F (y; λ̂) take on values in a discrete set. We can
produce “calibrated” prediction intervals through the function U = F (Y ; λ̂),
as described in Section 8.3.2. This is done by generating new event data X∗ =
H∗(τ+) giving a new estimate λ̂∗, and independently, a value Y ∗ = N(τ, τ+s);
then U∗ = F (Y ∗; λ̂∗). The data X∗ and Y ∗ are generated using a Poisson
process with rate λ̂. By repeating this B times, we can estimate G(u;λ) and a
predictive distribution (8.21) for Y ; Lawless and Fredette (2005, p. 537–538)
provide an illustration.

Similar methods apply when m identical Poisson processes are observed,
and we wish to make predictions either for a single process or for an aggregate
process obtained by combining individual processes. Once the total number
of events observed reaches 30 or 40, there is little gained by using calibrated
intervals rather than plug-in intervals; differences between calibrated and plug-
in limits or probabilities are ultimately dominated by the effects of model
uncertainty.

Example 8.4: Prediction for Poisson processes with random effects

A more interesting problem arises in settings where individual processes are
Poisson, but there is heterogeneity across processes. Let us return to the
multiplicative random effects model introduced in Section 2.2.3, where the
ith process {Ni(t), 0 ≤ t} is conditionally Poisson with rate function uiρ(t),
given a random variable ui which has a gamma density g(u) given by (2.28),
with mean 1 and variance φ. Suppose that data Hi(τi) = {Ni(t), 0 ≤ t < τi}
are available for independent processes i = 1, . . . , m and that we wish to
predict some future number of events Nj(τj , τj + s) for the jth process.

If φ and ρ(t) are known then we simply use the conditional distribution of
Nj(τj , τj + s), given Hj(τj), for prediction. This can be obtained as

Pr{Nj(τj , τj +s)= s|Hj(τj)}=

∫∞
0

Pr{Nj(τj , τj + s)= r,Hj(τj)|uj}g(uj)duj∫∞
0

Pr{Hj(τj)|uj}g(uj)duj

,

and calculations similar to those in Problem 2.6 give

Pr{Nj(τj , τj + s) = r|Hj(τj)} (8.24)

=
Γ (r + φ−1 + n)
Γ (φ−1 + n)r!

µ(τj , τj + s)r(φ−1 + µ(0, τj))φ−1+n

(φ−1 + µ(0, τj) + µ(τj , τj + s))r+φ−1+n
,

where Nj(τj) = n and µ(v, w) =
∫ w

v
ρ(s)ds. This is a negative binomial dis-

tribution.
Typically φ and ρ(t) are unknown and are estimated from the data

Hi(τi), i = 1, . . . , m, as described in Section 3.5.2. In this case insertion of φ̂
and ρ̂(t) for φ and ρ(t) in (8.24) provides plug-in predictive probabilities or
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prediction intervals. Calibrated prediction is also possible, following the pre-
scription given in Section 8.3.2. In Example 8.6, we describe the calculation
of calibrated intervals for an application involving car warranty claims.

We remark that prediction within random effects models such as the one
here is sometimes called empirical Bayes prediction. Our approach is non-
Bayesian, however, and we simply refer to the problem as one involving ran-
dom effects.

Example 8.5: Prediction of fault detection in software testing

In Section 3.8.3 we fitted a model to data on the testing and debugging of
a large software system. The time variable t was the cumulative number of
person-days of testing, and data on the numbers of faults detected up to
various times tj (j = 1, . . . , k) were recorded. The number of lines of code
modification Cj over the interval (tj−1, tj) was also recorded. Because the
introduction of new code may introduce new faults, the Cj were considered
as covariates in the model. Based on a fit of the model (3.57), the number of
software faults Nk+1 that would be detected if testing were continued indefi-
nitely beyond the final testing time tk = 1336.7 (person-days) was predicted.
This was done using a plug-in method: conditional on the testing and code
modification results up to tk, Nk+1 has a Poisson distribution with mean µk+1

given by (3.62). The plug-in method simply uses (3.62) with maximum likeli-
hood estimates inserted for the three parameters α, β, and θ, and gave a .95
prediction interval for Nk+1 of (170, 225).

A calibrated prediction interval can also be obtained. We ignore the dis-
creteness in Nk+1; this should have a small effect because the likely values for
Nk+1 are large. The steps in obtaining the calibrated interval are as follows.

(i) Using the values α = α̂, β = β̂, θ = θ̂ in the model (3.57), use (3.59) and
(3.60) to give pseudo-data N∗

j (j = 1, . . . , k); the Cj are assumed to be
the same as in the observed data giving α̂, β̂, and θ̂.

(ii) From the N∗
j , obtain new estimates α̂∗, β̂∗, θ̂∗ by maximizing the likeli-

hood (3.61). From these obtain µ̂∗
k+1 using (3.62).

(iii) Generate y∗ ∼ Poisson (µ̂k+1), where µ̂k+1 is given by (3.62) with α =
α̂, β = β̂, θ = θ̂.

(iv) Compute U∗ =
∑y∗

y=0(µ̂
∗
k+1)

y exp(−µ̂∗
k+1)/y!.

(v) Repeat steps (i)–(iv) B times, to get values U∗
1 , . . . , U∗

B .
(vi) To get an upper α prediction limit yu, take the [αB] quantile U∗

[αB] of
U∗

1 , . . . , U∗
B . Then, yu is chosen to satisfy

yu∑

y=0

µ̂y
k+1 exp(−µ̂k+1)

y!
= U∗

[αB] .

A two-sided .95 prediction interval can be obtained by using (vi) with
α = .025 and α = .975, respectively. In the present example, the amount of
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data on which α̂, β̂, and θ̂ are based is quite large, and it is not expected
that calibration will give an interval much different from the plug-in interval
(170, 225). A more serious source of additional uncertainty in the prediction
interval is extrapolation of the model (3.57) much beyond tk. Although (3.57)
fits the data well up to time tk, extrapolation is done on faith, and cannot be
checked.

Example 8.6: Prediction of warranty claims

Data on automobile warranty claims were discussed in Sections 1.2.4 and 3.8.4,
where a group of over 38,000 vehicles was considered. A common problem is
to predict the eventual number of claims across a population of cars, based on
warranty data that has accumulated up to some calendar time. The problem
can be described as follows. Suppose that the warranty coverage lasts for a
period of T days after a car is sold, and let Ni(t) be the number of warranty
claims up to t days after sale, for vehicles i = 1, . . . ,M . The objective is to
predict the total number of claims, W =

∑
Ni(T ). Cars are sold at different

times, and so we consider a calendar time point at which m ≤ M cars have
been sold. Without loss of generality we denote the cars sold as i = 1, . . . , m,
and we let τi denote min(T , number of days since car i was sold). Because the
manufacturer knows Ni(τi), i = 1, . . . ,m, in order to predict W we actually
need only to predict

S =
M∑

i=1

N(τi, T ) , (8.25)

given the claim histories Hi(τ+
i ), i = 1, . . . ,m. Note that some cars may have

τi = T , so that N(τi, T ) = 0 in (8.23), and that if car i is not yet sold, then
τi = 0 and there is no claims history.

Fredette and Lawless (2007) address the prediction problem by assuming
that claims for car i are conditionally Poisson with a rate function uiρ(t; θ),
given a random variable ui that is gamma-distributed, as in Example 8.2.
The terms N(τi, T ) in (8.25) with 0 < τi < T are, conditional on Hi(τi),
negative binomial random variables with probability functions of the form
(8.24). Usually M is large, and Fredette and Lawless (2007) consider efficient
ways to compute plug-in or calibrated prediction intervals for S by simulation.

Figure 8.2 shows 0.95 prediction intervals for 15,775 cars that are a subset
of those considered in Section 3.8.4. Predictions of W are shown at calendar
times that are 100, 150, 200, . . . , 500 days after the first vehicle was sold. These
are shown in Figure 8.2 against the accumulating number of warranty claims
for the population of cars, culminating in a total of W = 2620 claims by
day 571, at which time all 15,775 cars had reached the end of their one-year
warranties. Both plug-in and calibrated intervals are shown; the models used
have five parameters and there is not a lot of information about some aspects
of the parameter vector until about 250–300 days of data have accumulated,
so calibration is desirable. We see from Figure 8.2 that early predictions up to
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Fig. 8.2. 95% prediction intervals for numbers of claims based on car warranty
data; solid lines give plug-in and dotted lines give calibrated intervals.

about 250 days, which are based on data for which τi is much less than 365 days
for most cars, turn out to be too low. A considerable degree of extrapolation
is needed for the rate function ρ(t; θ) for these early predictions, which are all
made at time points where under 40% of the eventual claims have occurred.
This illustrates the inherent difficulty in predicting events very far into the
future, but it is noteworthy that once about 40% of the claims have occurred,
predictions of W are quite accurate. The widths of the prediction intervals
necessarily decrease to zero as time goes by, because the portion S of W
that has to be predicted approaches zero as all the τi approach T . Fredette
and Lawless (2007) discuss ways to monitor the accumulating claims data
and to check models used for prediction, and are able to improve the earlier
predictions slightly.

8.4 Recurrent Events in Randomized Trials

8.4.1 Specification and Testing of Treatment Effects

In many areas of health research the aim is to assess whether a new treat-
ment or intervention has an effect on the occurrence of undesirable clinical
events. The preferred design for making inferences about causal effects of this
sort is the randomized clinical trial. Three widely discussed consequences of
randomization are i) the ability to carry out tests based on the randomiza-
tion distribution, ii) the creation of balance across treatment groups in the
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distribution of baseline covariates, and iii) mitigation of the effect of confound-
ing factors in marginal comparisons between treatment groups. Consequence
i) is useful but not essential given the many robust procedures available for
analyses, but ii) and iii), which are closely related, are of central importance
because they support causal inferences about treatment effects.

The specification and testing of treatment effects in randomized studies
have been discussed and illustrated in several chapters. Here we recapitulate
some of the important points and provide a more extensive discussion.

As indicated in Section 1.3.5, it is particularly important in clinical trials
that models be formulated so that treatment effects are easily interpreted
and understood. This ensures that the implications of using the experimental
treatment instead of the control treatment will be clear, and it facilitates
comparisons across similar studies. In settings involving very few events per
subject it may be reasonable to focus simply on time to the first event. When
events occur more frequently, however, the preferred approach is to express
treatment effects in terms of marginal features of the full event processes, such
as rates of events or expected numbers of events.

Methods based on rate and mean functions, discussed extensively in Chap-
ter 3, generally offer the simplest specification of treatment effects for recur-
rent events. The mixed Poisson model is a natural framework for rate or mean
function analyses and we consider it here. For simplicity let xi be a binary
treatment indicator, with xi = 1 denoting an experimental treatment and
xi = 0 a control treatment for the ith subject. Let ui denote a subject-specific
random effect which represents heterogeneity across subjects; we restrict ui

to have a finite mean, and without loss of generality assume E(ui) = 1. Mul-
tiplicative models (3.28), with

E {dNi(t)|ui, xi} = uiρ0(t) exp(βxi)dt ,

express treatment effects as relative rates exp(β) of events for experimental
versus control subjects. This formulation has a number of convenient features:

i. Relative rates are easily understood, and their interpretation does not de-
pend on the Poisson assumption, or any specific type of event process.

ii. The treatment effect also applies to expected numbers of events, because

E {Ni(t)|ui, xi} = uiµ0(t) exp(βxi) .

iii. Subject-specific and population-average relative rates are the same. That
is,

E {dNi(t)|xi} = ρ0(t) exp(βxi)dt ,

so exp(β) represents both subject-specific and population-average effects
of treatment.

iv. Simple robust methods of estimating β or testing that β = 0 are available
(see Section 3.6 and 3.7.5).
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v. Randomization of treatment implies that ui is independent of xi, but the
model does assume that the rate function has a multiplicative form. This
can readily be checked (see Section 3.7.2).

vi. The multiplicative model is easily extended to allow for a time-varying
treatment effect through the introduction of interaction terms involv-
ing treatment and specified functions of time, or simply by replacing
ρ0(t) exp(βx) with ρ0x(t) in the specifications above. The treatment ef-
fect, although time-varying, is still easily interpreted as a ratio of event
rate functions.

The key point in the preceding discussion is the specification of treatment
effects in terms of rate functions. Additive models, discussed briefly in Section
3.4.4, can similarly provide robust and easily interpreted effects. We also note
that event-dependent dropouts or event-dependent terminating events, which
arise in some clinical studies, make interpretation of treatment effects more
complex but that rate and mean function specifications remain convenient, as
discussed in Section 6.6 and Section 7.2.

Although rate and mean functions offer significant advantages for the spec-
ification and testing of treatment effects in many settings, there are neverthe-
less situations where analyses based on gap times seem most natural. These
include processes where a physical renewal occurs after the occurrence of an
event, or where an event such as an infection or hospitalization triggers a
temporary period of treatment during which a subject is not at risk for a
new event. Examples of such processes in clinical trials have been discussed
in Sections 4.3.2, 4.4.3, 5.5.1, and 6.7.2. As discussed in Section 4.2, it is
important to allow for heterogeneity of subjects or association between their
gap times. Cox proportional hazards models conditional on random effects are
readily handled as in Section 4.2, and are attractive in being semiparametric.
However, unlike the multiplicative rate function models, the subject-specific
and population-average effects differ, and the population-average effects are
not in general of proportional hazards form. Accelerated failure time or log-
location-scale models, considered in Sections 4.2.2 and 4.2.3, do give the same
subject-specific and population-average effects, but rely slightly more on a
specific joint gap time distribution. Semiparametric multivariate accelerated
failure time methods are more difficult to apply. It is easy to allow changes in
successive marginal gap time distributions, but harder to allow for continuous
time-on-study effects than in rate-based models. Event-dependent terminating
events or loss to followup are also harder to accommodate.

It is also important to note that randomization at study entry is not suffi-
cient to facilitate causal inferences about treatment effects on the second and
subsequent gaps, when individuals may be differentially selected for inclusion
in analyses of second and subsequent gap times. That is, the covariate distri-
butions will be similar between groups for the first gap analysis due to ran-
domization, but if not all subjects experience a first event this will not be the



314 8 Other Topics

case for second and subsequent gaps. Unless the gap time models capture the
effects of all covariates, estimated treatment effects will be difficult to inter-
pret. It has therefore been suggested in some studies where gap time analyses
are scientifically most relevant, that patients be rerandomized to treatment at
the occurrence of each event. This provides a basis for valid tests of treatment
effects for second and subsequent gaps, but it remains difficult to characterize
clearly the target population necessary to interpret findings.

In some settings, the effect of treatment may change with each passing
event. This may be due to the underlying nature of the process, or it may
occur if physicians treating patients intervene upon the occurrence of an event.
Intensity-based models, which condition at any given time on previous event
history, may be useful to gain insight into process dynamics, but they are
much less suitable for the primary analysis of treatment effects because the
previous event history is potentially responsive to treatment (Yusuf et al.,
1991). Treatment effects expressed in such models are difficult to interpret
and heavily dependent on model assumptions.

There may not be a single superior way to express a treatment effect.
The key requirements are that specification and analysis of an effect be scien-
tifically relevant and statistically sound. It is often found that quite different
models provide adequate descriptions of the data, especially when the number
of events per subject is small. Treatment effects, and their estimates depend,
however, on the model specified. There has often been confusion about this
point in the literature. A few authors have considered the effects of model
misspecification on certain definitions of effects (e.g. Box-Steffensmeier and
De Boef, 2006; Boher and Cook, 2006; Metcalfe and Thompson, 2006).

Often we wish initially to test a null hypothesis of no treatment effect,
which means the problem is one of testing that two recurrent event processes
are the same. Tests based on different models can be considered and their effi-
ciency and robustness properties assessed. Even though estimated treatment
effects under alternative models may differ substantially, it is often found that
the evidence against a null hypothesis of no effect is similar across models
which fit the data well. Robust tests based on rate function models discussed
in Section 3.7.5 perform well under a variety of scenarios (e.g. Cook et al.,
1996; Boher and Cook, 2006) and we consider such models as a basis for
sample size selection in the following section. Robust tests based on marginal
survival models for the times T1, T2, . . . of successive events (Wei et al., 1989;
Section 3.6.5) also give valid tests of the null hypothesis of no treatment dif-
ferences for a wide class of processes. It is important, however, for tests to be
based on plausible underlying models for the event process and in the recur-
rent event setting this is not the case for these methods. In this framework,
individuals are considered at risk for their kth event from the start of followup
(i.e. even before their (k−1)st event). This counterintuitive risk set definition
leads to uninterpretable regression coefficients in the recurrent event setting
(Boher and Cook, 2006), which makes it difficult to quantify the impact of
treatment.
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8.4.2 Trial Design for Mixed Poisson Processes

Consider a clinical trial in which m individuals are randomly assigned with
probability 0.5 to either a group receiving an experimental treatment or a
control group. If individual i is in the treatment group xi = 1, and xi = 0
otherwise. Each individual is at risk of a recurrent event, and {Ni(t), 0 ≤ t}
denotes the counting process of events for individual i. Individuals are to be
followed over the interval [0, τ ], but some may withdraw from the study early.
Let Ci denote the withdrawal time for individual i, so that τi = min(Ci, τ)
is their right censoring time. Let Ni(τi) = ni represent the total number of
events observed for individual i, and ti1, . . . tini

the respective event times over
[0, τi].

Given ui, assume {Ni(t), 0 ≤ t} is a Poisson process with rate function
uiρ0(s) exp(β1xi), where ρ0(s) is a baseline rate function, β1 is the log rela-
tive rate reflecting the treatment effect, and ui is a subject-specific effect. As
in Section 3.5 we assume the ui are independent and identically distributed
gamma random variables with E(ui) = 1 and var(ui) = φ. In many clinical
studies the event rate is approximately constant and we consider this impor-
tant setting here. Under this time-homogeneous model where ρ0(s) = ρ0,
the log-likelihood from the resulting marginal negative binomial model is
�(θ) =

∑m
i=1 �i(θ), where �i(θ) is

ni−1∑

k=0

log(1 + kφ) + ni(β0 + β1xi) − (φ−1 + ni) log(1 + φ exp(β0 + β1xi)τi) ,

with β0 = log ρ0, β = (β0, β1)′, and θ = (β′, φ)′. Notice that this log-likelihood
does not depend on the actual event times under the time-homogeneous model,
but only the event counts, the duration of followup, and the treatment indi-
cator. The score vector is denoted Uθ(θ) = ∂�(θ)/∂θ = (U ′

β(θ), Uφ(θ))′, where
Uβ(θ) = ∂�(θ)/∂β and Uφ(θ) = ∂�(θ)/∂φ, and we let I(θ) = −∂2�(θ)/∂θ∂θ′

and I(θ) = E{I(θ)} denote the observed and expected information matrices,
respectively. From Section 3.5.2, one can show that β is orthogonal to φ (i.e.
Iβφ(θ) = 0) and hence an asymptotic covariance matrix for β̂ is I−1

ββ (θ), where
Iββ(θ) is the 2 × 2 submatrix of I(θ) conformable with β. This gives

asvar{
√

m(β̂0 − β0)} =
{

exp(β0)E(τ |X = 0)
1 + φ exp(β0)E(τ |X = 0)

}−1

, (8.26)

asvar{
√

m(β̂1 − β1)} =
1∑

X=0

{
exp(β0 + β1X)E(τ |X)

1 + φ exp(β0 + β1X)E(τ |X)

}−1

, (8.27)

where we view τ1, . . . , τm as i.i.d. random variables. When planning studies
we typically assume independent nondifferential (i.e. independent of treat-
ment) censoring and adopt convenient distributions for C (e.g. exponential),
to facilitate calculation of the expectations in (8.26) and (8.27).
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If α1 and α2 denote the desired type I and type II error rates of a two-sided
test of H0 : β1 = β10, where the alternative value is β1 = β1A, then one needs
to find the minimum sample size m that satisfies

m >
[asvar0(

√
m(β̂1 − β10))Zα1/2 + asvarA(

√
m(β̂1 − β1A))Zα2 ]

2

(β10 − β1A)2
, (8.28)

where asvar0(
√

m(β̂1 − β10)) and asvarA(
√

m(β̂1 − β1A)) denote the variance
given by (8.27) under the null and alternative hypotheses, respectively, and
Zp represents the p−quantile for a standard normal distribution. Values for
β10 and β1A are needed, as well as provisional values for the other parameters
in the model and the censoring distribution. Often β10 = 0 so that the null
hypothesis is that the events occur at the same rate in the treatment and
control groups.

If the model is appropriate and the parameter values specified in (8.28)
are close to the true values, then the objective of power 1 − α2 at β1 = β1A

will be met. Reports on previous studies, however, may not provide adequate
information to approximate φ well when mixed Poisson models are appropri-
ate. If φ is larger than the value specified in (8.28), then the actual power
will be less than the desired level. When there is considerable uncertainty
in the value of φ or other parameters, it is advisable to specify a range of
values and then select the largest sample size resulting from the parameter
value configurations. Alternatively, one can consider adaptive designs which
carry out sample size re-estimation periodically throughout the course of the
study. Much work has been done for binary and continuous reponses, but this
warrants study for recurrent event responses.

Finally, although sample size calculations are often based on Wald-type
test statistics, as here, actual analyses may be based on other approaches such
as the robust pseudo-score tests of Section 3.7.5. The frequency properties
of different tests are generally comparable for large samples, so sample size
choices based on (8.28) can still be employed.

8.4.3 Use of Baseline Count Data

Clinical trials often incorporate a period of observation in which subjects are
monitored prior to randomization to treatment, in order to collect informa-
tion on their baseline level of disease activity. This gives a baseline response
which in the context of recurrent event data may represent the number of
times the clinical event occurred over a specified period preceding random-
ization. Examples include premature ventricular contractions in cardiology
trials, epileptic seizures in epilepsy trials, and respiratory studies in which the
baseline counts represent the number of asthma attacks in the preceding year.
In some cases (see Section 7.3) subject screening and selection may be related
to a baseline response.
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Suppose the study consists of m subjects. Let τ1 denote the common du-
ration of observation prior to randomization and Ni1 the baseline counts for
subjects i = 1, . . . , m. Suppose τ2 is the common duration of observation after
randomization and Ni2 the corresponding count. As in the preceding section,
we focus on settings where mixed Poisson processes are applicable, and where
event rate functions are constant. To allow heterogeneity of subjects and as-
sociation between Ni1 and Ni2 we thus suppose that given a subject-specific
random effect ui, Ni1 and Ni2 are independent Poisson variables with

Pr(Ni1 = ni1|ui; ρ1) =
(uiρ1τ1)ni1 exp(−uiρ1τ1)

ni1!
, (8.29)

and

Pr(Ni2 = ni2|ui; ρ2, β) =
(uiρ2 exp(βxi)τ2)ni2 exp(−uiρ2e

βxiτ2)
ni2!

, (8.30)

where ρ1 is the rate of events before randomization, ρ2 is the rate of events
among control patients after randomization, and ρ2 exp(β) is the rate of events
in the treated group after randomization. Without loss of generality we take
τ1 = τ2, µ1 = ρ1τ , µ2 = ρ2τ , and µi2 = µ2 exp(xiβ), i = 1, . . . ,m. We
further assume that the ui are independently gamma distributed with mean
1 and variance φ. Marginalizing over the random effect then gives a negative
binomial model for the count after randomization,

Pr(Ni2 = ni2; ρ2, β, φ) =
Γ (φ−1 + ni2)
Γ (φ−1)ni2!

×
(

1
1 + µi2φ

)φ−1 (
µi2φ

1 + µi2φ

)ni2

, (8.31)

where ni2 = 0, 1, . . .. A negative trinomial model is obtained for (Ni1, Ni2),
with

Pr(Ni1 = ni1, Ni2 = ni2; θ) =
Γ (φ−1 + ni1 + ni2)

Γ (φ−1)ni1!ni2!

× µni1
1 µni2

i2 φni1+ni2

(1 + (µ1 + µi2)φ)φ−1+ni1+ni2
, (8.32)

where θ = (ρ1, ρ2, β, φ)′. From (8.31) and (8.32) we obtain

Pr(Ni2 = ni2|ni1; θ) =
Γ (φ−1 + ni1 + ni2)
Γ (φ−1 + ni1)ni2!

× (1 + µ1φ)φ−1+ni1(µi2φ)ni2

(1 + (µ1 + µi2)φ)φ−1+ni1+ni2
, (8.33)

and it can be shown that a likelihood based on (8.33) contains the same
information on β as a likelihood based on (8.32).
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Another distribution of interest is obtained by conditioning on ni1 + ni2

to eliminate ui, i = 1, . . . ,m. Straightforward calculations give

Pr(ni1, ni2|ni1 + ni2;α, β) =
(

ni1 + ni2

ni2

)

(1 − πi)ni1πni2
i , (8.34)

where πi = exp(α + βxi)/(1 + exp(α + βxi)) and α = log(µ2/µ1). This sug-
gests using a logistic regression analysis based on the binomial distributions
(8.34). The fact that ui is eliminated means that there is no need to make
distributional assumptions regarding the random effect.

We can compare the use of different distributions above for inferences
about β. Note that (8.31) is indexed by ρ2, β, and φ, (8.32) by ρ1, ρ2, β, and
φ, and (8.34) by α and β. We refer to these respective models as marginal,
joint, and conditional models, and we let β̂M , β̂J , and β̂C denote the estima-
tors obtained by maximizing the respective likelihood functions. The expected
information matrices arising from these likelihoods lead to the following ex-
pressions for asymptotic variances:

asvar(
√

m(β̂M − β)) =
{

1
ρ2

+
1

ρ2 exp(β)
+ 2φ

}

(8.35)

asvar(
√

m(β̂J − β)) =
{

1
ρ2

+
1

ρ2 exp(β)
+

2φ

1 + φρ1

}

(8.36)

asvar(
√

m(β̂C − β)) =
{

1
ρ2

+
1

ρ2 exp(β)
+

2
ρ1

}

. (8.37)

Based on these asymptotic variances, the relative efficiency of the marginal
to joint analysis is

REM :J =
asvar(

√
m(β̂J − β))

asvar(
√

m(β̂M − β))

=
(1 + exp(β)) + 2φρ2 exp(β)/(1 + φρ1)

1 + exp(β) + 2φρ2 exp(β)
, (8.38)

and for the conditional to joint analysis is

REC:J =
asvar(

√
m(β̂J − β))

asvar(
√

m(β̂C − β))

=
ρ1(1 + exp(β))(1 + φρ1) + 2φρ1ρ2 exp(β)

ρ1(1 + exp(β))(1 + φρ1) + 2φρ1ρ2 exp(β) + 2ρ2 exp(β)
(8.39)

which are both always ≤ 1. Thus a joint analysis of the baseline and pos-
trandomization counts is asymptotically more efficient than either a strictly
marginal analysis based only on the postrandomization count, or a conditional
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analysis based on (8.34). If there is evidence to suggest the joint model is cor-
rect it is therefore recommended for use on the grounds of efficiency. If more
robust methods are desired, then one can entertain either the robust meth-
ods of Section 3.6 for inferences, or the conditional analysis of (8.34), which
does not require a random effect distribution, but does rely on the Poisson
assumption.

To provide further guidance between these two options, note that

REM :C =
asvar(

√
m(β̂C − β))

asvar(
√

m(β̂M − β))
=

ρ1(1 + exp(β)) + 2ρ2 exp(β)
ρ1(1 + exp(β) + 2φρ2 exp(β))

(8.40)

which reveals that whenever φρ > 1 the conditional analysis yields a more
efficient estimator of β than the marginal analysis, within the class of negative
binomial models. Thus in settings with considerable extra-Poisson variation
(i.e. φ > ρ−1) it may be preferable to condition on the total event count,
eliminate the random effect, and carry out analyses based on a binomial model.

For illustration, suppose we set exp(β) = 0.75 to represent a moder-
ate treatment effect, τ = 1, and let µ1 + µ2 = 4 represent a moderate
mean for the total number of events among control patients over the base-
line and followup observation periods. Figure 8.3 displays a plot of the 60%,
80%, 100%, and 120% relative efficiency contours for β as a function of
exp(α)/(1 + exp(α)) = µ2/(µ1 + µ2) and φ, for this scenario. The points
for which the asymptotic variance under the conditional model is 20% lower
than the asymptotic variance under the marginal model are denoted by the
80% relative efficiency contour. The asymptotic variance under the conditional
model is 20% greater than the marginal model for points on the 120% contour.
From Figure 8.3 it is clear that there is a large region in the parameter space in
which the conditional analysis is more efficient than the marginal analysis and
this region represents scenarios which one might encounter in many biomed-
ical settings. As the baseline mean becomes small (i.e. ρ1 → 0) the marginal
analysis leads to more efficient estimates than the conditional analysis, even
when φ is large. Moreover, with very small φ, the marginal analysis is gen-
erally preferred. When the mean number of events in the followup period is
comparable to or smaller than the mean number of events in the baseline pe-
riod (i.e. µ2/(µ1 + µ2) < 0.50), however, even when extra-Poisson variation is
moderate (i.e. φ < 1.0) there can be as much as a 20% lower asymptotic vari-
ance under the conditional analysis. As one might expect, for any given α the
gains from the conditional analysis become more substantial as φ increases.

Note that although (8.34) was derived under the assumption of a mixed
Poisson model, estimating functions based on it are valid more generally. The
score equations for α and β from (8.34) are

Uα(θ) =
m∑

i=1

(ni2 − (ni1 + ni2)πi) (8.41)
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Fig. 8.3. Contour plots of the relative efficiency of conditional versus marginal
analyses under a mixed Poisson model (µ1 + µ2 = 4, exp(β) = 0.75).

Uβ(θ) =
m∑

i=1

(ni2 − (ni1 + ni2)πi)xi , (8.42)

and because E(Ni1|xi) = µ1 and E(Ni2|xi) = µ2 exp(βxi), we see that
E{Uα(θ)} = 0 and E{Uβ(θ)} = 0 as long as the mean specifications hold.
Thus (8.41) and (8.42) are unbiased and the estimate β̂ can be interpreted
beyond the mixed Poisson model. Estimates of α and β may be obtained
by using logistic regression software, but robust variance estimates should be
obtained as described in Appendix A.

Finally we remark that data during a baseline period are often retrospec-
tively determined in order to shorten the length of the study, but in such
settings the baseline data may be inaccurate, particularly if subjects are re-
cruited from diverse environments. It is best to prospectively observe patients
over a baseline period of observation that commences after a patient has first
been contacted. Then the baseline data are as reliable as the data recorded on
treatment, because the same event definitions and conventions for recording
data can be employed.

8.4.4 Interim Monitoring with Recurrent Events

Long-term clinical trials warrant careful monitoring to ensure patient accrual
is on schedule, compliance rates are acceptable, and there are no major con-
cerns regarding adverse effects. Periodic assessments of the treatment effect
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on the primary outcome are also often carried out and formal stopping rules
may be employed, based on interim results, to facilitate study termination
as soon as one treatment can be declared superior. The decision to stop or
continue a trial is typically influenced by whether the test statistics cross a
“stopping boundary” defined by critical values for the interim tests.

Group sequential methods are a class of procedures for repeated signif-
icance testing based on accumulating data. A key feature of these methods
is that an overall type I error is preserved by using suitable critical values
for the interim and final tests. Consider a study with G − 1 interim analyses
scheduled in addition to the final analysis. Let cg denote the critical value at
stage g so that if the test statistic exceeds cg, the study will be stopped and a
treatment difference declared; otherwise, the trial is continued. If the study is
not stopped before the final analysis, the null hypothesis is not rejected unless
the final test statistic exceeds cG. It is necessary to derive the critical values
c1, . . . , cG such that under the null hypothesis the probability of rejection over
the course of the study is equal to the nominal type I error rate.

Procedures due to Pocock (1977) and O’Brien and Fleming (1979) are
often used, but the flexible Lan and DeMets (1983) procedure is perhaps the
most widely adopted for event time data. Jennison and Turnbull (2000) give
comprehensive coverage of the issues and methods for designing and analyzing
group sequential trials. Here we briefly outline how interim monitoring can
be carried out for trials with recurrent event outcomes, based on the robust
two-sample test statistics of Section 3.7.5.

Figure 8.4 is a Lexis diagram in which the x−axis represents calendar
time; the left side of the axis represents the calendar time at the start of the
study and the right side represents the end of the study. There are ten lines
with slope one, with each line corresponding to one hypothetical individual
recruited to the study at the time of his x−intercept. The length of the projec-
tion of these lines onto the axes reflects his total time on study. The projection
of the dots (representing the occurrence of clinical events of interest) onto the
x−axis represents the calendar time of their occurrence, and the projection
onto the y−axis represents the time since study entry of their occurrence. For
the sake of simplicity we let v1, v2, and v3 denote three calendar times at
which analyses are to be carried out: v1 and v2 represent calendar times of
“interim” analyses and v3 the end of study. Slightly more general notation is
defined in what follows so that we can indicate the data and associated test
statistics available midway through the trial.

Consider a trial with two treatment groups as in Section 3.7.5, and let
{Nki(t), 0 ≤ t} denote the counting process for individual i in group k, where
E{Nki(t)} = µk(t), i = 1, 2, . . . ,mk; k = 1, 2. When data are to be analyzed
at multiple points in calendar time, it is convenient to let Yki(t; v) = 1 if
individual i in treatment group k is at risk of events at study time t and
calendar time v. Let τki(v) denote the length of followup for individual i in
group k at calendar time v. Note that Yki(t; v) could be zero because individual
i had not yet been recruited, or because t > τki(v). The test statistic (3.52)
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Fig. 8.4. Calendar time and study time for trial with recurrent events, variable
recruitment times, and interim monitoring at times v1 and v2.

computed at calendar time v is then written as

U(τ(v)) =

τ(v)∫

0

w(u; v) {dµ̂2(u; v) − dµ̂1(u; v)} ,

where

dµ̂k(u; v) =
∑mk

i=1 Yki(u; v)dNki(u)
∑mk

i=1 Yki(u; v)
,

w(u; v) = Y1·(u; v)Y2·(u; v)/Y··(u; v), and τ(v) = max(τki(v)), i = 1, 2, . . . ,mk;
k = 1, 2. The analogous expression for the variance estimate given in (3.55) is

v̂arR

{√
m

−1
U(τ(v))

}
=

1

m

2∑

k=1

mk∑

i=1

⎧
⎨

⎩

τ(v)∫

0

w(u; v)
Yki(u; v)

Yk·(u; v)
dM̂ki(u; v)

⎫
⎬

⎭

2

, (8.43)

where dM̂ki(u; v) = dNki(u)−dµ̂k(u; v) and m = m1+m2. A robust covariance
m−1covR {U(τ(v1)), U(τ(v2))} of these pseudo-score statistics at times v1 and
v2 is given by
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1
m

2∑

k=1

mk∑

i=1

τ(v1)∫

0

τ(v2)∫

0

w(u1; v1)w(u2; v2)Yki(u1; v1)Yki(u2; v2)
Yk·(u1; v1)Yk·(u2; v2)

× cov {dNki(u1), dNki(u2)}

with estimate m−1ĉovR{U(τ(v1)), U(τ(v2))}

1
m

2∑

k=1

mk∑

i=1

τ(v1)∫

0

τ(v2)∫

0

w(u1; v1)w(u2; v2)Yki(u1; v1)Yki(u2; v2)
Yk·(u1; v1)Yk·(u2; v2)

(8.44)

× dM̂ki(u1; v1)dM̂ki(u2; v2) .

Alternative variance and covariance estimates are obtained by replacing
dµ̂k(u; v) in (8.43) and (8.44) with the pooled estimate under the null hy-
pothesis,

dµ̂(u; v) =
∑2

k=1

∑mk

i=1 Yki(u; v)dNki(u)
∑2

k=1

∑mk

i=1 Yki(u; v)
.

The standardized test statistic at a particular interim or final analysis is

Ū(τ(v)) =
√

m
−1

U(τ(v))/
√

v̂arR

{√
m

−1
U(τ(v))

}

and under the null hypothesis (Ū(τ(v1)), . . . , Ū(τ(vG)))′ is asymptotically
multivariate normal with zero mean, unit variance, and correlation matrix
obtained from (8.44).

Suppose the null and alternative hypotheses are H0 : µ1(t) = µ2(t) (0 ≤ t)
versus HA : µ1(t) �= µ2(t) (0 ≤ t), and the study is to have a type I error
rate of α. Interim monitoring is facilitated by specifying an “error spending
function” (Lan and DeMets, 1983). Error spending functions are monotoni-
cally increasing functions, which we denote {α∗(s), 0 ≤ s ≤ 1}, such that
α∗(0) = 0 and α∗(1) = α where α is a desired Type I error rate. Here s
indexes how far through the trial you are on some scale. When analyses are
planned based on equal increments of “information” (Lan and DeMets, 1989),
α∗(s) = α log(1− (e−1)s) and α∗(s) = 2{1−Φ(zα/2/s)} generate boundaries
similar to Pocock (1977) and the more conservative O’Brien–Fleming (1979)
boundaries, respectively. Error spending functions of the form α∗(s) = αsp

(0 < p < ∞) constitute a family with the index p reflecting the conservative
nature of the design for early stopping.

Let Ag = [Ū(τ(vg)) < cg] be the event that the test does not lead to
rejection of the null hypothesis at stage g, g = 1, 2, . . . , G. The critical values
cg are found recursively such that they satisfy

Pr

(
g−1⋂

�=1

A� ∩ Āg;H0

)

= α∗(sg) − α∗(sg−1) .
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This probability is evaluated based on the assumption that under H0, Ū has a
mean zero multivariate normal distribution with covariance estimate obtained
from (8.44). See Cook and Lawless (1996) for an illustration.

The critical value at the final analysis will be larger than the critical value
of a nonsequential design. As a result, there is typically a larger maximum
sample size required for trials incorporating interim monitoring than for tri-
als not incorporating stopping rules. For planning purposes, it is convenient
to adopt a particular parametric model which can lead to an expression for
the covariance matrix of the test statistics at interim analyses. Jiang (1999)
considers a mixed Poisson model as a useful framework for planning a study
and indicates how to derive stopping boundaries and how to carry out sample
size estimation. Jiang (1999) also considers monitoring based on repeated con-
fidence intervals for a regression coefficient in a multiplicative model, which
is particularly appealing for use in sequential noninferiority studies. Finally,
we note that given the many external factors that may influence the deci-
sion to terminate or continue a trial, these stopping rules are really guidelines
(DeMets, 1984) that are put in place to improve the efficiency of the study
and address ethical and financial concerns.

8.5 Clustered Data

Sometimes individuals experiencing recurrent events fall naturally into clus-
ters, and if they are heterogeneous, it is desirable to account for this in the
analysis. From another point of view, individuals in this setting may display
within-cluster association. It should perhaps be noted that the distinction be-
tween cluster sampling, where clusters are the primary sampling units and
individuals are sampled or observed within clusters, and stratified sampling,
where individuals are sampled from each of a specified set of strata, is some-
times blurred in the literature on event history analysis. For example, in mul-
ticenter studies the centers are sometimes treated as clusters, but they are
often more properly thought of as strata. In any case, methods for stratified
data have been considered in previous chapters, and here we discuss clustered
data, in which observed clusters may be considered a random sample from
some population of clusters. In some settings the clusters selected for obser-
vation may be the entire population of physical clusters, but it may still be
convenient to consider these as a sample from some conceptual population.
An example of clustering is where vehicles under warranty are selected from
a number of geographical regions, which are selected from a larger number of
regions; vehicles in the same region may display association in certain types
of warranty claims because of common environmental factors.

We assume that independent clusters i = 1, . . . , mc are selected and that
cluster i consists of mi individuals, each of whom may experience recurrent
events. There are two main approaches, one being to use cluster-specific ran-
dom effects and the other being to use marginal models while accounting
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for within-cluster association in event occurrences. We consider the random
effects approach first, and for illustration suppose that we are primarily inter-
ested in individual event rates and the possible effects of external covariates
xij(t) for individual j in cluster i.

A convenient approach is to define individual random effects

uij = viwij j = 1, . . . ,mi; i = 1, . . . ,mc ,

where the vi and wij are mutually independent random variables with vi ∼
Gv(·), wij ∼ Gw(·), and E(vi) = E(wij) = 1, var(vi) = φv and var(wij) = φw.
In addition, we assume that given the uij , the individual event processes are
independent Poisson processes with rate functions uijρij(t), where the ρij(t)
may include covariates. If individual j in cluster i has nij events at times tijk

(k = 1, . . . , nij) over [0, τij ], then the conditional likelihood contribution from
the individuals in cluster i, given the uij , is

mi∏

j=1

{
nij∏

k=1

viwijρij(tijk)

}

exp {−viwijµij(τij)} , (8.45)

where µij(t) =
∫ t

0
ρij(s)ds. The observable marginal likelihood is obtained

by integrating (8.45) with respect to vi and wi1, . . . , wimi
. A convenient as-

sumption is that vi and the wij have gamma distributions, in which case the
densities are of the form (2.28). We then find the likelihood contribution for
cluster i, Li, to be

∫ ∞

0

⎧
⎨

⎩

mi∏

j=1

nij∏

k=1

ρij(tijk)
Γ (nij + φ−1

w )φnij
w v

nij

i

Γ (φ−1
w )(1 + φwviµij)nij+φ−1

w

⎫
⎬

⎭
g(vi;φv)dvi , (8.46)

where g(vi;φv) is given by (2.28) with φ = φv. The integral in (8.46) can be
evaluated numerically and the log-likelihood, which is the sum of terms log Li

(i = 1, . . . ,mc) can be maximized using optimization software.
A second convenient approach is to extend the robust rate function meth-

ods of Section 3.6. For individual j in cluster i we consider the semiparametric
rate function model

E
{

dNij(t)|x(∞)
i

}
= ρ0(t)dt exp(x′

i(t)β) , (8.47)

where ρ0(t) is an unspecified baseline rate function. The Poisson process esti-
mating functions given by (3.21) and (3.23), and used for robust estimation in
Section 3.6.3, are readily adapted here. As previously, we require for this that
censoring times τij be completely independent of the event processes. Then,
β may be estimated by solving the equations

U(β) =
mc
∑

i=1

mi∑

j=1

∫ τ

0

Yij(s)Wij(s;β)dNij(s) = 0 , (8.48)
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where τ = max(τij), Yij(s) = I(τij ≥ s), and

Wij(s;β) = xij(s) −

mc∑

�=1

m�∑

r=1
Y�r(s)x�r(s) exp(x′

�r(s)β)

mc∑

�=1

m�∑

r=1
Y�r(s) exp(x′

�r(s)β)
. (8.49)

In addition, µ0(t) =
∫ t

0
ρ0(s)ds is estimated by

µ̂0(t) =
∫ t

0

dN̄··(s)
mc∑

i=1

mi∑

j=1

Yij(s) exp(x′
ij(s)β̂)

, (8.50)

where dN̄··(s) =
∑

i

∑
j Yij(s)dNij(s).

The estimates β̂ and µ̂0(t) are consistent provided censoring is independent
and the specification (8.47) is correct. When censoring is not independent,
inverse probability of censoring weights can be incorporated, as described in
Section 7.2. As in Section 3.6.3, robust variance estimates must be obtained
for β̂ and µ̂0(t); this has been done by Schaubel and Cai (2005a). The estimate
for β̂ is an extension of (3.38):

âsvar
{√

mc(β̂ − β)
}

= A−1(β̂)B̂A−1(β̂) , (8.51)

where A(β) is given by

mc
∑

i=1

mi∑

j=1

τ∫

0

Yij(s)

[
S(2)(β; s)
S(0)(β; s)

− S(1)(β; s)
S(0)(β; s)

{
S(1)(β; s)
S(0)(β; s)

}′]

dNij(s) , (8.52)

with S(r)(β; s) =
∑

i

∑
j Yij(s)xr

ij(s) exp(x′
ij(s)β) for r = 0, 1; S(2)(β; s) =∑

i

∑
j Yij(s)xij(s)x′

ij(s) exp(x′
ij(s)β); and

B̂ =
1

mc

mc
∑

i=1

B̂iB̂
′
i , (8.53)

where

B̂i =
mi∑

j=1

∫ τ

0

Yij(s)Wij(s; β̂) {dNij(s) − Yij(s)dµ̂ij(s)} ,

with dµ̂ij(s) = ρ̂ij(s)ds = dµ̂0(s) exp(x′
ij(s)β̂).

Schaubel and Cai (2005a) provide a robust variance estimate for µ̂0(t).
They also allow the baseline rate functions to vary across individuals in a
cluster, so that ρ0j(t) replaces ρ0(t) in (8.47). In fact, the function coxph in
S-PLUS and R gives the robust estimates and variance estimates above, pro-
vided we use the cluster(clusterid) option, where clusterid is a variable
indicating the cluster to which an individual belongs. It can also deal with
differing ρ0j(t) through the use of the strata option.
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8.6 Missing Covariate Values

Sometimes the values of certain covariates may be missing for some of the
individuals in a study. This may occur by happenstance, but there are also
situations where this occurs by design. For example, in two-phase studies (e.g.
Lawless et al., 1999) values for covariates that are expensive to measure are
often obtained for only a subset of individuals.

The analysis of data with missing values has a large literature and it is
not feasible to provide a detailed treatment here. We do, however, outline one
approach and give a few key references. Little and Rubin (2002) provide broad
coverage and many references. Ibrahim et al. (2005) give a thorough review
of missing covariates in generalized linear models.

A variety of methods exists for dealing with missing data. We focus
here on maximum likelihood, which is quite general but requires assump-
tions about the distribution of covariates. Pseudo-likelihood estimation (e.g.
Pepe and Fleming, 1991) and estimating functions that use inverse probabil-
ity weighting (Robins et al., 1994) have also been widely discussed. McLeish
and Struthers (2006) survey estimating function methods, and Kalbfleisch
and Prentice (2002, Section 11.5) provide some references related to the Cox
model in survival analysis. Approaches involving imputation of missing values
have also been considered; see Little and Rubin (2002) and the review article
by Ibrahim et al. (2005).

Consider fixed covariates and let xi denote the covariate vector for individ-
ual i. Following frequently used terminology, we denote the set of individuals
for whom no values in xi are missing as V (sometimes referred to as the vali-
dation set) and the set of individuals for whom one or more components of xi

are missing as V̄ . With a slight abuse of notation, let xi = (x′
1i, x

′
2i)

′ for an in-
dividual i ∈ V̄ , where x1i is observed and x2i is missing. In some applications
all individuals in V̄ have the same set of covariate values missing but more
generally this may vary, so that (abusing notation) x1i does not necessarily
represent the same covariates for different i ∈ V̄ . In what follows the missing
data mechanism is assumed to be missing at random (MAR) in the sense of
Little and Rubin (2002).

Let Di represent the event history data for individual i, and let Pr(Di|xi; θ)
denote the model of interest, where θ is a parameter vector. For i ∈ V , the
contribution to the likelihood function for θ is Pr(Di|xi; θ), but for i ∈ V̄ it is

Pr (Di|x1i; θ, ψ) = EX2 {Pr (Di|x1i,X2) |x1i} . (8.54)

This involves the distribution of X2 given X1i = x1i, and ψ in (8.54) denotes
parameters that index this distribution. Thus, we cannot avoid considering the
distribution of the covariates, as we normally like to do in regression analysis.

To proceed, let gi(x2|x1i;ψ) denote the probability density or mass func-
tion for the missing covariates for individual i, given the observed covariates,
and let f(x;ψ) denote the unconditional distribution for the full covariate
vector. We can exclude any covariates that are always observed from f(x;ψ)
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and condition on them instead, but for simplicity we do not indicate this in
the notation. The likelihood function takes the form

L(θ, ψ) =
∏

i∈V

Pr (Di|xi; θ) f(xi;ψ) ·
∏

i∈V̄

Pr (Di|x1i; θ, ψ) fi(x1i;ψ) , (8.55)

where fi(x1i;ψ) is the marginal density for x1i and where

Pr (Di|x1i; θ, ψ) =

∞∫

−∞

Pr (Di|x1i, x2; θ) gi (x2|x1i;ψ) dx2 .

In this situation we consider joint estimation of θ and ψ. The likelihood
estimating functions for θ and ψ are

U1(θ, ψ) = ∂ log L(θ, ψ)/∂θ, U2(θ, ψ) = ∂ log L(θ, ψ)/∂ψ

and after a little algebra we can write these in the form

U1(θ, ψ) =
∑

i∈V

∂ log Pr (Di|xi; θ)

∂θ
(8.56)

+
∑

i∈V̄

∞∫

−∞

wi (x2; θ, ψ)
∂ log Pr (Di|x1i, x2; θ)

∂θ
dx2

U2(θ, ψ) =
∑

i∈V

∂ log f (xi; ψ)

∂ψ
+
∑

i∈V̄

∂ log fi (x1i; ψ)

∂ψ
(8.57)

+
∑

i∈V̄

∞∫

−∞

wi (x2; θ, ψ)
∂ log gi (x2|x1i; ψ)

∂ψ
dx2 ,

where

wi (x2; θ, ψ) =
Pr (Di|x1i, x2; θ) gi(x2|x1i;ψ)
∞∫

−∞
Pr(Di|x1i, u; θ)gi(u|x1i;ψ)du

(8.58)

is the conditional density of X2 given Di and x1i. Maximum likelihood es-
timates θ̂ (and ψ̂) can be obtained using an EM algorithm by starting with
initial estimates θ̃0 and ψ̃0, and obtaining wi(x2; θ̃0, ψ̃0) from (8.58). Then, we
solve the equations obtained by setting (8.56) and (8.57) equal to zero, using
the fixed values wi(x2; θ̃0, ψ̃0) in place of wi(x2; θ, ψ); this produces values θ̃1

and ψ̃1. This process is then iterated, with θ̃1 and ψ̃1 used as the new θ̃0 and
ψ̃0 at each stage.

The advantage of the procedure above is that (8.56) is a weighted version
of the maximum likelihood estimating function for θ based on complete data.
To make it feasible, however, we require a tractable and adequate model for
the missing covariates. When all covariates x1i in the expressions above are
categorical, it is possible to treat the covariate distributions nonparametrically
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and to replace the integrals in (8.56)–(8.58) with sums over a finite set of values
for x2. More generally, parametric models such as discrete normal mixtures
are tractable in some contexts. Interval estimation and tests for parameters in
θ are most easily approached via profile likelihood or likelihood ratio statistics;
this merely involves using the EM algorithm with one or more θ parameters
held constant. Zhang and Rockette (2006, 2007) and Zhao et al. (2006) provide
illustrations in the context of generalized linear models. Chen and Little (1999)
consider survival data.

The tractability of inference procedures for missing data depends to some
extent on the nature of the data Di, although the more crucial issue con-
cerns the patterns of covariates. The development above has been parametric;
semiparametric models can be treated as special cases but other approaches
can also be attractive. There has been little discussion of methods for missing
covariates in the context of recurrent events, and research is warranted.

8.7 Covariate Measurement Error

Covariates may in some settings be measured with a significant degree of error.
A large literature and a variety of methods have evolved for the following
problem. Suppose that a response variable Y has probability density or mass
function f(y|x;β), where x = (x′

1, x
′
2)

′ is a vector of covariates in which x1 is
measured accurately but x2 is not, for at least some individuals. Instead, for
certain individuals an imprecise or surrogate measurement Z of x2 is available.

If there is good reason to trust the model f(y|x;β) then it is of interest
to estimate β on the basis of data on y, x1, and x2 and, if x2 is unavail-
able, on data for y, x1, and z. It is typically assumed that Pr(Y |x1, x2, z) =
Pr(Y |x1, x2), and we assume this here. How one may proceed depends on
what type of data is available. If observations (yi, x1i, x2i, zi) are available
for individuals i in some set V (again, often called the validation set), with
observations (yi, x1i, zi) for individuals i ∈ V̄ , then methods for missing data
as discussed in the preceding section can be applied, by identifying (x′

1, z
′)

here with x1 in Section 8.6 and restricting the regression coefficient for z to
be zero. (This assumption can be checked by including the coefficient in the
model.) In this case, assumptions about the distribution of X2 given X1 and
Z are required.

Carroll et al. (2006) provide extensive discussion of measurement error
problems and present a number of alternative approaches. There has been very
little discussion of measurement error methodology for problems involving
recurrent events, exceptions being Turnbull et al. (1997) and Jiang et al.
(1999). There has been a good deal of development for survival analysis, and in
particular for the semiparametric Cox model. Kalbfleisch and Prentice (2002,
Section 11.6) provide a short overview and references; see also Zucker (2005)
and for additive models, Song and Huang (2006). See Andersen and Liestol
(2003) and Song and Huang (2006) for recent work on time-varying covariates.
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In many settings there is no validation set; that is, there are no individ-
uals for whom both x2 and z are available. This is the case, for example,
where the only available measurements are of x1 and z. When there are re-
peat measurements of z for some set of individuals, progress is possible under
certain assumptions about measurement errors. The most common model is
where, given x1, Z takes the form Z = x1 + ε, with the measurement error
ε having a distribution with mean 0 and variance σ2. In this case, σ can be
estimated from repeated z−measurements. If no such repeated measurements
are available, then we must instead proceed by assuming a value for σ.

One set of methods that has proven useful for survival models is called
corrected score methods (e.g. Nakamura, 1992). Recent applications to the
Cox survival model are discussed by Hu and Lin (2002), Song and Huang
(2005), and Yi and Lawless (2007). This approach can also be rather easily
applied to Poisson (Andersen–Gill) regression models or rate function models,
discussed in Chapter 3, and to other multiplicative models. This has not been
discussed in the literature, so we outline how this can be done. For simplicity
we consider x2i to be a scalar, but extension to the multidimensional case is
straightforward.

Suppose that the process for individual i has intensity function

λi(t) = λ0(t|Hi(t)) exp(x′
1iβ1 + x2iβ2) , (8.59)

where λ0(t|Hi(t)) may depend on previous event history but not on covariates.
Suppose that x2i is not observed, but rather

Zi = x2i + εi , (8.60)

where εi has mean 0, variance σ2, and a moment generating function m(t) =
E(exp(εit)). Consider the log-likelihood contribution, based on (2.55), that is
obtained from observation of a single individual. If (8.59) could be used, that
is, if x2i as well as x1i were observed, we have

�i(θ) =
ni∑

j=1

log λi(tij |Hi(tij)) −
∞∫

0

Yi(u)λi(u)du , (8.61)

where θ includes β1, β2, and parameters specifying λ0(t|H(t)). Now suppose
x2i is not available, but consider the “corrected log-likelihood”,

�∗i (θ) =
ni∑

j=1

{log λ0(tij |Hi(tij)) + x′
1iβ1 + ziβ2} (8.62)

−m(β2)−1 exp(x′
1iβ1 + ziβ2)

∞∫

0

Yi(u)λ0(u|Hi(u))du .

Under the measurement error model (8.60), we find that
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Ezi
(�∗i (θ)|xi, N

(∞)
i ) = �i(θ) .

As a result, estimating functions based on (8.62) are unbiased with respect to
N

(∞)
i and Zi, and can be used for estimation of θ. A common approach is to

assume the errors in (8.60) are N(0, σ2), so that m(t) = exp(σ2t2/2) is used
in (8.62).

Yi and Lawless (2007) develop this approach for the Cox survival model,
using a weakly parametric specification for the baseline hazard function λ0(t).
Sandwich-type robust variance estimates for θ̂ are readily obtained from esti-
mating function theory (Appendix A.2). In (8.60) the parameter σ is assumed
known, but the methods can be extended to deal with the estimation of σ
through an additional estimating function.

Two other points should be noted. The first is that in many instances
where we know that a covariate is measured with some degree of error but
there are no observations on the true covariate values, we may choose simply
to use only models that include the observed covariates (e.g. x1i, zi above).
The second point is that we can investigate by simulation, and sometimes
mathematically, the effects of assuming that x2i = zi, in analyses with a
model for a response Yi, given x1i and x2i. A well-known result is that under
(8.60) and a linear model relating a response variable Yi and covariates xi, the
least squares estimate of β2 is biased towards zero when measurement error
in x2i is ignored (e.g. Carroll et al., 2006, Ch. 2). This type of attenuation
also holds for many of the models in this book.

8.8 Bayesian Methods

There is a rather large literature on Bayesian methods for survival data; see
Kalbfleisch and Prentice (2002, Ch. 11) and Ibrahim et al. (2001) for detailed
discussion and references. Some of this methodology can be applied to recur-
rent events analysis, but there has been rather little direct consideration of
this area, with some notable exceptions. It is not possible to do justice here
to Bayesian methods and the many computational advances of recent years.
We simply mention some specific examples of Bayesian methodology for event
history data, from which many further references can be obtained.

There is a fairly large literature on Bayesian analysis of parametrically
specified Poisson processes; Singpurwalla and Wilson (1999) provide refer-
ences. Clayton (1994) considers general event history analysis and Hjort
(1990b) and Sinha (1993) consider Bayesian estimation for nonparametric and
semiparametric event history models. Sinha and Maiti (2004) address interval
count data along with dependent terminating events. More complex settings
involving time-varying covariates and marked processes are considered by An-
dreev and Arjas (1998), Arjas and Andreev (2000), Eerola et al. (2003), and
Ishwaran and James (2004).
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8.9 Bibliographic Notes

Marked point processes arise in many fields, including insurance (Grandell,
1997, Ch. 9) where claims have an associated size. Cox and Isham (1980, Ch.
5) and Snyder and Miller (1991, Ch. 4) discuss marked point process models
and Andersen et al. (1993, Section 2.4) consider likelihood construction.

Methods for the analysis of cumulative cost processes have been devel-
oped in various areas. In actuarial science and insurance these are typically
claims processes and there has been considerable emphasis on compound Pois-
son models (e.g. Grandell, 1997, Ch. 9). Nelson (2003) provides examples in
reliability, concerning the costs of equipment repairs. In cancer treatment,
various authors consider cumulative quality of life processes. Glasziou et al.
(1990), Pepe et al. (1991), and Cook et al. (2003) consider methods based
on multistate models as in Section 8.2.1. Gelber et al. (1995) and Zhao and
Tsiatis (1997, 1999) deal with estimation of lifetime “costs” via inverse proba-
bility weighting. Lin et al. (1997) discuss similar methodology for the analysis
of cumulative cost data in health economics, and refinements which lead to
more efficient estimation are given in Bang and Tsiatis (2000). Strawderman
(2000) highlights the connections between approaches for estimating lifetime
cost distributions and investigates relative efficiency.

Prediction methodology is widely discussed in the statistical literature.
Lawless and Fredette (2005) give general references on prediction intervals and
predictive distributions. Prediction for recurrent events is considered in spe-
cific fields such as reliability (e.g. Meeker and Escobar, 1998), warranty claims
(e.g. Fredette and Lawless, 2007), and software debugging (e.g. Singpurwalla
and Wilson, 1999).

Cook (1995) discusses the design of clinical trials and derives formulae for
the required duration of accrual and followup to meet power objectives under
Poisson and mixed Poisson models. Bernardo and Harrington (2001) consider
designs based on partial likelihood inference under multiplicative intensity
models and Hughes (1997) considers design based on a marginal approach.
McMahon et al. (1994) discuss selection criteria involving baseline counts,
motivated by the ACIP trial (ACIP, 1992). Cook and Wei (2002) discuss the
impact of such criteria on the bias and efficiency of estimators. Cook and
Wei (2003) consider sample size requirements and show that trials may be
more efficient when designed with selection criteria. Robust semiparametric
methods based on (8.34) are developed in Cook et al. (2005) for settings with
variable followup or multiple treatment periods (e.g. crossover trials). Cook
and Lawless (1996) and Jiang (1999) provide the basis for Section 8.4.4. Cook
et al. (2007) consider the design of noninferiority trials based on recurrent
event responses.

Clustered data for recurrent events is considered by Cai and Schaubel
(2005) and Schaubel and Cai (2005a, b), who give methods described in Sec-
tion 8.6. Schaubel (2005) notes that the robust variance estimator (8.51) can
be poor when the number of clusters is small and proposes alternatives.
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8.10 Problems and Supplements

8.1. Consider a marked point process in which {N(t), 0 ≤ t} is a re-
newal process with gap times Wk which are gamma distributed with density
f(w; γ) = wγ1−1 exp(−w/γ2)/(Γ (γ1)γ

γ1
2 ). Derive an expression for E{C(t)}

if the marks are independently exponentially distributed with mean α−1.

[Section 8.1]

8.2. Consider a marked process where the event process for an individual
is Poisson with rate function uiρ(t) conditional on an unobserved random
variable ui. The marks Cij for events at times tij are independent and identi-
cally distributed with moment generating function MC(s). Using the results
of Problem 2.5, obtain an expression for the moment generating function for
Ci(t) given by (8.1), and evaluate it when ui has a gamma distribution with
density (2.28).

[Section 8.1]

8.3. Consider a compound time homogeneous Poisson process with indepen-
dent discrete marks with Pr(Cj = k) = πk, k = 1, . . . ,K, with

∑K
k=1 πk = 1.

Let {N(t), 0 ≤ t} denote the Poisson process with rate ρ, and let Nk(t) =
∑N(t)

j=1 I(Cj = k) record the number of events over [0, t] where Cj = k. Prove
that {Nk(t), 0 ≤ t} and {N�(t), 0 ≤ t} are independent Poisson processes with
rate functions ρπk and ρπ�, for k �= �.

[Section 8.1]

8.4. Compare the following modeling strategies for a Poisson process with
discrete marks Cj which may be time-dependent:

(i) Events occur according to a Poisson process with rate function
ρ(t), and Pr(Cj = ak|jth event at time t) = πk(t), k = 1, . . . ,K,
where a1, . . . , aK are the possible values of Cj .

(ii) Events with marks ak occur according to a Poisson process with
rate function ρk(t), the processes for k = 1, . . . ,K being indepen-
dent.

Consider the estimation of the distribution of costs (8.1) in each case.

[Section 8.1]

8.5. Consider a marked point process where events occur according to a Pois-
son process with intensity function ρ(t), t > 0, and marks are independent and
identically distributed with probability density function g(c), c > 0. For any
set A in (0,∞) × (0,∞), consider the random variable N(A) = the number
of events for which the time tj and mark cj satisfy (tj , cj) ∈ A.
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a. Prove that N(A) has a Poisson distribution with mean

µ(A) =
∫

A

λ(t)g(c)dtdc .

b. If the marks C have a continuous distribution, thus show that points
(tj , cj) occur over the region (0,∞)×(0,∞) according to a spatial Poisson
process with rate function λ(t)g(c).

[Section 8.1; Guttorp, 1995, Section 5.6]

8.6. Lifetime costs with a terminating event.
Consider the case of cumulative costs over the period [0, Ti] for an individual,
where Ti denotes the random time at which the process generating the costs
terminates. Using the approaches for dealing with event-dependent termina-
tion in Section 6.6, devise ways to estimate the distribution of total lifetime
cost Ci = Ci(Ti) in the cases where (i) costs are incurred by the occurrence
of point events, and (ii) costs accrue continuously at fixed rates according to
which state an individual occupies. Assume that data are available on indi-
viduals, some of whom may not have been observed to their termination time,
but instead only to a censoring time τi. Show also that Ci is not independent
of the “censoring value” C∗

i = C(τi) in general, so that a naive treatment of
data on censored values c∗i , which assumes independent censoring, is invalid.

[Sections 6.2, 8.2]

8.7. IPCW Estimation for lifetime cost distributions.
Let Ci denote lifetime cost over [0, Ti] as in Problem 8.6, and suppose that τi

represents a random censoring time for the ith event process, such that τi is
independent of the event and cost process, and in particular, of (Ti, Ci). Let
Gi(t) = Pr(τi ≥ t) denote the survivor function of τi.

a. Consider the following estimator based on independent individuals i =
1, . . . ,m,

P̂r(Ci ≥ c) =
1
m

m∑

i=1

∆iI(Ci ≥ c)

Ĝi(Ti)
,

where ∆i = I(Ti ≤ τi) and Ĝi(t) is a consistent estimator of Gi(t). Argue
that this provides a consistent estimator of Pr(Ci ≥ c).

b. Suppose we wish to estimate µc = E(Ci). Compare an estimator based
on (a) with the estimator

µ̂c =
∫ ∞

0

Ŝ(t)dµ̂∗
c(t) ,

where S(t) = Pr(Ti ≥ t) is estimated by the Kaplan–Meier estimate Ŝ(t)
based on the data (min(Ti, τi), δi = I(Ti ≤ τi)), i = 1, . . . , m and where
dµ∗

c(t) = E{dCi(t)|Ti ≥ t} is estimated by
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dµ̂∗
c(t) =

m∑

i=1

I (Ti ≥ t, τi ≥ t) dCi(t)

m∑

i=1

I (Ti ≥ t, τi ≥ t)
.

[Section 8.2; Strawderman, 2000]

8.8. Derive (8.22) by first showing that λ̂Y has an F distribution with (2, 2n)
degrees of freedom (e.g. Lawless 2003a, Section 4.6), and then obtaining the
distribution of U = 1 − exp(−λ̂Y ) from this.

[Section 8.3]

8.9. Consider a setting where events for individual i occur according to a
homogeneous Poisson process with rate uiρ, given an unobservable random
effect ui. Assume that across individuals i = 1, . . . , m the ui are independent
gamma random variables with mean 1 and variance φ, and density function
(2.28). Suppose that for individual i, ni1 events have been observed over an
interval of length ti1, and that it is desired to predict the number Ni2 of events
over a future interval of length ti2.

a. Show that

Pr(Ni2 = ni2|Ni· = ni·) =
(

ni1 + ni2

ni2

)(
ti2

ti1 + ti2

)ni2
(

ti1
ti1 + ti2

)ni1

where Ni· = Ni1 +Ni2, and use this to obtain prediction intervals for Ni2.
b. Consider, alternatively, the distribution of Ni2 given Ni1, which involves

the parameters ρ and φ; they can be estimated from the data ni1, i =
1, . . . ,m. Show how to base prediction intervals on this.

c. What are the pros and cons of the methods in (a) and (b) ?

[Section 8.3; Faulkenberry, 1973; Vit, 1973]

8.10. Suppose that {Ni(t), 0 ≤ t} is generated by a mixed time homogeneous
Poisson process with rate ui exp(β0 + β1xi) where ui is gamma distributed
with mean 1 and variance φ, and xi is an observable covariate with xi = 1
with probability 0.5 and xi = 0 with probability 0.5. Let exp(β0) = 1.0,
exp(β1) = 0.80, and φ = 0.50. Suppose all subjects are expected to be observed
over [0, 1].

a. Derive the number of subjects required to ensure 80% power to reject
H0 : β1 = 0 under a two-sided test with size 0.05 at β1 = 0.80.

b. Simulate data under the design in (a) to validate the sample size you
obtained.

[Section 8.4]
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8.11. Consider the setting in Problem 8.10, but suppose a baseline count
Ni(−1, 0) = ni0 is observed over (−1, 0) for subject i, which is Poisson distrib-
uted with conditional mean ui exp(β0). What would be the required sample
size to ensure 80% power to reject H0 : β1 = 0 under a two-sided test with
size 0.05 at β1 = 0.80, if followup were scheduled over [0, 1] and if analyses
were to be based on the joint or conditional models of Section 8.4?

[Section 8.4]

8.12. Repeat 8.10 and 8.11 where exp(β0) = 0.25. Is the same design as effi-
cient (i.e. associated with a smaller sample size) in this scenario?

[Section 8.4]

8.13. Suppose that given a random effect u with mean 1 and variance φ,
{N(t), 0 ≤ t} is a time homogeneous Poisson process with rate uρ.

a. If subjects are to be observed over the interval [0, τ ], derive the relative
efficiency of estimators for ρ based on an analysis of the time to the first
event and based on the analysis of all events over this interval, if φ = 0.

b. If subjects are to be randomized to an experimental or control treatment
with probability 0.5, where xi = 1 or xi = 0 if individual i is assigned
to the experimental or control group, respectively, consider the model
λi(t|Hi(t), ui) = uiρ exp(βxi). Suppose the aim is to achieve 90% power
to reject H0 : β = 0 when βA = log(0.60) is the true value, based on
a two-sided test of size 0.05. Plot the required sample sizes for analyses
based on the time to the first event and based on all events as a function
of ρ when φ = 0 and τ = 1.

c. Show that the proportional hazards assumption for the time to the first
event does not hold in general when φ > 0. What implications does this
have for analysis strategies based on the time to the first event?

[Section 8.4]

8.14. Consider a randomized clinical trial with xi = 1 if individual i is ran-
domized to an experimental treatment, occurring with probability 0.5, and
xi = 0 otherwise. Suppose a treatment delays the occurrence of the first event
but once this event occurs, subsequent events arise according to the same time
homogeneous Poisson process in both groups. Therefore given xi, Wi1 is ex-
ponential with hazard function λ exp(γxi) and for k ≥ 2, Wik is exponential
with rate λ independent of xi.

a. Derive an expression for the mean function in the treatment group and
confirm your calculations through a simulation study.

b. Derive the probability limit of β̂ obtained under a multiplicative Poisson
process model with rate function ρ exp(βxi). Assume there are common
followup times τi = τ .

[Section 8.4; Boher and Cook, 2006]



A

Estimation and Statistical Inference

A.1 Maximum Likelihood

A.1.1 Introduction

Consider a parametric model indexed by an r × 1 parameter θ = (θ1, . . . , θr)′

where θ ∈ Θ. Suppose D denotes the data available for estimation and model
checking, and Pr(D; θ) is the probability density or mass function, which is
assumed to be known up to the parameter θ. In the case of no covariates,
D could, for example, represent the number and timing of events in m recur-
rent event processes. With fixed (time-independent) covariates, the probability
model is taken to be implicitly conditional on them. The likelihood function
L(θ) based on D is defined as any function

L(θ) ∝ Pr(D; θ) (A.1)

or equivalently, L(θ) = cPr(D; θ) where the proportionality constant c is any
positive term not dependent on θ. Many of the models for recurrent events
are expressed in terms of intensity functions, and one can obtain expressions
for (A.1) as discussed in Chapter 2; for example, see (2.7) in Theorem 2.1.

Let Di denote the data for process i, so D = (D1, . . . , Dm)′, and let
x1, . . . , xm denote fixed covariate vectors. Assuming the data from the dif-
ferent processes are independent given the xi, the likelihood function is

L(θ) = c Pr(D|x; θ) = c

m∏

i=1

Pr(Di|xi; θ) , (A.2)

where x consists of x1, . . . , xm.
More generally, a likelihood function may be based on the conditional

probability of observed data D, given the value of observed data D′, so that
L(θ) ∝ Pr(D|D′; θ). This is sometimes used to remove nuisance parameters
or to specify a more relevant reference population for inferences (e.g. Cox and
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Hinkley, 1974; Barndorff-Neilsen and Cox, 1994; Pawitan, 2001). It should
also be noted that D in (A.1) may be only a portion of the available data, in
which case L(θ) is sometimes called a marginal likelihood. Finally, so-called
partial likelihoods (Cox, 1975) are often used for inference. Strictly speaking,
they are not likelihoods, but are functions L(θ) that give estimating equations
∂ log L(θ)/∂θ′ = 0 which yield consistent estimators θ̂. For simplicity, we
present results below for (A.1), but they also apply to conditional or partial
likelihoods. See Lawless (2003a, p. 552) for a concise description of partial
likelihood.

The maximum likelihood estimate (M.L.E.) θ̂ is the value of θ that max-
imizes L(θ). The M.L.E. therefore has the appealing property of giving the
highest probability of realizing the data observed within the class of models
considered. The log-likelihood function is

�(θ) = log L(θ) , (A.3)

and because the log function is monotonic, maximizing �(θ) is equivalent to
maximizing L(θ). There are also computational advantages to maximizing
�(θ) because the product in (A.2) becomes a sum.

The score vector U(θ) = (U1(θ), . . . , Ur(θ))′ is the gradient of the log-
likelihood so that

Uj(θ) = ∂�(θ)/∂θj , (A.4)

j = 1, 2, . . . , r. In the following, Pr(D; θ) is assumed to be the true distribution
of D, and expectations are with respect to this distribution. Mild regularity
conditions on the model are also assumed. Standard results from maximum
likelihood theory (e.g. Cox and Hinkley, 1974; van der Vaart, 1998; Severini,
2000) then give E{U(θ)} = 0. The observed information matrix I(θ) is the
negative of the r × r Hessian matrix of the log-likelihood so that

Ijk(θ) = −∂2�(θ)/∂θj∂θk = −∂Uj(θ)/∂θk , (A.5)

j, k = 1, 2, . . . , r. The expected information matrix I(θ) is both the expectation
of the observed information matrix, and the covariance matrix of the score
vector, so

I(θ) = E {−∂U(θ)/∂θ′} = E {U(θ)U ′(θ)} . (A.6)

A.1.2 Asymptotic Pivotals

Pivotal quantities (or pivotals, for simplicty) are functions of random vari-
ables and parameters with known distributions that do not depend on θ, and
provide a very useful basis for inference. They in fact exist only in certain
special settings, but it is possible to specify functions that are asymptoti-
cally pivotal. Here and elsewhere in the book, “asymptotic” means that the
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information about θ is becoming arbitrarily large in some way; this usually
occurs through the number of observed processes (m) approaching infinity.
The relative likelihood R(θ) = L(θ)/L(θ̂), which gives the relative plausibility
of a particular value of θ compared to the M.L.E., is one asymptotic pivotal.
Because 0 ≤ R(θ) ≤ 1, this function is often helpful to examine, however, the
log-relative likelihood r(θ) = log R(θ) is more convenient to work with and
related to this we have the likelihood ratio pivotal

W (θ) = −2r(θ) = 2�(θ̂) − 2�(θ) ∼ χ2
r (A.7)

asymptotically. A 100p% relative likelihood region, defined as {θ : R(θ) ≥ p},
is comprised of all values of θ which are at least 100p% as likely as the M.L.E.
They are also asymptotic confidence regions for θ: using (A.7) and letting χ2

r,α

be the upper α-quantile for χ2
r, for 0 < α < 1 we have {θ : W (θ) ≤ χ2

r,α} =
{θ : R(θ) ≥ exp(−χ2

r,α/2)} as an approximate α confidence region.
Let θ = (θ′1, θ

′
2)

′ where θ1 = (θ11, . . . , θ1p)′ and θ2 = (θ21, . . . , θ2q)′ and
p + q = r. Now suppose interest lies in θ1 and that θ2 is viewed as a nuisance
parameter. Let θ̃2(θ1) denote the value of θ2 that maximizes L(θ) when θ1 is
fixed. The function L(θ1, θ̃2(θ1)) is called a profile likelihood function for θ1;
θ2 has been “profiled” out by replacing it with its maximum value (at each
θ1). The profile relative likelihood function is

R1(θ1) =
L(θ1, θ̃2(θ1))

L(θ̂1, θ̂2)

which has properties like the ordinary relative likelihood function. In partic-
ular r1(θ1) = log R1(θ1) is the profile relative log-likelihood function and

W1(θ1) = −2r1(θ1) ∼ χ2
p (A.8)

asymptotically. We call (A.8) a profile likelihood ratio pivotal which becomes
a likelihood ratio statistic when we insert a particular value for θ1 for testing
hypotheses.

Standard asymptotic likelihood arguments show U(θ) ∼ MV N(0, I(θ))
asymptotically. This gives the asymptotic pivotal

U ′(θ)I−1(θ)U(θ) ∼ χ2
r . (A.9)

An asymptotic pivotal is also obtained here and in other pivotals below if
I(θ) is replaced by I(θ), I(θ̂), or I(θ̂). In most event history settings I(θ)
is hard to obtain, so this is of major practical importance. We call (A.9) a
score pivotal, which can in principle be used for the construction of confidence
regions for θ; it reduces to a score statistic upon inserting a particular value
for θ into (A.9).

Suppose also that U(θ) = (U ′
1(θ), U

′
2(θ))

′, where Uk(θ) = ∂�(θ)/∂θk,
k = 1, 2 for parameter subvectors θ1 and θ2 as above. Then the expected
information matrix and its inverse can be analogously partitioned as
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I(θ) =
[
I11(θ) I12(θ)
I21(θ) I22(θ)

]

and I−1(θ) =
[
I11(θ) I12(θ)
I21(θ) I22(θ)

]

.

It can be shown that

U ′
1(θ1, θ̃2(θ1))I11(θ1, θ̃2(θ1))U1(θ, θ̃2(θ1)) ∼ χ2

p (A.10)

asymptotically. The same result holds if I11(θ) is replaced by a consistent
estimator. We often call (A.10) a partial score pivotal.

There are also several so-called Wald-based approximate pivotals. One is
of the form

(θ̂ − θ)′I(θ̂)(θ̂ − θ) ∼ χ2
r (A.11)

but we more often use I(θ) instead of I(θ), giving the Wald pivotal

(θ̂ − θ)′I(θ̂)(θ̂ − θ) ∼ χ2
r . (A.12)

The analogous results for the nuisance parameter case are

(θ̂1 − θ1)′[I11(θ̂)]−1(θ̂1 − θ1) ∼ χ2
p (A.13)

and

(θ̂1 − θ1)′[I11(θ̂)]−1(θ̂1 − θ1) ∼ χ2
p , (A.14)

respectively. In the common situation where p = 1, (A.14) equals Z2, where

Z =
θ̂1 − θ1√

I11(θ̂)
∼ N(0, 1) (A.15)

asymptotically. We often call
√

I11(θ̂) the standard error of θ̂1 and write it

as s.e.(θ̂). The results (A.11) to (A.15) are a consequence of the fact that θ̂ is
asymptotically normal; informally, we treat θ̂ as approximately normal with
mean θ and covariance matrix I−1(θ̂).

A.1.3 Confidence Regions or Intervals

The likelihood ratio, score, and Wald pivotals all provide a basis for construct-
ing confidence regions. As described above, the likelihood ratio pivotal (A.7)
gives an approximate α confidence region for θ as

{
θ : −2r(θ) ≤ χ2

r,α

}

which has the added appeal of being a relative likelihood region. If interest
lies in θ1 only, then one obtains



A.1 Maximum Likelihood 341

{
θ1 : −2r1(θ1) ≤ χ2

p,α

}

based on (A.8).
The score pivotal (A.9) gives

{
θ : U ′(θ)I−1(θ)U(θ) ≤ χ2

r,α

}
or

{θ1 : U ′
1(θ1, θ̃2(θ1))I11(θ1, θ̃2(θ1))U1(θ1, θ̃2(θ1)) ≤ χ2

p,α}

which can be computationally less appealing than those based on the likeli-
hood ratio pivotals. Most often, approximate α confidence regions are based
on Wald-based approximate pivotals (A.14) or (A.15) to give

{θ : (θ̂ − θ)′I(θ̂)(θ̂ − θ) ≤ χ2
r,α}

or

{θ1 : (θ̂1 − θ1)′I11(θ̂)]−1(θ̂1 − θ1) ≤ χ2
p,α} .

When p = 1, (A.15) gives the two-sided 1 − α confidence interval θ̂ ±
zα/2 s.e.(θ̂), where zα is the standard normal upper α-quantile.

Confidence regions based on the likelihood ratio and some score-based
pivotals are invariant to the parameterization of the model, but Wald-based
methods generally are not. Furthermore, the closeness of the actual distrib-
ution of the approximate Wald pivotals to their limiting normal or χ2 forms
can vary substantially, depending on the parameterization and the amount of
information about θ. A good strategy for analyses based on Wald pivotals is
to obtain the information matrix using a parameterization in which no com-
ponent parameters have range restrictions, and for which likelihood ratio sta-
tistics are approximately quadratic in θ. This typically improves the accuracy
of the Wald-based confidence intervals or regions. The resulting confidence
intervals may then be transformed to the scale of interest.

A.1.4 Tests of Hypotheses

The approximate pivotal results above hold when θ is the “true” parameter
value and they may therefore be used to test hypotheses regarding particular
values. Tests of H0 : θ = θ0, for example, can be based on a likelihood ratio
statistic (A.7). Large values of W (θ0) indicate evidence against H0, and the
p−value is Pr(χ2

r ≥ −2r(θ0)). A score statistic (A.9) with θ = θ0 can similarly
be used, and gives a p−value

Pr(χ2
r ≥ U ′(θ0)I−1(θ0)U(θ0)) .

Finally, a Wald statistic (A.12) with θ = θ0 gives a p−value

Pr(χ2
r ≥ (θ̂ − θ0)′I(θ̂)(θ̂ − θ0)) .

An alternative is to replace θ̂ in I(θ̂) with θ0; which may be preferable in terms
of power depends on the setting. Analogous tests for the nuisance parameter
case can be based on (A.8), (A.10), (A.13), and (A.14).
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A.2 Estimating Functions

In many contexts, interest lies in the relation between a vector of explanatory
variables and an outcome variable, but there is a desire to base inferences on
as few parametric assumptions as possible.

Consider a sample of m independent responses y1, . . . , ym, with associated
covariate vectors x1, . . . , xm. Suppose θ is a p × 1 parameter vector and that
Ui(yi, xi; θ) is a p × 1 vector Ui(yi, xi; θ) = (Ui1(yi, xi; θ), . . . , Uip(yi, xi; θ))′.
A set of estimating equations for θ is given by

U(θ) =
m∑

i=1

Ui (yi, xi; θ) = 0 .

Suitably defined, such estimating equations yield consistent, asymptotically
normal estimators θ̂. We assume here that solving U(θ) = 0 yields a unique
estimate θ̂. The vector U(θ) is called an estimating function and estimating
functions which satisfy E{U(θ)} = 0 are called unbiased estimating functions,
where the expectation is taken with respect to the Yi given the xi. Unbiased es-
timating functions yield consistent estimators θ̂ under appropriate conditions
and have considerable appeal. Estimating functions which are only asymptot-
ically unbiased are also useful. Estimating functions of many types are widely
used, and Crowder (1987), Heyde (1997), White (1982), and others provide
general theory. We quote here the key results needed for the construction of
tests and interval estimates.

Let

Am(θ) = − 1
m

∂U(θ)/∂θ′, Bm(θ) =
1
m

m∑

i=1

Ui(θ)U ′
i(θ)

A(θ) = lim
m→∞

E{Am(θ)} , B(θ) = lim
m→∞

E{Bm(θ)} ,

where the stated expectations are assumed to exist. Note that B(θ) =
lim

m→∞
m−1var{U(θ)} when U(θ) is unbiased.

Under suitable regularity conditions m−1/2U(θ) is asymptotically normal
with covariance matrix B(θ) and

√
m(θ̂ − θ) is asymptotically normal with

mean zero and covariance matrix C(θ) = A−1(θ)B(θ)[A−1(θ)−]′ as m → ∞.
A consistent estimate of C(θ) is

Cm(θ̂) = A−1
m (θ̂)Bm(θ̂)

[
A−1

m (θ̂)
]′

.

Under maximum likelihood estimation, U(θ) = ∂�(θ)/∂θ and A(θ) = B(θ) =
m−1I(θ), the scaled Fisher information matrix. This leads to C(θ) = mI−1(θ)
as given in Section A.1.2.

White (1982) considers estimators θ̂ obtained from estimating equations
in the case where the model on which they are based may not be correct. His
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results are very useful in considering the effects of model misspecification on
estimators. Briefly, if (Yi,Xi) are i.i.d. with true distribution G and if there
is a unique vector θ∗ such that EG{Ui(Yi,Xi; θ∗)} = 0, then under suitable
regularity conditions the solution θ̂ to U(θ) = 0 is asymptotically normal.
In particular

√
m(θ̂ − θ∗) is asymptotically normal with mean vector 0 and

covariance matrix C(θ∗) = A−1(θ∗)B(θ∗)[A−1(θ∗)]′, where A(θ) and B(θ) are
defined as above, but with expectations taken with respect to G. Moreover,
Cm(θ̂) defined above is a consistent estimator of C(θ∗). It should be noted
that in this framework, the interpretation of θ∗ under G may not be clear, but
we can think of θ∗ as the θ-vector that provides the closest approximation to
G in the class of models with which U(θ) is compatible (White, 1982). Boos
(1992) discusses pseudo-score tests based on U(θ), and gives a very useful
summary of asymptotic results.
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Computational Methods

B.1 Software for Recurrent Events

A number of software packages or functions for the analysis of survival data
also have the capability of dealing with recurrent events, among them the func-
tions survreg and coxph in S-PLUS (Insightful Corp.; see
http://www.insightful.com) and the procedures LIFEREG and PHREG in
SAS (SAS Institute, see http://www.sas.com). We have used the S-PLUS
functions and the corresponding R versions (see http://www.r-project.org/)̃
for many of the examples in this book; illustrations are provided in Appendix
C. Therneau and Grambsch (2000) describe how both S-PLUS and SAS sur-
vival analysis procedures for the Cox model can be used more generally for
event history analysis. Other major statistical packages such as Stata (Stata
Corp.; see http://www.stata.com) and Limdep (Econometric Software Inc.;
see http://www.limdep.com) also provide some procedures that will deal with
recurrent events. The RELIABILITY procedure in SAS/QC and the SAS
package JMP (see http://www.jmp.com) also carry out certain specialized
tasks.

New software is constantly being written and made available. Many
procedures have been implemented as S functions which are freely avail-
able through the shared resources of R (see http://www.r-project.org/ or
http://lib.stat.cmu.edu/) or directly from a Web site. For example, W. Q.
Meeker and L. A. Escobar have a package called SPLIDA (see
http://www.public.iastate.edu/∼splida) that provides many parametric and
nonparametric procedures for survival and recurrent event analysis. Software
for additive semiparametric models is available from different sources; a recent
package is timereg, written for R and available at
http://staff.pubhealth.ku.dk/∼ts/timereg.html. These are given as useful ex-
amples; other resources can be found via usual routes such as papers or Web
searches.
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B.2 Optimization Methods

There are many problems associated with event history analysis for which spe-
cialized software is not available. However, it is usually feasible to use widely
available optimization software to maximize likelihood functions, or other ob-
jective functions, in order to obtain parameter estimates and fit models. The
primary need is for procedures to maximize a function �(θ) for θ lying in a
parameter space Ω; in this book �(θ) is usually a log-likelihood function based
on some model and observed data.

Extensive accounts of optimization methods and software are available in
books such as Nocedal and Wright (1999), and the Numerical Recipes books
(see http://www.nr.com). Chapter 16 of Venables and Ripley (2002) gives
a good overview and is an excellent source of information about optimiza-
tion software in R and S-PLUS. Broadly speaking, methods can be classified
according to whether they use no derivatives, first derivatives only, or first
and second derivatives of �(θ). Good optimization software includes numerical
methods for closely approximating derivatives, and for most packages it is not
required to provide derivatives as input. For maximum likelihood problems,
we generally want the observed information matrix I(θ) = −∂2�(θ)/∂θ∂θ′

evaluated at the maximum likelihood estimate θ̂; many optimization packages
will compute I(θ̂) or H(θ̂) = −I(θ̂) numerically and return it as part of the
output. For various examples in this book, we used either the R function nlm
or one of the SAS NLP procedures. Other statistical packages, such as Stata,
also have general maximum likelihood procedures.

Sometimes a function �(θ) may be maximized on or near the boundary
of Ω and software that deals well with constraints on parameters is needed.
Log-likelihoods or other objective functions �(θ) may also possess multiple sta-
tionary points in some settings, and a numerical optimizer may not necessarily
obtain the global maximum. From a statistical perspective, it is important to
understand the shape of �(θ). Features such as multiple maxima, nonconvex-
ity, or maxima on the boundary have implications for estimation, and the
log-likelihood indicates the amount of information on various parameters, or
functions of them. Lawless (2003a, Appendix D1) and Venables and Ripley
(2002, Ch. 16) provide a number of additional comments on obtaining para-
meter estimates.

B.3 Simulation and Resampling Methods

We typically rely on asymptotic approximations, described in Appendix A, to
provide confidence intervals for parameters or p−values for tests of hypotheses.
These approximations can be inaccurate in certain settings, especially when
the amount of information about a parameter is small. In that case, and more
generally when suitable asymptotic approximations are not available for a test
statistic or random quantity used for estimation, we can utilize simulation.
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Specifically, suppose that W = g(D, θ) is a function of the data D and a
parameter vector θ that specifies the distribution of D. For example, W may be
an approximate pivotal quantity used for estimation, such as the Wald statistic
W = (θ̂1 − θ1)/s.e.(θ̂1), or the likelihood ratio statistic W = 2�(θ̂) − 2�(θ).
Alternatively, it could be a test statistic such as (3.43) or (3.52) in Chapter
3. We often assume as well that the distribution of W is either independent
of θ, or asymptotically so; this is the case, for example, when considering
approximate pivotal quantities for interval estimation, or the distributions of
test statistics under the null hypothesis.

If we have a probability model Pr(D; θ) for the data, the distribution of
W can be estimated by simulation as follows.

1. Generate pseudo-data D∗ from the distribution Pr(D; θ0), where θ0 is spec-
ified. If the distribution of W is independent of θ, we can choose any con-
venient θ0, but we generally choose θ0 = θ̂(d), the estimate of θ obtained
from the observed data D = d.

2. Compute W ∗ = g(D∗, θ0).
3. Repeat this B times, yielding values W ∗

1 , . . . ,W ∗
B . The distribution of W

can now be estimated from W ∗
1 , . . . ,W ∗

B . For example, the empirical dis-
tribution function based on these values provides an estimate of the distri-
bution function of W . Ways of generating data from models used in this
book have been considered in Chapters 2 and 5; see the end of this section.

In some settings we do not have a full probability model for the data.
This is the case, for example, when we are employing estimating functions
without a probability distribution or when the data involve censoring or other
forms of incompleteness that are random, but not specified in terms of a
model. In that case we may hope to use some form of nonparametric bootstrap.
The fundamental nonparametric bootstrap when there are i.i.d. data from m
individuals is to replace step 1 above with

1′. Generate pseudo-data D∗ by selecting a random sample of m units, drawn
with replacement from the observed data units d1, . . . , dm for the m indi-
viduals.

This procedure is frequently applicable; see Efron and Tibshirani (1993),
Davison and Hinkley (1997), and other books on the bootstrap for guidance.
However, in many event history analysis settings, it is either inapplicable, or
its behaviour and validity have not been established. In the latter case, we may
wish to conduct simulation studies for specific processes, in order to assess the
properties of the nonparametric bootstrap. In other cases, for example, where
the data consist of rather long series of events for a small number of processes
(perhaps even one), quite different resampling procedures would have to be
developed. Little has been done in this area. Finally we note that when interest
lies in testing for differences between two groups of individuals in randomized
studies, based on (3.52) for example, permutation tests may be used.
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Simulation of event processes is also important in applications where we
wish to predict the future course of one or more processes. Methods of simu-
lating data from models used in this book have been discussed in Chapters 2
and 5. In particular, (2.9) and (2.46) provide a basis for generating successive
events. Variations on this (e.g. See Problem 2.2; Ogata, 1981; Daley and Vere-
Jones, 2003) can also be developed, and there are various special algorithms
for models such as Poisson and renewal processes (e.g. Ross, 1983, Ch. 11).



C

Code and Remarks for Selected
Examples

C.1 Tumorgenicity Data Analysis of Chapter 3

Here we present the data frames and S-PLUS or R code for the analysis of the
tumor data of Gail et al. (1980) given in Table 1.1. The results were discussed
in Section 3.8.1.

C.1.1 Poisson Analysis with Weibull Baseline Rate

The data for the first five rats in the treated group are displayed below in the
data frame “rats”, in the “counting process” format.

> rats[1:12, ]

id start stop status rtrunc tstatus enum trt

1 1 0 122 1 NA 1 1 1

2 2 0 122 0 NA 1 1 1

3 3 0 3 1 NA 1 1 1

4 3 3 88 1 NA 2 2 1

5 3 88 122 0 NA 2 3 1

6 4 0 92 1 NA 1 1 1

7 4 92 122 0 NA 2 2 1

8 5 0 70 1 NA 1 1 1

9 5 70 74 1 NA 2 2 1

10 5 74 85 1 NA 2 3 1

11 5 85 92 1 NA 2 4 1

12 5 92 122 0 NA 2 5 1

The id variable indicates the rat to which the times correspond. The start
variable contains the time ti0 = 0 and the event times (tij , j = 1, . . . , ni),
and the stop variable contains the times of the events (tij , j = 1, . . . , ni) and
the end-of-followup time (τi). By inspection of (3.10) one can see that the
start and stop variables contain the lower and upper limits of integration,
respectively, for each “at risk” interval (ti,j−1, tij ] in the likelihood construc-
tion. The status variable is 1 if the time tij is an event time, and status= 0
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when it is a right censoring time (i.e. the time of last contact). The variable
tstatus indicates whether the time in the start variable is a left truncation
time. If start= 0, there is no left truncation (this occurs for the first lines
in the data frame for each subject) and these are designated by tstatus=1.
For subsequent lines, tstatus=2 because the start variable contains a left
truncation time. There is no right truncation, but a corresponding variable
must be specified for the “truncation” option in censorReg and so the rtrunc
variable is given with NA in each row of the data frame. The variable enum
simply records the cumulative number of lines in the data frame for each sub-
ject and trt is a treatment indicator such that trt=1 for treated subjects
and trt=0 for control subjects.

The code for fitting the “Weibull” model (3.56) to the control rats is given
below along with part of the resulting output. Note that the “truncation”
option enables one to indicate that the left truncation times are contained in
the start variable. More general truncation patterns can be handled using
other codes for tstatus but we do not need this here.

> wfitC <- censorReg(censor(stop, status) ~ 1,

data=rats, subset=(trt==0),

truncation=censor(start,rtrunc,tstatus),

distribution="weibull")

Coefficients:

Est. Std.Err. 95% LCL 95% UCL z-value p-value

(Intercept) 3.161 0.153 2.861 3.461 20.662 7.55142e-95

Extreme value distribution: Dispersion (scale) = 0.914

Observations: 173 Total; 22 Censored

-2*Log-Likelihood: 1208.5

See Section 3.8.1 for guidance on re-expressing these estimates to construct a
mean function estimate.

The regression model ρi(t) = ρ0(t) exp(xiβ) is fit by omitting the subset
option and specifying the trt covariate in the model. The resulting S-PLUS
(or R) code and output are as follows. Note that because of the way the
model is parameterized in censorReg, the parameters α1, α2, β in Section
3.8.1 are related to those here by α1 = exp(−Intercept), α2 = 1/Dispersion,
β = −trt/Dispersion.

> censorReg(censor(stop, status) ~ trt, data=rats,

truncation=censor(start,rtrunc,tstatus),

distribution="weibull")

Coefficients:

Est. Std.Err. 95% LCL 95% UCL z-value p-value

(Intercept) 3.110 0.139 2.837 3.383 22.314 2.67312e-110

trt 0.775 0.153 0.476 1.074 5.084 3.70418e-07
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Extreme value distribution: Dispersion (scale) = 0.942

Observations: 254 Total; 42 Censored

-2*Log-Likelihood: 1798.05

C.1.2 Poisson Analysis with Piecewise-Constant Rates

In Section 3.8.1 a piecewise-constant rate function (Section 3.3) with cut-
points at 30, 60, and 90 days is considered, resulting in four parameters in
the rate function. The entries in the data frame “rats.pw” are given below
for the first five rats in the treated group. The columns contain the variable
id indexing rats, a variable interval indexing the intervals (k) across which
the rate functions are constant, the variable count containing the counts nik

for the corresponding interval, the variable len containing the time “at risk”
in the corresponding interval for each rat (Sik), and the treatment indicator
trt.

rats.pw[1:20, ]

id interval count len trt

1 1 1 0 30 1

2 1 2 0 30 1

3 1 3 0 30 1

4 1 4 1 32 1

5 2 1 0 30 1

6 2 2 0 30 1

7 2 3 0 30 1

8 2 4 0 32 1

9 3 1 1 30 1

10 3 2 0 30 1

11 3 3 1 30 1

12 3 4 0 32 1

13 4 1 0 30 1

14 4 2 0 30 1

15 4 3 0 30 1

16 4 4 1 32 1

17 5 1 0 30 1

18 5 2 0 30 1

19 5 3 3 30 1

20 5 4 1 32 1

Here the interval variable is declared a factor variable to create the indica-
tors wk(t), k = 2, 3, 4 mentioned in Section 3.3. Using standard notation for
generalized linear models (McCullaugh and Nelder, 1989), we let β0 denote
the intercept and βk denote the coefficient for wk(t), k = 2, 3, 4. Then α1 = β0

and αk = βk + β0, k = 2, 3, 4. The log of the length of time a subject was
observed to be at risk in interval k is the offset. The following is the code to fit
the piecewise-constant model for control rats, and the corresponding output.
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> pfitC <- glm(count ~ offset(log(len)) + factor(interval),

family=poisson(link=log),

data=rats.pw, subset=(trt==0))

Min 1Q Median 3Q Max

-1.9183 -1.5748 -0.2736 0.6262 2.8959

Coefficients:

Value Std. Error t value

(Intercept) -3.0937 0.1714 -18.0503

factor(interval)2 0.1625 0.2330 0.6977

factor(interval)3 0.3023 0.2260 1.3377

factor(interval)4 -0.1569 0.2481 -0.6325

(Dispersion Parameter for Poisson family taken to be 1 )

Null Deviance: 167.7858 on 99 degrees of freedom

Residual Deviance: 163.3078 on 96 degrees of freedom

Number of Fisher Scoring Iterations: 4

An estimate of the treatment effect based on a multiplicative model is obtained
by introducing the trt covariate into the regression model.

> options(contrasts = c("contr.treatment", "contr.poly"))

> glm(count ~ offset(log(len)) + factor(interval) + trt,

family=poisson(link=log), data=rats.pw)

Deviance Residuals:

Min 1Q Median 3Q Max

-1.8336 -1.1994 -0.3302 0.4701 3.0551

Coefficients:

Value Std. Error t value

(Intercept) -3.0882 0.1506 -20.5007

factor(interval)2 0.1719 0.1956 0.8785

factor(interval)3 0.2063 0.1941 1.0631

factor(interval)4 -0.0645 0.2039 -0.3166

trt -0.8230 0.1514 -5.4354

(Dispersion Parameter for Poisson family taken to be 1 )

Null Deviance: 301.3706 on 191 degrees of freedom

Residual Deviance: 266.3228 on 187 degrees of freedom

Number of Fisher Scoring Iterations: 4
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C.1.3 Nonparametric and Semiparametric Poisson Analysis

The nonparametric Nelson-Aalen estimate of the mean function for control
individuals given in Figures 3.2 and 3.3, is obtained by fitting a null Cox
model (i.e. no covariates) using the “rats” data frame. The code is as follows.

> NPfit <- coxph(Surv(start,stop,status) ~ 1,

data=rats, subset=(trt==0), method="breslow")

> KM <- survfit(NPfit, type="aalen")

> NA.MF <- data.frame(time=c(0,KM$time),

na=-log(c(1,KM$surv)))

The “method="breslow"” specification indicates a way of dealing with ties in
the event times and is a standard approach for survival analysis (although not
the default in S-PLUS); see Lawless (2003a). Specification of “type="aalen"”
in the survfit function ensures that the resulting nonparametric estimate of
the mean function is of the form (3.17).

The semiparametric multiplicative Poisson model with a treatment covari-
ate can be fit with the coxph function by including all subjects and adding
the covariate trt. In the data frame below, start and stop contain the left
truncation time and event/censoring times, respectively, where status indi-
cates which times are event times. The following code is used for fitting the
semiparametric model.

> coxph(Surv(start,stop,status) ~ trt, data=rats, method="breslow")

n= 254

coef exp(coef) se(coef) z p

trt -0.816 0.442 0.152 -5.37 7.8e-08

exp(coef) exp(-coef) lower .95 upper .95

trt 0.442 2.26 0.328 0.596

Likelihood ratio test= 31.7 on 1 df, p=1.81e-08

Wald test = 28.9 on 1 df, p=7.76e-08

Score (logrank) test = 30.5 on 1 df, p=3.27e-08

C.1.4 Semiparametric Mixed Poisson Analysis

The coxph function in S-PLUS or R can also be used to fit semiparametric
mixed Poisson models using the frailty(id) option. The particular forms
one can use are gamma, log-normal, and t distributions, but only the gamma
random effect distribution (the default) gives exact maximum likelihood es-
timates and we emphasis the use of this distribution here. As discussed in
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Section 3.5, the gamma frailty distribution is parameterized to have mean 1
and variance φ.

Therneau and Grambsch (2000, Ch. 9) provide extensive discussion on the
use of the frailty option in the coxph function. Therneau et al. (2003) show
that for a fixed random effect variance parameter, the EM equations for β
coincide with those arising from an analysis based on penalized likelihood.

> coxph(Surv(start,stop,status) ~ trt + frailty(id),

data=rats, method="breslow")

n= 254

coef se(coef) se2 Chisq DF p

trt -0.816 0.211 0.153 15.0 1.0 0.00011

frailty(id) 49.5 24.3 0.00190

exp(coef) exp(-coef) lower .95 upper .95

trt 0.442 2.26 0.292 0.668

Iterations: 6 outer, 18 Newton-Raphson

Variance of random effect= 0.27 I-likelihood = -791.9

The standard error se(coef) is preferred to se2 as it is apparently close to
correct, and gives more conservative statements about covariate effects. The
I-likelihood is the marginal log-likelihood for the model (obtained after
integrating out the random effect) and should therefore be used for likelihood
ratio tests.

C.1.5 Robust Semiparametric Analysis

Robust variance estimates and standard errors as given in (3.38) are obtained
by using the cluster(id) option in coxph.

coxph(Surv(start,stop,status) ~ trt + cluster(id),

data=rats, method="breslow")

n= 254

coef exp(coef) se(coef) robust se z p

trt -0.815774 0.442297 0.151836 0.19809 -4.11819 3.8186e-05

exp(coef) exp(-coef) lower .95 upper .95

trt 0.442297 2.26092 0.299985 0.652122

Likelihood ratio test= 31.69 on 1 df, p=1.81146e-08

Wald test = 16.96 on 1 df, p=3.8186e-05

Score (logrank) test = 30.54 on 1 df, p=3.26554e-08, Robust = 11.2

p=0.000816617

(Note: the likelihood ratio and score tests assume
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independence of observations within a cluster, the

Wald and robust score tests do not).

The note at the end of the output is a reminder that likelihood-based infer-
ences are not robust. The Wald test and the score tests are robust however,
where the latter is based on a score statistic for β = 0 from a Poisson process,
but uses a robust variance estimate.

C.2 Code for rhDNase Data Analyses of Chapter 4

Following some manipulation, the data given in Section D.3 of Appendix D
for the first few subjects can be reformatted and read into S-PLUS or R as a
data frame in the counting process formulation as follows.

> rhDNase <- read.table("rhDNase.dat", header=T)

> rhDNase[1:18, c("id","trt","fev","time1","time2","status","etype",

"enum","enum1")]

id trt fev time1 time2 status etype enum enum1

1 493301 1 28.8 0 168 0 1 1 1

2 493303 1 64.0 0 169 0 1 1 1

3 493305 0 67.2 0 65 1 1 1 1

4 493305 0 67.2 65 75 1 2 2 1

5 493305 0 67.2 75 168 0 1 3 2

6 493309 1 57.6 0 168 0 1 1 1

7 493310 0 57.6 0 171 0 1 1 1

8 493311 1 25.6 0 166 0 1 1 1

9 493312 0 86.4 0 168 0 1 1 1

10 493313 0 32.0 0 90 1 1 1 1

11 493313 0 32.0 90 104 1 2 2 1

12 493313 0 32.0 104 166 0 1 3 2

13 589301 1 86.4 0 169 0 1 1 1

14 589302 0 28.8 0 8 1 1 1 1

15 589302 0 28.8 8 22 1 2 2 1

16 589302 0 28.8 22 63 1 1 3 2

17 589302 0 28.8 63 88 1 2 4 2

18 589302 0 28.8 88 169 0 1 5 3

Here id is the patient ID number, trt equals 1 for patients receiving rhD-
Nase and 0 if they receive placebo, and fev is the forced respiratory volume
measured at randomization. The variable time1 is the start of a period in-
dicating when subjects become “at risk” for a transition and time2 is the
time of the transition or a censoring time. The status variable equals 1 if
time2 is a transition time and equals 0 if it is a censoring time (i.e. the end of
followup). The etype variable indicates the nature of the event time recorded
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in time2; specifically, if etype=1 then time2 corresponds to the onset of an
exacerbation (or censoring) and if etype=2, time2 corresponds to the time
of a resolution of an exacerbation (or censoring). The enum variable simply
records the cumulative number of lines in the data frame for each individual
and enum1 the cumulative number of exacerbation-free periods.

Here we consider the data for the first two events, create a gap time vari-
able, and center FEV.

> rhDNase.etype1 <- rhDNase[rhDNase$etype == 1,]

> rhDNase.etype1$gtime<-rhDNase.etype1$time2-rhDNase.etype1$time1

> rhDNase.etype1$fevc<-rhDNase.etype1$fev-

mean(rhDNase.etype1$fev[rhDNase.etype1$enum1==1])

Data for First and Second Gaps :

> rhDNase1 <- rhDNase.etype1[rhDNase.etype1$enum1 == 1,]

> rhDNase2 <- rhDNase.etype1[rhDNase.etype1$enum1 == 2,]

Here we create a data frame in which we can use the first gap time as a
covariate in the second gap time analysis.

> temp <- rhDNase1[rhDNase1$status==1, c("id","gtime")]

> dimnames(temp)[[2]] <- c("id","gtime1")

> rhDNase2 <- merge(rhDNase2, temp, by="id", all.x=T)

> rhDNase2$gtime1c <- rhDNase2$gtime1 - mean(rhDNase2$gtime1)

Below is the code for fitting a Cox model to first and second gap times.

> fit1 <- coxph(Surv(gtime,status) ~ trt + fevc,

data = rhDNase1, method = "breslow")

> summary(fit1)

n= 645

coef exp(coef) se(coef) z p

trt -0.3828 0.682 0.12971 -2.95 3.2e-03

fevc -0.0206 0.980 0.00277 -7.44 1.0e-13

exp(coef) exp(-coef) lower .95 upper .95

trt 0.682 1.47 0.529 0.879

fevc 0.980 1.02 0.974 0.985

Rsquare= 0.103 (max possible= 0.991 )

Likelihood ratio test= 69.8 on 2 df, p=6.66e-16

Wald test = 63.5 on 2 df, p=1.65e-14

Score (logrank) test = 65.9 on 2 df, p=4.77e-15

> fit2 <- coxph(Surv(gtime,status) ~ trt + fevc + gtime1c,

data = rhDNase2, method = "breslow")

> summary(fit2)

n= 227

coef exp(coef) se(coef) z p



C.2 Code for rhDNase Data Analyses of Chapter 4 357

trt 0.358071 1.431 0.22456 1.595 0.11000

fevc 0.000932 1.001 0.00538 0.173 0.86000

gtime1c -0.014310 0.986 0.00394 -3.634 0.00028

exp(coef) exp(-coef) lower .95 upper .95

trt 1.431 0.699 0.921 2.222

fevc 1.001 0.999 0.990 1.012

gtime1c 0.986 1.014 0.978 0.993

Rsquare= 0.068 (max possible= 0.968 )

Likelihood ratio test= 15.9 on 3 df, p=0.00121

Wald test = 14.8 on 3 df, p=0.00196

Score (logrank) test = 15.4 on 3 df, p=0.00153

Model checking can be carried out using the S-PLUS function cox.zph, which
does not provide evidence of problems with the assumption of multiplicative
covariate effects.

> check1 <- cox.zph(fit1, transform="identity")

> check1

rho chisq p

trt 0.0239 0.139 0.709

fevc 0.0363 0.288 0.591

GLOBAL NA 0.422 0.810

Gap time analysis may also be carried out using parametric log-normal models
as in Section 4.3.2. The results summarized in Table 4.2 are based on models
with treatment and FEV or treatment, FEV, and the previous gap time; the
associated code is given below.

> fit1 <- survReg(Surv(gtime, status) ~ trt + fevc,

data=rhDNase1, dist="lognormal")

> summary(fit1)

Value Std. Error z p

(Intercept) 5.4030 0.1048 51.53 0.00e+00

trt 0.4302 0.1371 3.14 1.71e-03

fevc 0.0217 0.0029 7.47 8.03e-14

Log(scale) 0.3688 0.0512 7.21 5.68e-13

Scale= 1.45

Log Normal distribution

Loglik(model)= -1625 Loglik(intercept only)= -1660.8

Chisq= 71.51 on 2 degrees of freedom, p= 3.3e-16

Number of Newton-Raphson Iterations: 3

n= 645
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> rhDNase2$lgtime1 <- log(rhDNase2$gtime1)

> fit2 <- survReg(Surv(gtime, status) ~ trt + fevc + lgtime1,

data=rhDNase2, dist="lognormal")

> summary(fit2)

Value Std. Error z p

(Intercept) 3.20899 0.4867 6.593 4.30e-11

trt -0.22657 0.2105 -1.077 2.82e-01

fevc -0.00454 0.0047 -0.965 3.34e-01

lgtime1 0.41730 0.1322 3.157 1.59e-03

Log(scale) 0.20559 0.0859 2.392 1.67e-02

Scale= 1.23

Log Normal distribution

Loglik(model)= -484.9 Loglik(intercept only)= -490.9

Chisq= 11.99 on 3 degrees of freedom, p= 0.0074

Number of Newton-Raphson Iterations: 3

n= 227

C.3 Code for Chronic Bronchitis Trial of Chapter 6

Below are the first few lines of the data frame for the semiparametric analy-
sis of the exacerbation and interexacerbation times for the chronic bronchitis
study given in Section 6.7.2. It is somewhat more involved than some of the
previous data frames in that information is given for the time since the previ-
ous transition, the time since disease onset, the season, treatment, and other
covariates.

id enum etype estart estop gstart gstop gtime estatus xmark

1101 0 1 4 36 4 36 32 1 3

1101 1 2 36 97 0 61 61 1 3

1101 2 1 97 137 0 40 40 1 3

1101 3 2 137 369 0 232 232 0 3

1202 0 1 1 16 1 16 15 1 5

1202 1 2 16 178 0 162 162 1 5

1202 2 1 178 193 0 15 15 1 5

1202 3 2 193 263 0 70 70 1 5

1202 4 1 263 266 0 3 3 1 5

1202 5 2 266 327 0 61 61 1 5

1202 6 1 327 330 0 3 3 1 5

1202 7 2 330 363 0 33 33 0 5

xseason trt symptoms symptomsc gender severity

1 1 4 -1.824324 0 0

2 1 4 -1.824324 0 0
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2 1 4 -1.824324 0 0

1 1 4 -1.824324 0 0

2 0 1 -4.824324 1 0

3 0 1 -4.824324 1 0

4 0 1 -4.824324 1 0

4 0 1 -4.824324 1 0

4 0 1 -4.824324 1 0

1 0 1 -4.824324 1 0

1 0 1 -4.824324 1 0

1 0 1 -4.824324 1 0

In this example, state 1 corresponded to the AECB-free condition and state 2
to the AECB condition. Here enum records the cumulative number of transi-
tions of any sort over [0, t], denoted Ni1(t−) + Ni2(t−), and enum records the
total number of transitions over [0, t−]. The etype variable indicates whether
the times associated with each row relate to transitions from the AECB to
the AECB-free state (etype=1) or transitions from the AECB-free to the
AECB state (etype=2). The variables estart and estop indicate the begin-
ning and end of an “at risk” interval with time measured from the start of the
exacerbation experienced at study entry, and gstart and gstop give the cor-
responding times on a semi-Markov scale (i.e. measured from the occurrence
of the previous transition). The estatus variable is the censoring indicator
which indicates whether the estop and gstop times correspond to transition
times (estatus=1) or censoring times (estatus=0). To examine the possible
effect of the time since diagnosis with chronic bronchitis, xmark reflects which
of the following five year intervals the patient history falls into: xmark = 1,
2, 3, 4, 5, 6, 7, 8 for 0–5, 5–10, 10–15, 15–20, 20–25, 25–30, 30–35, 35–40
years duration, respectively. Seasonal effects are addressed through inclusion
of xseason which takes the values 1 (Jan–March); 2 (April–Jun), 3 (July–
Sept), or 4 (Oct–Dec). Additional covariates include gender (1 = female, 0 =
male), severity (1 = severe disease, 0 = not severe), trt (1 = Ciprofloxacin,
0 = standard care), trt.dt (1 = Ciprofloxacin received and in the first exac-
erbation, 0 = standard care), and symptomsc represents the preceding days of
AECB symptoms at randomization (centered by subtracting the mean num-
ber of symptom days, which is given by the variable symptoms).

The result of fitting a full model for the resolution of exacerbations is as
follows.

> coxph(Surv(gstart,gstop,estatus) ~

(trt+gender+severity+symptomsc)*strata(Ienum.gt.0) +

factor(xmark)+factor(xseason)+

strata(Ienum.gt.0)+frailty(id,distribution="gamma"),

data=chest, subset=(etype == 1), method="breslow",

control=coxph.control(eps=1e-06, iter.max=100))

n= 820
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coef se(coef) se2 Chisq DF p

trt 0.5132 0.1585 0.1437 10.48 1.0 1.2e-03

gender -0.1993 0.1598 0.1441 1.56 1.0 2.1e-01

severity -0.2821 0.2485 0.2243 1.29 1.0 2.6e-01

symptomsc -0.1091 0.0159 0.0149 47.06 1.0 6.9e-12

factor(xmark)2 -0.1590 0.1651 0.1343 0.93 1.0 3.4e-01

factor(xmark)3 -0.2837 0.1648 0.1306 2.97 1.0 8.5e-02

factor(xmark)4 -0.4618 0.1993 0.1576 5.37 1.0 2.1e-02

factor(xmark)5 -0.4225 0.2247 0.1835 3.54 1.0 6.0e-02

factor(xmark)6 -0.3069 0.2755 0.2167 1.24 1.0 2.7e-01

factor(xmark)7 0.2637 0.3345 0.2672 0.62 1.0 4.3e-01

factor(xmark)8 -0.7072 0.4193 0.3463 2.84 1.0 9.2e-02

factor(xmark)9 -0.4688 0.3028 0.2307 2.40 1.0 1.2e-01

factor(xseason)2 0.2911 0.1204 0.1135 5.84 1.0 1.6e-02

factor(xseason)3 0.1803 0.1474 0.1406 1.50 1.0 2.2e-01

factor(xseason)4 0.2037 0.1242 0.1182 2.69 1.0 1.0e-01

frailty(id, distribution 100.29 58.4 5.4e-04

trt:strata(Ienum.gt.0) -0.4528 0.1879 0.1794 5.81 1.0 1.6e-02

gender:strata(Ienum.gt.0) 0.1103 0.1907 0.1816 0.33 1.0 5.6e-01

severity:strata(Ienum.gt. 0.2879 0.2745 0.2633 1.10 1.0 2.9e-01

symptomsc:strata(Ienum.gt 0.0979 0.0177 0.0172 30.41 1.0 3.5e-08

Iterations: 8 outer, 36 Newton-Raphson

Variance of random effect= 0.164 I-likelihood = -2845.4

Degrees of freedom for terms= 0.8 0.8 0.8 0.9 5.1 2.7 58.4 0.9

0.9 0.9 0.9

Rsquare= 0.277 (max possible= 0.999 )

Likelihood ratio test= 266 on 73.21 df, p=0

Because the first exacerbation is incomplete and treatment was initiated in
mid-exacerbation, the model is stratified according to whether it is the first
or a subsequent exacerbation. We also fit covariate by strata interactions to
give estimates of different covariate effects in the two strata.

The complementary aspect of this process is the onset of exacerbations.
The result of fitting a full model for the associated events is given below; see
Table 6.5.

> coxph(Surv(gstart,gstop,estatus) ~

trt + gender + severity + factor(xmark) +

factor(xseason) + frailty(id, distribution="gamma"),

data=chest, subset=(etype == 2), method="breslow",

control=coxph.control(eps=1e-06, iter.max=100))

n= 595

coef se(coef) se2 Chisq DF p

trt -0.0369 0.124 0.105 0.09 1.0 0.7700

gender 0.2361 0.127 0.109 3.47 1.0 0.0630

severity 0.5621 0.172 0.141 10.69 1.0 0.0011

factor(xmark)2 -0.3328 0.189 0.166 3.10 1.0 0.0780
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factor(xmark)3 0.2964 0.187 0.159 2.52 1.0 0.1100

factor(xmark)4 0.2839 0.223 0.188 1.61 1.0 0.2000

factor(xmark)5 -0.1330 0.263 0.227 0.26 1.0 0.6100

factor(xmark)6 0.1054 0.294 0.251 0.13 1.0 0.7200

factor(xmark)7 0.4789 0.375 0.307 1.63 1.0 0.2000

factor(xmark)8 0.2534 0.504 0.428 0.25 1.0 0.6200

factor(xmark)9 0.4307 0.324 0.265 1.77 1.0 0.1800

factor(xseason)2 -0.0996 0.161 0.153 0.38 1.0 0.5400

factor(xseason)3 0.3822 0.148 0.143 6.63 1.0 0.0100

factor(xseason)4 0.0216 0.150 0.142 0.02 1.0 0.8900

frailty(id, distribution 74.00 51.5 0.0220

Iterations: 7 outer, 21 Newton-Raphson

Variance of random effect= 0.198 I-likelihood = -2151.2

Degrees of freedom for terms= 0.7 0.7 0.7 5.7 2.7 51.5

Rsquare= 0.261 (max possible= 0.999 )

Likelihood ratio test= 180 on 62.03 df, p=2.15e-13
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Datasets

The datasets below are available from the Web site for this book
(www.stats.uwaterloo.ca/cook-lawless/book.shtml).

D.1 Bladder Cancer Data

Byar (1980) reported on patients with superficial bladder cancer who par-
ticipated in a randomized clinical trial to assess the effect of experimental
treatments on the recurrence of tumors. We consider data on 38 patients
assigned to receive Thiotepa and 47 subjects assigned to placebo. The covari-
ates include the treatment (zi1 = 1 for Thiotepa and zi1 = 0 for placebo),
the diameter (in centimeters) of the largest tumor present at randomization
(zi2), and the number of tumors present at randomization (zi3). The followup
data include the times of inspection and the numbers of tumors detected at
the inspections. In Table D.1 the times of inspections are listed for the first
20 subjects; if one or more tumors were detected at an inspection time the
number is given in parentheses.

In the corresponding data frame, the counting process formulation is used
with visit indicating the visit number, estart and estop the beginning and
end of an interval, and m the number of tumors detected upon inspection at
estop, followed by the covariates. Data for the first five subjects are as follows.

id visit estart estop m z1 z2 z3

1 1 0 1 0 0 3 1

2 1 0 1 0 0 1 2

2 2 1 4 0 0 1 2

3 1 0 7 0 0 1 1

4 1 0 3 0 0 1 5

4 2 3 9 0 0 1 5

4 3 9 10 0 0 1 5

5 1 0 1 0 0 1 4
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Table D.1. Data from 20 individuals in the bladder cancer study of Byar (1980).

ID z1 z2 z3 Months from Randomization (# Tumors Detected)

1 0 3 1 1

2 0 1 2 1 4

3 0 1 1 7

4 0 1 5 3 9 10

5 0 1 4 1 4 6(1) 7 10

6 0 1 1 3 10 14

7 0 1 1 2 10 12(2) 16(3) 18

8 0 1 1 3 14 18

9 0 3 1 5(2) 10 12 18

10 0 3 1 3 7 10(6) 15(3) 19 23

11 0 1 1 1 3(8) 8 10 13 16(8) 19 23(8)

12 0 1 3 3(1) 6 9(1) 10 13 15 17 20 21(8) 23

13 0 3 3 3 6 9 11 14 18 23

14 0 3 2 3 7(8) 10(7) 13 16(5) 24(7)

15 0 1 1 3(1) 6 9 12 15(1) 17 20 22 25(3)

16 0 1 8 1(8) 4 7 11 14 17 20 25 26

17 0 4 1 2(4) 6 26(8)

18 0 2 1 3 6 13 16 22 23 26

19 0 2 1 6 25(3) 28

20 0 4 1 5 8 17 29

5 2 1 4 0 0 1 4

5 3 4 6 1 0 1 4

5 4 6 7 0 0 1 4

5 5 7 10 0 0 1 4

D.2 Bowel Motility Data

Aalen and Husebye (1991) report on a study of the motility of the small bowel
discussed in Section 1.3.2, where the data are given in Table 1.4. They pro-
vide data on 19 healthy subjects who were provided with a standard meal at
6:00 p.m. to induce a “fed state”, and had their intraluminal pressure mon-
itored overnight for 13 hours and 40 minutes. Interest lies in the migrating



D.3 Pulmonary Exacerbations and rhDNase 365

motor complex (MMC), an activity front of a fasting cycle during the diges-
tion process. Several MMC were observed for each individual and the times
between these events are of interest. The first MMC defines the start of the
fasting cycle and the times between the consecutive cycles define the gaps.
The last MMC period is censored by the end of monitoring. A data frame for
an analysis in S-PLUS or R is shown below, where time is the duration of a
cycle, status indicates whether it was observed completely, and enum counts
the number of cycles for an individual. Data for the first five individuals are
shown.

id time status enum

1 112 1 1

1 145 1 2

1 39 1 3

1 52 1 4

1 21 1 5

1 34 1 6

1 33 1 7

1 51 1 8

1 54 0 9

2 206 1 1

2 147 1 2

2 30 0 3

3 284 1 1

3 59 1 2

3 186 1 3

3 4 0 4

4 94 1 1

4 98 1 2

4 84 1 3

4 87 0 4

5 67 1 1

5 131 0 2

D.3 Pulmonary Exacerbations and rhDNase

Fuchs et al. (1994) report on a double-blind randomized multicenter clinical
trial designed to assess the effect of rhDNase, a recombinant deoxyribonucle-
ase I enzyme, versus placebo on the occurrence of respiratory exacerbations
among patients with cystic fibrosis. The rhDNase operates by digesting the
extracellular DNA released by leukocytes that accumulate in the lung as a
result of bacterial infection (Therneau and Hamilton, 1997), and so it was
expected that aerosol administration of rhDNase would reduce the incidence
of exacerbations.

Data on the occurrence and resolution of all exacerbations were recorded
over approximately 169 days of followup for 645 patients in this trial; the
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data are discussed in some detail in Therneau and Grambsch (2000). Part
of the data is given in Table D.2 for the first 20 patients. We include a pa-
tient identifier, the treatment assignment (T) (1 = rhDNase, 0 = placebo),
two baseline measurements of forced expiratory volume (FEV1 and FEV2)
reflecting lung capacity, and the date of randomization. In addition, the num-
ber of days from randomization to the beginning (B) of the exacerbations is
recorded, as well as the day on which treatment for each exacerbation ended
(E) and patients became at risk of a new exacerbation. Therefore, for patient
number 589302, the first exacerbation began 8 days after randomization and
antibiotic therapy for this exacerbation ended 22 days after randomization.
The patient then remained at risk until the second exacerbation, which began
63 days after randomization, and became at risk again after therapy ended
on day 88; the patient did not have another exacerbation over the remainder
of followup which ended on day 169.

Table D.2. Data from rhDNase study for first 20 subjects.

Onset and Resolution Times

1st 2nd 3rd Cens.
ID T FEV1 FEV2 Rand. Date B E B E B E Time

493301 1 28.8 28.1 20/03/1992 168
493303 1 64.0 63.0 24/03/1992 169
493305 0 67.2 68.7 24/03/1992 65 75 168
493309 1 57.6 56.5 26/03/1992 168
493310 0 57.6 56.3 24/03/1992 171
493311 1 25.6 25.3 27/03/1992 166
493312 0 86.4 85.4 27/03/1992 168
493313 0 32.0 32.4 28/03/1992 90 104 166
589301 1 86.4 86.0 27/02/1992 169
589302 0 28.8 29.2 06/03/1992 8 22 63 88 169
589303 0 112.0 110.7 28/02/1992 60 74 83 124 169
589305 0 70.4 71.7 04/03/1992 50 68 169
589307 1 96.0 94.5 05/03/1992 169
589309 0 44.8 44.6 05/03/1992 99 114 169
589310 1 70.4 70.1 06/03/1992 35 64 71 108 169
589311 1 54.4 53.8 11/03/1992 169
589312 0 73.6 73.2 12/03/1992 8 13 196
589313 1 96.0 97.2 12/03/1992 169
589314 0 105.6 107.0 12/03/1992 169
589316 1 80.0 79.4 19/03/1992 167
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D.4 Software Debugging Data

Section 1.2.2 introduced the software debugging example in which the number
of faults found in a software system was recorded over a 160-day testing period.
Table D.3 contains the full dataset. The data frame, whose first several lines
are shown below, is constructed like Table D.3, with t representing the total
testing time in terms of total staff days to date, Nt the number of faults
detected up to time t, and Ct the number of lines of code changed (or added)
up to time t.

t Nt Ct

0 0 0

4.8 0 16012

6 0 16012

14.3 7 32027

22.8 7 48042

32.1 7 58854

41.4 7 69669

51.2 11 80483

60.6 12 91295

70 13 102110

79.9 15 112925

91.3 20 120367

97 21 127812

107.7 22 135257

119.1 28 142702

127.6 40 150147

135.1 44 152806

142.8 46 155464

148.9 48 158123

156.6 52 167081

163.9 52 167704

169.7 59 174626

170.1 59 174626

170.6 59 174626

174.7 63 181548

179.6 68 188473

185.5 71 194626

194.0 88 200782

200.3 93 206937

D.5 Artificial Field Repair Data

In Example 8.1 some results were presented on the analysis of an artificial dataset
on field repairs. The data were generated as follows. The time-homogeneous event
rate for subject i was gamma distributed with mean 2 and variance 0.5 and this
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Table D.3. Software debugging data from Dalal and McIntosh (1994).

t N(t) C(t) t N(t) C(t) t N(t) C(t)

0.0 0 0 285.5 186 247946 578.3 457 306902
4.8 0 16012 294.2 190 251016 587.2 467 307849
6.0 0 16012 295.7 190 251016 595.5 473 308795
14.3 7 32027 298.0 190 254086 605.6 480 309742
22.8 7 48042 305.2 195 257155 613.9 491 310688
32.1 7 58854 312.3 201 260225 621.6 496 311635
41.4 7 69669 318.2 209 260705 623.4 496 311635
51.2 11 80483 328.9 224 261188 636.3 502 311750
60.6 12 91295 334.8 231 261669 649.7 517 311866
70.0 13 102110 342.7 243 262889 663.9 527 312467
79.9 15 112925 350.5 252 263629 675.1 540 313069
91.3 20 120367 356.3 259 264367 677.4 543 313069
97.0 21 127812 360.6 271 265107 677.9 544 313069
107.7 22 135257 365.7 277 265845 688.4 553 313671
119.1 28 142702 374.9 282 266585 698.1 561 314273
127.6 40 150147 386.5 290 267325 710.5 573 314783
135.1 44 152806 396.5 300 268607 720.9 581 315294
142.8 46 155464 408.0 310 269891 731.6 584 315805
148.9 48 158123 417.3 312 271175 732.7 585 315805
156.6 52 167081 424.9 321 272457 733.6 585 315805
163.9 52 167704 434.2 326 273741 746.7 586 316316
169.7 59 174626 442.7 339 275025 761.0 598 316827
170.1 59 174626 451.4 346 276556 776.5 612 318476
170.6 59 174626 456.1 347 278087 793.5 621 320125
174.7 63 181548 460.8 351 279618 807.2 636 321774
179.6 68 188473 466.0 356 281149 811.8 639 321774
185.5 71 194626 472.3 359 283592 812.5 639 321774
194.0 88 200782 476.4 362 286036 829.0 648 323423
200.3 93 206937 480.9 367 288480 844.4 658 325072
207.2 97 213093 486.8 374 290923 860.5 666 326179
211.9 98 219248 495.8 376 293367 876.7 674 327286
217.0 105 221355 505.7 380 295811 892.0 679 328393
223.5 113 223462 516.0 392 298254 895.5 686 328393
227.0 113 225568 526.2 399 300698 910.8 690 329500
234.1 122 227675 527.3 401 300698 925.1 701 330608
241.6 129 229784 535.8 405 303142 938.3 710 330435
250.7 141 233557 546.3 415 304063 952.0 720 330263
259.8 155 237330 556.1 425 305009 965.0 729 330091
268.3 166 241103 568.1 440 305956 967.7 729 330091
277.2 178 244879 577.2 457 306902 968.6 731 330091
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Table D.3. Software debugging data from Dalal and McIntosh (1994) - continued.

t N(t) C(t) t N(t) C(t) t N(t) C(t)

981.3 740 329919 1139.1 805 331852 1279.8 854 339943
1013.9 759 330036 1163.2 823 332167 1287.4 855 341955
1030.1 776 330326 1174.3 827 332391 1295.1 859 341967
1044.0 781 330616 1184.6 832 332615 1304.8 860 341979
1047.0 782 330616 1198.3 834 332839 1305.8 865 342073
1059.7 783 330906 1210.3 836 333053 1313.3 867 342168
1072.6 787 331196 1221.1 839 333267 1314.4 867 342168
1085.7 793 331486 1230.5 842 333481 1320.0 867 342262
1098.4 796 331577 1231.6 842 333481 1325.3 867 342357
1112.4 797 331669 1240.9 844 333695 1330.6 870 342357
1113.5 798 331669 1249.5 845 333909 1334.2 870 342358
1114.1 798 331669 1262.2 849 335920 1336.7 870 342358
1128.0 802 331760 1271.3 851 337932

was used to generate events over (0, τi], where τi ∼ Unif(1,3). At the jth event time
for subject i, the cost was generated independently as Cij ∼ N(10, 2.52). Table D.4
contains the simulated data for the first ten individuals.

Table D.4. Artifical field repair data.

ID τ Variable Time and Cost

1 1.66 Time 0.11 0.36 0.86 0.97 1.22
Cost 8.36 11.73 12.77 6.36 10.86

2 2.17 Time 1.19
Cost 11.15

3 2.65 Time
Cost

4 2.12 Time 0.04 0.23 0.67 1.13 1.24 1.34 1.66 2.12
Cost 12.09 11.33 8.38 11.51 5.54 10.84 11.40 13.05

5 1.83 Time
Cost

6 2.81 Time 0.41 1.00 1.18 1.61 2.00 2.40
Cost 8.15 6.63 8.71 13.53 10.46 9.89

7 1.83 Time 0.02 0.99 1.15
Cost 6.55 7.58 10.63

8 1.27 Time 0.20 0.38 0.69 0.89 1.06
Cost 11.44 10.61 6.62 8.20 4.96

9 1.60 Time 0.15 0.45 0.50 0.62 0.86 1.16 1.42
Cost 5.83 8.76 12.47 7.41 10.05 10.64 9.30

10 2.27 Time 0.16 1.29 1.41 2.09
Cost 11.82 10.84 12.92 10.62
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