Ferramentas do usuário

Ferramentas do site


02_tutoriais:tutorial7:start

Diferenças

Aqui você vê as diferenças entre duas revisões dessa página.

Link para esta página de comparações

Ambos lados da revisão anterior Revisão anterior
Próxima revisão
Revisão anterior
02_tutoriais:tutorial7:start [2020/10/02 06:18]
rafael.melhem [Simulando dados]
02_tutoriais:tutorial7:start [2020/10/02 18:30] (atual)
adalardo [Variável Indicadora]
Linha 7: Linha 7:
  
 A primeira parte desse tutorial é baseado no [[http://​labtrop.ib.usp.br/​doku.php?​id=cursos:​planeco:​roteiro:​08-lm_rcmdr| tutoria de modelos lineares da disciplina Princípios de Planejamento e Análise de Dados]], inclusive as vídeoaulas. Aqui iremos focar no código que estava subjacente ao tutorial. A primeira parte desse tutorial é baseado no [[http://​labtrop.ib.usp.br/​doku.php?​id=cursos:​planeco:​roteiro:​08-lm_rcmdr| tutoria de modelos lineares da disciplina Princípios de Planejamento e Análise de Dados]], inclusive as vídeoaulas. Aqui iremos focar no código que estava subjacente ao tutorial.
 +<WRAP center round tip 60%>
 +A videoaula gravada no google meet no dia 02 de outubro de 2020 está ao final do tutorial. Dê preferência para as videoaulas do curso de **Principios de Planejamento e Análise de Dados** que estão colocadas ao longo do tutorial. Eles tratam o tema de modelos lineares de forma mais sucinta e tiveram alguma edição. Desconsiderem nesses vídeos as referências à disciplina.
 +</​WRAP>​
 +
 ===== Modelos Lineares ===== ===== Modelos Lineares =====
  
Linha 12: Linha 16:
  
 Os modelos lineares são uma generalização dos testes de hipótese clássicos mais simples. Uma regressão linear, por exemplo, só pode ser aplicada para dados em que tanto a variável preditora quanto a resposta são contínuas, enquanto uma análise de variância é utilizada quando a variável preditora é categórica. Os modelos lineares não têm essa limitação,​ podemos usar variáveis contínuas ou categóricas indistintamente. Os modelos lineares são uma generalização dos testes de hipótese clássicos mais simples. Uma regressão linear, por exemplo, só pode ser aplicada para dados em que tanto a variável preditora quanto a resposta são contínuas, enquanto uma análise de variância é utilizada quando a variável preditora é categórica. Os modelos lineares não têm essa limitação,​ podemos usar variáveis contínuas ou categóricas indistintamente.
-<WRAP center round box 40%>+<WRAP center round box 80%>
 __**Videoaula Modelo Linear I**__ __**Videoaula Modelo Linear I**__
 O vídeo é proveniente de outra disciplina, desconsidere qualquer referência a ela. O vídeo é proveniente de outra disciplina, desconsidere qualquer referência a ela.
 +<WRAP center round tip 80%>
 {{youtube>​b4VgLr6loGE}} {{youtube>​b4VgLr6loGE}}
 +
 +</​WRAP>​
  
  
Linha 69: Linha 76:
 <code rsplus> <code rsplus>
 par(mar = c(4, 4, 2, 2), cex.lab = 1.5, cex.axis = 1.5, las = 1, bty = "​n"​) par(mar = c(4, 4, 2, 2), cex.lab = 1.5, cex.axis = 1.5, las = 1, bty = "​n"​)
-plot(x1, y1, type = "​n",​ axes = FALSE, ann = FALSE, ylim = range(y1), xlim = range(x1))+plot(x1, y1, type = "​n",​ axes = FALSE, ann = FALSE, ylim = range(y1), xlim = range(x1))
 rect(par()$usr[1],​ par()$usr[3],​ par()$usr[2],​ par()$usr[4], ​ col = rgb(0, 0, 0, 0.15)) rect(par()$usr[1],​ par()$usr[3],​ par()$usr[2],​ par()$usr[4], ​ col = rgb(0, 0, 0, 0.15))
 axis(1) axis(1)
Linha 426: Linha 433:
 ===== Tabela de Anova de uma Regressão ===== ===== Tabela de Anova de uma Regressão =====
  
-<WRAP center round box 60%>+<WRAP center round box 100%> 
 +<WRAP center round tip 80%> 
 +Video na disciplina de Princípios de Planejamento e Análise de Dados. Desconsidere qualquer referência à disciplina. O tema tratado é a partição de variação dos dados. ​
 {{youtube>​C4urUFRGDvo}} {{youtube>​C4urUFRGDvo}}
 +
 +</​WRAP>​
 </​WRAP>​ </​WRAP>​
  
Linha 849: Linha 860:
 </​WRAP>​ </​WRAP>​
  
 +<WRAP center round box 100%>
 +Aula síncrona da disciplina no google meet, gravada em 01 de outubro de 2020. Nela abordo a construção e interpretação de modelos lineares simples no ambiente de programação R, focando no resumo (''​summary''​) com as principais informações do modelo. Uma bom entendimento do resumo do modelo é essencial para interpretação correta do resultado. Veja curso completo em:
 +http://​ecor.ib.usp.br
 +<WRAP center round tip 80%>
 +{{youtube>​VRrJ487k5qY}}
 +</​WRAP>​
 +
 +</​WRAP>​
  
  
02_tutoriais/tutorial7/start.1601630291.txt.gz · Última modificação: 2020/10/02 06:18 por rafael.melhem